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Appendix A Control design and stability analysis

To complete the controll design, we introduce the following assumptions and notation.

Assumption 1. The reference signal y0(t) and its derivative ẏ0(t) are bounded, continuous. Only y0(t) is available for

the controller design.

Assumption 2. The external disturbance di(t) is piecewise continuous in t and there exists an unknown constant d0i > 0

such that |di(t)| ⩽ d0i , (i = 1, 2, . . . , n).

Assumption 3. There exist unknown constants τf > 0 and θ̄ > 0 such that τf ⩽ τ(t) ⩽ 1 and |θ(t)| ⩽ θ̄.

Assumption 4. There exists a positive and continuous function Li(x̄i(t), ȳi(t), t) such that for any x̄i ∈ Ri and ȳi ∈ Ri,

|fi(x̄i(t))−fi(ȳi(t))| ⩽ Li(x̄i(t), ȳi(t), t)∥x̄i(t)− ȳi(t)∥ holds for i = 2, 3, . . . , n, where Li(x̄i(t), ȳi(t), t) is bounded if x̄i(t)

and ȳi(t) are bounded.

Assumption 5. Without loss of generality, the sign of function gi(x̄i(t)) is definite. Suppose that there exist unknown

positive constants g
i
and ḡi such that g

i
⩽ gi(x̄i(t)) ⩽ ḡi.

Assumption 6. The sign of function gi(x̄i(t)) is unknown for i = 1, 2, . . . , n− 1, and for simplicity, the sign of gn(x̄n(t))

is known and assumed to be positive. Without loss of generality, suppose that there exist unknown constants g
i
> 0 and

ḡi > 0 such that g
i
⩽ |gi(x̄i(t))| ⩽ ḡi.

Remark 1. Assumption 1 is standard in the literature [1–3]. It is commonly employed to ensure tracking control for

the class of systems under consideration, as evidenced by [4, 5]. Similarly, Assumption 2 is also conventional and widely

adopted to guarantee tracking performance, as can be found in [6–8]. In Assumption 3, the loss of effectiveness τ(t) is lower

bounded by an unknown positive constants τf . This makes the entire system controllable, and τf only shows up in the

stability analysis. Assumption 4 can be regarded as a generalized Lipschitz condition imposed on unknown nonlinear terms.

It should be emphasized in Assumptions 5 and 6 that both the lower and upper bounds of gi(x̄i(t)), where i = 1, 2, . . . , n,

are unknown. This is less restrictive than the assumption in [9], which require the knowledge of all upper and lower bounds

of unknown control coefficients. In real-world control scenarios, it can be difficult to obtain the bound of a practical system.

Notation. Throughout this Appendix, Rn denotes the n-dimensional Euclidean space. |x| denotes the absolute value

of scalar x. ||x|| denotes the Euclidean norm of vector x. x⊤ represents the transpose of vector x, respectively. For a

function V that is continuous but non-differentiable at ω0, the right Dini upper derivative at ω0 is defined as: D+V (ω0) =

lim suph→0+
V (ω0+h)−V (ω0)

h
. For simplicity, the variable t is omitted without causing ambiguity in what follows.

Appendix A.1 Control design of Theorem 1

In this subsection, we will first establish the control design for the system with known control directions under Assumptions

1-5. Then, we will consider the case where only the direction of actual controller gn(x̄n) is known. In order to achieve the

control objectives, virtual signals and an actual controller are proposed. For clarity and the reader’s convenience, we begin

by reiterating the definition of the function originally introduced in the letter: First, the following exponential function

ρi(t):

ρi(t) =
(π
2
− ρi∞

)
e−ρi1t + ρi∞, i = 1, 2, . . . , n, (A1)

where π
2
> ρi∞ > 0 and ρi1 > 0. In this case, ρi(0) =

π
2
, ρ̇i(t) < 0 and ρ̇i(t) is bounded. Then, the tracking error e1(t):

e1(t) = y(t)− y0(t), (A2)

*Corresponding author (email: xqwu@whu.edu.cn)



Sci China Inf Sci 2

ei(t) = xi(t)− αi−1(t), i = 2, 3, . . . , n, (A3)

and the virtual control signals βi−1(t), the output αi(t) and error zi(t) of the first-order filter on βi−1(t):

d̄iα̇i(t) + αi(t) = βi(t), αi(0) = βi(0), i = 1, 2, . . . , n− 1, (A4)

zi(t) = βi(t)− αi(t), i = 1, 2, . . . , n− 1, (A5)

where d̄i > 0. Then, the transformed errors ωi(t) and ki(t):

ωi(t) = tan
(π
2
ki(t)

)
, i = 1, 2, . . . , n, (A6)

ki(t) =
arctan(ei(t))

ρi(t)
, i = 1, 2, . . . , n. (A7)

Additionally, the integral sliding mode variables as:

si(t) = ωi(t) + λi

∫ t

0
sign(ωi(µ))dµ, i = 1, 2, . . . , n, (A8)

and low-pass filters as:

τ̄iζ̇i(t) + ζi(t) = −sign(si(t)), ζi(0) = 0, i = 1, 2, . . . , n, (A9)

where λi, τ̄i > 0 are a positive constant and the filter constant, respectively. The virtual signals βi and actual controller v

of known control directions:

β1 = −c1sign(ξ1), (A10)

βi = −
ci
√

si + ϱi|si|
ξi

− ϱ′iξiϕi

(
L̄2
i +

z2i−1

d̄2i−1

)
−

|ξi−1|ϕi−1(z
2
i−1 + x2

i )

ξiϕi
, i = 2, 3, . . . , n− 1, (A11)

v = −
1

γn

(
cn
√

sn + ϱn|sn|
ξn

+ ϱ′nξnϕn

(
L̄2
n +

z2n−1

d̄2n−1

)
+

|ξn−1|ϕn−1(z2n−1 + x2
n)

ξnϕn
+

n∑
i=1

|ξi|ϕiHi

ξnϕn

)
, (A12)

where ci > 0 (i = 1, 2, . . . , n), ϱi > 1, and ϱ′i > 0 (i = 2, 3, . . . , n) are scalars to be designed. Additionally, we define

L̄i = Li(x̄i, ȳi, t)∥x̄i − ȳi∥, and ξ1 = s1, ξi = 1+ ϱisign(si) (i = 2, 3, . . . , n). Under these definitions, it follows that ξi ̸= 0

for all si where i = 2, 3, . . . , n. Let s(t) = max{|si(t)|, . . . , |sn(t)|}. Then the feedback gain Hi(t) is defined as:

Hi(t) = hi(t) + ri(∥ω∥t + |Qt|)e−r̄it, (A13)

where ∥ω∥t = max{sup0⩽µ⩽t |ω1(µ)|, . . . , sup0⩽µ⩽t |ωn(µ)|}, ri, r̄i > 0, Qt = {q ∈ N+|s(tq) = 0, sign(s(t−q )) ̸= 0, tq−1 <

tq ⩽ t, t0 = 0}, N+ represents the positive integer set, and |Qt| is the cardinality of Qt. Then the switching gain hi(t) is

designed as follows:

• if s(t) ̸= 0, then hi(t) evolves according to

ḣi(t) = h̄i1|si(t)|+ h̄i2, hi(0) > 0; (A14)

• if s(t) = 0, then hi(t) is switched to

hi(t) = h̄i3|ζi(t)|+ h̄i4, (A15)

where h̄ij > 0, j = 1, 2, 4 and h̄i3 = Hi(ti), with ti being the latest instant up to t such that sign(s(t−i )) ̸= 0 and s(ti) = 0.

According to Eq. (A7), ei = tan(kiρi). Taking the derivative of e1, and combining it with Eq. (A2), we have

ė1 = 1
cos2(k1ρ1)

(k̇1ρ1 + k1ρ̇1) = g1(x̄1)x2 + f1(x̄1) + d1 − ẏ0. Therefore, we get

k̇1 =
1

ρ1
[γ1(g1(x̄1)x2 + f1(x̄1) + d1 − ẏ0)− k1ρ̇1]

=
1

ρ1
[γ1g1(x̄1)(tan(k2ρ2) + β1 − z1) + γ1(f1(x̄1) + d1 − ẏ0)− k1ρ̇1]

≜Γ1(k1, k2, t). (A16)

Similarly, we have

k̇i =
1

ρi
[γi

(
gi(x̄i)xi+1 + fi(x̄i) + di −

zi−1

d̄i−1

)
− kiρ̇i]

≜Γi(k1, . . . , ki+1, t), i = 2, 3, . . . , n− 1, (A17)
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k̇n =
1

ρn
[γn

(
gn(x̄n)u+ fn(x̄n) + dn −

zn−1

d̄n−1

)
− knρ̇n]

≜Γn(k1, . . . , kn, t), (A18)

where 0 < γi = cos2(kiρi) ⩽ 1, (i = 1, 2, . . . , n). Let k = [k1, . . . , kn]⊤ ∈ Rn,Γ = [Γ1, . . . ,Γn]⊤ ∈ Rn,Ξ ≜ (−1, 1)× · · · × (−1, 1)︸ ︷︷ ︸
n

.

Combining Eqs. (A16)-(A18), we have

k̇ = Γ(k, t).

We can obtain that Γ(k, t) is locally Lipschitz in k since ρi, ρ̇i, gi(x̄i), γi are bounded. From Eqs. (A1) and (A6), we

have k(0) ∈ Ξ. From Assumption 2, and Eqs. (A10)-(A12), we can get that di, βi, zi, v, gi(x̄i) are piecewise continuous

and fi(x̄i), y0, ẏ0, ρi, ρ̇i are continuous. Thus, Γ(k, t) is piecewise continuous in t. Consequently, according to Lemma 1

of [10], there exists a unique maximal solution k ∈ Ξ on [0, tmax), where 0 < tmax ⩽ +∞.

Then, from Eq. (A6), we have ω̇i = π
2 cos2(π

2
ki)

k̇i. Let ϕi = π
2ρi cos2(π

2
ki)

, (i = 1, 2, . . . , n). From Eq. (A1), we easily

get that ϕi ⩾ 1. Combined with Eq. (A8), the following closed-loop system can be obtained as:

ṡ1 =ϕ1[γ1(g1(x̄1)x2 + f1(x̄1) + d1 − ẏ0)− k1ρ̇1] + λ1sign(ω1)

=ϕ1[g1(x̄1)x2 − (1− γ1)g1(x̄1)x2 + γ1(f1(x̄1) + d1 − ẏ0)− k1ρ̇1] + λ1sign(ω1)

=ϕ1[g1(x̄1)β1 − g1(x̄1)z1 − (1− γ1)g1(x̄1)x2 +Ω′
1], (A19)

where

Ω′
1 =g1(x̄1)e2 + γ1(f1(x̄1) + d1 − ẏ0)− k1ρ̇1 +

λ1sign(ω1)

ϕ1
. (A20)

Similarly, we have

ṡi =ϕi[γi

(
gi(x̄i)xi+1 + fi(x̄i)− fi(ȳi) + fi(ȳi) + di −

zi−1

d̄i−1

)
− kiρ̇i] + λisign(ωi)

=ϕi[gi(x̄i)xi+1 − (1− γi)gi(x̄i)xi+1 + γi

(
fi(x̄i)− fi(ȳi) + fi(ȳi) + di −

zi−1

d̄i−1

)
− kiρ̇i] + λisign(ωi)

=ϕi[gi(x̄i)βi − gi(x̄i)zi − (1− γi)gi(x̄i)xi+1 + γi(fi(x̄i)− fi(ȳi))− γi
zi−1

di−1
+Ω′

i], i = 2, 3, . . . , n− 1, (A21)

ṡn =ϕn[γn

(
gn(x̄n)τ(t)v + gn(x̄n)θ(t) + fn(x̄n)− fn(ȳn) + fn(ȳn) + dn(t)−

zn−1

d̄n−1

)
− knρ̇n] + λnsign(ωn)

=ϕn[γn

(
gn(x̄n)τ(t)v + fn(x̄n)− fn(ȳn)−

zn−1

d̄n−1

)
+Ω′

n], (A22)

where

Ω′
i =gi(x̄i)ei+1 + γi(fi(ȳi) + di)− kiρ̇i +

λisign(ωi)

ϕi
, i = 2, 3, . . . , n− 1, (A23)

Ω′
n =γn(gn(x̄n)θ(t) + fn(ȳn) + dn)− knρ̇n +

λnsign(ωn)

ϕn
. (A24)

Then, we prove the boundedness of Ω′
i. For t ∈ [0, tmax), ki ∈ Ξ implies

arctan(ei)
ρi

∈ Ξ. When t ∈ [ tmax
2

, tmax), the

definition of ρi yields the bound |ei| ⩽ tan(ρi(
tmax

2
)). Since ei is continuous in t, it is bounded on [0, tmax

2
]. Consequently,

ei remains bounded on [0, tmax). The continuity of fi(·) and Assumption 1 ensure fi(ȳn) is bounded on [0, tmax). From

Assumptions 1-4 and the boundedness of e2, ρ̇1, it follows that Ω′
1 is bounded on [0, tmax). Similarly, Ω′

2, . . . ,Ω
′
n are

bounded on [0, tmax). Then, define Ωi, (i = 1, 2, . . . , n) as:

Ω1 = Ω′
1 + sign(ξ1)

ḡ21
2
, (A25)

Ωi =
1

g
i

Ω′
i +

ḡ2i ϱ
′
i|ξi|ϕi + 1

2ξig2i ϱ
′
iϕi

, i = 2, 3, . . . , n− 1, (A26)

Ωn =
1

τfgn
Ω′

n +
1

2ξnτ2f g
2
n
ϱ′nϕn

; (A27)

From the definition of ξi, we get the boundedness of ξi for i = 2, 3, . . . , n. From the boundedness of ḡi, gi, (i = 1, 2, . . . , n),

ϱ′i, ϱ
′′
i , τf , Ω

′
i, ξi, (i = 2, 3, . . . , n), we obtain Ωi is bounded for i = 1, 2, . . . , n. Therefore, |Ωi| ⩽ Ω̄i, (i = 1, 2, . . . , n) for

some unknown positive constants Ω̄i > 0 on [0, tmax).
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Then, consider the following Lyapunov function:

V =

n∑
i=1

Vi,

where V1 = 1
2
s21, Vn = 1

τfg
n

(sn + ϱn|sn|), Vi = 1
g
i

(si + ϱi|si|), (i = 2, 3, . . . , n − 1). Differentiating V1 along with Eqs.

(A19) and (A20), we obtain

V̇1 =ξ1ϕ1(g1(x̄1)β1 − g1(x̄1)z1 − (1− γ1)g1(x̄1)x2 +Ω′
1).

Then, combining Eq. (A10) and the boundedness and definition of Ωi in Eq. (A25), we get

V̇1 ⩽−
√
2c1ϕ1g1(x̄1)

√
V1 + |ξ1|ϕ1z

2
1 + |ξ1|ϕ1x

2
2 +

|ξ1|ϕ1ḡ21
2

+ ξ1ϕ1Ω
′
1

=−
√
2c1ϕ1g1(x̄1)

√
V1 + |ξ1|ϕ1(z

2
1 + x2

2) + ξ1ϕ1

(
Ω′

1 + sign(ξ1)
ḡ21
2

)
⩽−

√
2c1ϕ1g1

√
V1 + |ξ1|ϕ1(z

2
1 + x2

2) + |ξ1|ϕ1Ω̄1. (A28)

Similarly, taking the right Dini upper derivatives of Vi, (i = 2, 3, . . . , n − 1) along with Eqs. (A21) and (A23), then

substituting βi with using Eq. (A11) and applying Eq. (A26), we have

D+Vi =
ξi

g
i

ϕi[gi(x̄i)βi − gi(x̄i)zi − (1− γi)gi(x̄i)xi+1 + γi(fi(x̄i)− fi(ȳi))− γi
zi−1

di−1
+Ω′

i]

⩽
gi(x̄i)

g
i

ξiϕiβi +
ḡi

g
i

|ξi|ϕi|zi|+
ḡi

g
i

|ξi|ϕi|xi+1|+
1

2g2
i
ϱ′i

+ ϱ′iξ
2
i ϕ

2
i (fi(x̄i)− fi(ȳi))

2 + ϱ′iξ
2
i ϕ

2
i

z2i−1

d̄2i−1

+
1

g
i

ξiϕiΩ
′
i

⩽
gi(x̄i)

g
i

ξiϕiβi +
ḡ2i ϱ

′
i|ξi|ϕi + 1

2g2
i
ϱ′i

+ |ξi|ϕi(z
2
i + x2

i+1)

+ ϱ′iξ
2
i ϕ

2
i

(
(fi(x̄i)− fi(ȳi))

2 +
z2i−1

d̄2i−1

)
+

1

g
i

ξiϕiΩ
′
i

=
gi(x̄i)

g
i

ξiϕiβi + |ξi|ϕi(z
2
i + x2

i+1)

+ ϱ′iξ
2
i ϕ

2
i (

(
fi(x̄i)− fi(ȳi))

2 +
z2i−1

d̄2i−1

)
+ ξiϕi

(
1

g
i

Ω′
i +

ḡ2i ϱ
′
i|ξi|ϕi + 1

2ξig2i ϱ
′
iϕi

)
⩽− ciϕi

√
g
i

√
Vi − |ξi−1|ϕi−1(z

2
i−1 + x2

i ) + |ξi|ϕi(z
2
i + x2

i+1) + |ξi|ϕiΩ̄i. (A29)

For Vn, combining Eqs. (A22), (A24), (A12) and (A27) and its right Dini upper derivative, we obtain

D+Vn ⩽
1

τfgn
ξnϕnγngn(x̄n)τ(t)v +

1

2τ2f g
2
n
ϱ′n

+ ϱ′nξ
2
nϕ

2
n(fn(x̄n)− fn(ȳn))

2

+ ϱ′nξ
2
nϕ

2
n

z2n−1

d̄2n−1

+
1

τfgn
ξnϕnΩ

′
n

=
1

τfgn
ξnϕnγngn(x̄n)τ(t)v

′ + ϱ′nξ
2
nϕ

2
n(fn(x̄n)− fn(ȳn))

2

+ ϱ′nξ
2
nϕ

2
n

z2n−1

d̄2n−1

+ ξnϕn

(
1

τfgn
Ω′

n +
1

2ξnτ2f g
2
n
ϱ′nϕn

)

⩽− cnϕn
√

τfgn

√
Vn − |ξn−1|ϕn−1(z

2
n−1 + x2

n)−
n∑

i=1

|ξi|ϕiHi + |ξn|ϕnΩ̄n. (A30)

Therefore, combining Eqs. (A28)-(A30), we get

D+V ⩽−
√
2c1ϕ1g1

√
V1 −

n−1∑
i=2

ciϕi
√

g
i

√
Vi − cnϕn

√
τfgn

√
Vn +

n∑
i=1

|ξi|ϕi(Ω̄i −Hi)

⩽− aV
1
2 +

n∑
i=1

|ξi|ϕi(Ω̄i −Hi), (A31)

where a = min{
√
2c1ϕ1g1, c2ϕ2

√
g
2
, · · · , cnϕn

√
τfgn}.
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Appendix A.2 The proof of Theorem 1

Proof. To begin with the proof of Theorem 1, we prove the ∀t ∈ [0,+∞), |ei(t)| < tan(ρi(t)), (i = 1, 2, . . . , n). According

to Eqs. (A6) and (A7), we only need to prove that there exists ω̄i > 0 such that |ωi| ⩽ ω̄i, for t ∈ [0,+∞). Then we can

easily obtain

−1 < −k̄i ⩽ ki ⩽ k̄i < 1, (A32)

where k̄i ≜
2
π
arctan(ω̄i). By seeking a contradiction, suppose that there exists ωj , j ∈ {1, 2, . . . , n} unbounded on [0, tmax).

Then we have limt→t2 ∥ω∥t = +∞, t2 ∈ (0, tmax]. Thus, there exist 0 ⩽ t1 < t2 such that

∥ω∥t1 ⩾
Ω̄i

rie−r̄it1
. (A33)

Therefore, when t ∈ [t1, t2),

Hi(t) ⩾ ri
Ω̄i

rie−r̄it1
e−r̄it1 = Ω̄i. (A34)

Combining Eq. (A34) with Eq. (A31), we have

D+V ⩽ −aV
1
2 , ∀t ∈ [t1, t2), (A35)

which means si, (i = 1, 2, . . . , n) are bounded on [t1, t2). Furthermore, according to the boundedness of ∥ω∥t, t ∈ [0, t1] and

Eq. (A8), we can obtain that si, (i = 1, 2, . . . , n) are bounded on [0, t2). From Lemma 1 in [11], we have ωi, (i = 1, 2, . . . , n)

are bounded on [0, t2), which contradicts limt→t2 ∥ω∥t = +∞. Therefore, for all t ∈ [0, tmax), Eq. (A32) holds, which

implies ki ∈ [−k̄1, k̄1]× · · · × [−k̄n, k̄n] ⊂ Ξ. We can conclude that tmax = +∞ by Proposition C.3.6 of [12]. Then, we have

∀t ∈ [0,+∞), |ei(t)| < tan(ρi(t)), (i = 1, 2, . . . , n).

Next, we turn to the sliding motion occurs within a finite time. Suppose that there does not exist a T such that si ≡ 0,

∀t ∈ [T,+∞). There are three cases satisfying this assumption.

Case A: If there is no switching for all t ∈ [0,+∞), as shown in Eq. (A14), hi(t) keeps increasing and ḣi(t) ⩾ hi2. Then,

there exists an instant t3 ⩾ Ω̄i
h̄i2

such that Hi(t) ⩾ hi(t) ⩾ Ω̄i,∀t ∈ [t3,+∞). Therefore, Eq. (A35) holds for t ∈ [t3,+∞),

which leads to si converging to zero within a finite time T̄ ⩽ t3 +
2V

1
2 (t3)
a

, thus resulting in a contradiction.

Case B : If there exists a finite switching series {tq}pq=1, where p is finite, then hi(t) stops switching. Combining the

expression of s(t), we get s(t) > 0 for all t ∈ (tp,+∞), which implies that hi(t) evolves according to Eq. (A14) after tp.

Similar to the proof in Case A, this is also a contradiction.

Case C : If there exists an infinite switching series {tq}∞q=1, then hi(t) keeps switching during t ∈ [0,+∞). Then, there

exist 0 ⩽ t̄1 < ∞ such that

|Qt̄1 | ⩾
Ω̄i

rie−r̄i t̄1
. (A36)

Therefore, when t ∈ [t̄1,+∞),

Hi(t) ⩾ ri
Ω̄i

rie−r̄i t̄1
e−r̄i t̄1 = Ω̄i. (A37)

This also implies that Eq. (A35) holds for t ∈ [t̄1,+∞). Similar to the proof in Case A, this is a contradiction. To sum up,

the sliding mode occurs within a finite time. When the sliding mode occurs within a finite time, we have that there exists

a T such that si ≡ 0, ∀t ⩾ T . Then, for ∀t ⩾ T , according to Eq. (A8), we get

ω̇i + λisign(ωi) = 0. (A38)

Then, we construct a Lyapunov function:

V̄ =
1

2
ω2
i .

Differentiating V̄ and combining with Eq. (A38), we obtain that

˙̄V = −λi|ωi| ⩽ −λi

√
2V̄ . (A39)

As a result, for ∀t ⩾ T ∗ ≜ T + 1
λi

√
2V̄ (T ), V̄ (t) ≡ 0, which means ωi ≡ 0, ∀t > T ∗. Then, we obtain ei = 0, ∀t > T ∗ from

Eqs. (A6) and (A7), which means the tracking error converges to zero within a finite time T ∗.
Lastly, we prove the closed-loop signals are all globally bounded. The closed-loop signals include xi, si, ωi, ki, zi, αi, βi,

v. From the proof above, we get the global boundedness of ki, ωi, si, ei, x1. From Eqs. (A4) and (A10), β1, α1 are bounded.

Then, we get x2, z1 is bounded from Eqs. (A3) and (A5). Similarly, we obtain the boundedness of xi, (i = 3, 4, . . . , n) and
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αi, βi, zi, (i = 2, 3, . . . , n). The boundedness of the controller v depends on Hi. Firstly, when t ∈ [0, T ∗), hi is bounded

since T ∗ is bounded. Then, when t ∈ [T ∗,+∞), hi is bounded according to Eq. (A15). Since ri(∥ω∥t + |Qt|)e−r̄it is

bounded for ∀t ∈ [0,+∞), we have Hi is bounded which means v is bounded. In conclusion, the closed-loop signals are

all globally bounded. To summarize, all three control objectives are satisfied: First, the output y(t) tracks the reference

signal y0(t) with prescribed performance; Second, exact tracking is guaranteed within a finite time; Third, all signals in the

closed-loop system are uniformly bounded globally. ■

Remark 2. Theorem 1’s proof shows that the feedback gain Hi is introduced to handle the uncertainty Ωi with unknown

upper bound. Here, hi is designed to drive the sliding variable si to the sliding surface si = 0 and maintain it there within a

finite time. The term ri∥ω∥te−r̄it is incorporated to prevent finite-time escape of si from the sliding surface, while the latter

term ri|Qt|e−r̄it in Eq. (A13) suppresses infinite switching. Multiple tunable parameters exist in the prescribed performance

function and the control scheme. Based on linear filter theory in sliding mode control, the filter parameters d̄i and τ̄i should

be chosen sufficiently small to achieve satisfactory approximation accuracy. The performance function parameters ρi1 and

ρi∞ should be selected according to practical requirements, under the constraint 0 < ρi∞ < π
2
. Generally, a larger value

of ρi1 yields faster convergence, while a smaller ρi∞ leads to improved tracking performance. As indicated by Eq. (A31)

and the proof of Theorem 1, the parameters ci, ri, r̄i, h̄i1, and h̄i2 have a significant influence on the settling time of the

sliding motion. Specifically, a smaller r̄i together with larger values of ci, ri, h̄i1, and h̄i2 results in a reduced settling time.

Remark 3. In this remark, we demonstrate that the proposed control method is also applicable to cases with sensor

faults. We consider the following model defined in [13] in detail:

y(t) = K(t)x1(t) +B(t),

where 0 < K̄ ⩽ K(t) ⩽ 1 represents the loss of effectiveness, and B(t) depicts bias, drift and loss of accuracy. Both K̇(t),

B(t) and Ḃ(t) are bounded. Then we let e1(t) = y(t)− y0(t) = K(t)x1(t) + B(t)− y0(t). Taking the derivative of e1, and

combining it with Eq. (A2), we have ė1 = 1
cos2(k1ρ1)

(k̇1ρ1 + k1ρ̇1) = K(g1(x̄1)x2 + f1(x̄1) + d1) + K̇x1 + Ḃ − ẏ0. Then,

we get

k̇1 =
1

ρ1
[γ1
(
K(g1(x̄1)x2 + f1(x̄1) + d1) + K̇x1 + Ḃ − ẏ0

)
− k1ρ̇1]

=
1

ρ1
[γ1Kg1(x̄1)(tan(k2ρ2) + β1 − z1) + γ1

(
K(f1(x̄1) + d1) + Ḃ − ẏ0

)
− k1ρ̇1]. (A40)

Similarly, from Eq. (A6), we have ω̇i = π
2 cos2(π

2
ki)

k̇i. Let ϕi = π
2ρi cos2(π

2
ki)

, (i = 1, 2, . . . , n). Combined with Eqs. (A8)

and (A40), the following closed-loop system can be obtained as:

ṡ1 =ϕ1[γ1
(
K(g1(x̄1)x2 + f1(x̄1) + d1) + K̇x1 + Ḃ − ẏ0

)
− k1ρ̇1] + λ1sign(ω1)

=ϕ1[g1(x̄1)x2 − (1− γ1K)g1(x̄1)x2 + γ1
(
K(f1(x̄1) + d1) + K̇x1 + Ḃ − ẏ0

)
− k1ρ̇1] + λ1sign(ω1)

=ϕ1[g1(x̄1)β1 − g1(x̄1)z1 − (1− γ1K)g1(x̄1)x2 +Ω′′
1 ], (A41)

where

Ω′′
1 =g1(x̄1)e2 + γ1

(
K(f1(x̄1) + d1) + K̇x1 + Ḃ − ẏ0

)
− k1ρ̇1 +

λ1sign(ω1)

ϕ1
. (A42)

Following the same reasoning as in the proof of the boundedness of Ω′
i, it can be concluded that Ω′′

1 is bounded. Define

Ω′′′
1 = Ω′′

1 + sign(ξ1)
ḡ21
2
, and since both terms on the right-hand side are bounded, Ω′′′

1 is also bounded. Therefore, there

exists an unknown positive constant Ω̄′
1 > 0 such that |Ω′′′

1 | ⩽ Ω̄′
1 holds on the interval [0, tmax).

Consider the same Lyapunov function: V =
∑n

i=1 Vi, where V1 = 1
2
s21, Vn = 1

τfg
n

(sn + ϱn|sn|), Vi = 1
g
i

(si + ϱi|si|),
(i = 2, 3, . . . , n− 1). Differentiating V1 along with Eqs. (A41) and (A42), we obtain

V̇1 =ξ1ϕ1(g1(x̄1)β1 − g1(x̄1)z1 − (1− γ1K)g1(x̄1)x2 +Ω′′
1 ).

Then, combining Eq. (A10) and the boundedness and the definition of Ω′′′
i , we get

V̇1 ⩽−
√
2c1ϕ1g1(x̄1)

√
V1 + |ξ1|ϕ1z

2
1 + |ξ1|ϕ1x

2
2 +

|ξ1|ϕ1

(
1 + (1− γ1K)2

)
ḡ21

4
+ ξ1ϕ1Ω

′
1

⩽−
√
2c1ϕ1g1(x̄1)

√
V1 + |ξ1|ϕ1(z

2
1 + x2

2) + ξ1ϕ1

(
Ω′′

1 + sign(ξ1)
ḡ21
2

)
⩽−

√
2c1ϕ1g1

√
V1 + |ξ1|ϕ1(z

2
1 + x2

2) + |ξ1|ϕ1Ω̄
′
1. (A43)

The second inequality follows from the fact that (1 − γ1K)2 ⩽ 1 for K and γ1 both lying in the interval (0, 1]. Vi, Ωi, si,

ki, (i = 2, 3, . . . , n) are the same with those above. With Eq. (A43), we can conclude that the controller and adaptive laws

designed in Eqs. (A10)-(A12) are also applicable to the system containing sensor faults.



Sci China Inf Sci 7

Appendix A.3 Control design and the proof of Theorem 2

In this subsection, we consider the case where the directions of virtual control signals gi, (i = 1, 2, . . . , n− 1) are unknown

while Assumption 6 holds. The virtual signals βi and actual controller v of unknown virtual control directions:

β1 =− c1
sign(ξ1)

b1
, (A44)

βi =−
ci
√

si + ϱi|si|
biξi

−
sign(ξi)

bi

(
L̄i +

|zi−1|
d̄i−1

)
−

|ξi−1|ϕi−1(z
2
i−1 + x2

i )

biξiϕi
, i = 2, 3, . . . , n− 1, (A45)

v =−
1

γn

(
cn
√

sn + ϱn|sn|
ξn

+ ϱ′n

(
L̄2
n +

z2n−1

d̄2n−1

)
+

|ξn−1|ϕn−1(z2n−1 + x2
n)

ξnϕn
+

n∑
i=1

|ξi|ϕiHi

ξnϕn

)
, (A46)

where ci > 0, (i = 1, 2, . . . , n), ϱi > 1, (i = 2, 3, . . . , n), ϱ′n > 0 are scalars to be designed. Variables ξi, ϕi, L̄i and feedback

Hi are the same in Appendix A.1. Similarly, the following closed-loop systems can thus be obtained:

ṡ1 =ϕ1[b1x2 + (γ1g1(x̄1)− b1)x2 + γ1(f1(x̄1) + d1 − ẏ0)− k1ρ̇1(t)] + λ1sign(ω1)

=ϕ1[b1β1 − b1z1 + (γ1g1(x̄1)− b1)x2 +Ω′
1], (A47)

ṡi =ϕi[biβi − bizi + (γigi(x̄i)− bi)xi+1 + γi(fi(x̄i)− fi(ȳi))− γi
zi−1

di−1
+Ω′

i], i = 2, 3, . . . , n− 1, (A48)

ṡn =ϕn[γn

(
gn(x̄n)τ(t)v + fn(x̄n)− fn(ȳn)−

zn−1

d̄n−1

)
+Ω′

n], (A49)

where bi are nonzero constants which can be designed arbitrarily, and Ω′
i is defined in Eqs. (A50), (A51) and (A52).

Ω′
1 =b1e2 + γ1(f1(x̄1) + d1 − ẏ0)− k1ρ̇1 +

λ1sign(ω1)

ϕ1
, (A50)

Ω′
i =biei+1 + γi(fi(ȳ i) + di)− kiρ̇i +

λisign(ωi)

ϕi
, i = 2, 3, . . . , n− 1, (A51)

Ω′
n =γn(gn(x̄n)θ(t) + fn(ȳn) + dn)− knρ̇n +

λnsign(ωn)

ϕn
. (A52)

The proof of the boundedness of Ω′
i is similar to that in Appendix A.1. Define Ω∗

i as:

Ω∗
i = Ω′

i + sign(ξi)
3b2i + 2ḡ2i

4
, i = 1, 2, . . . , n− 1, (A53)

Ω∗
n =

ξnϕn

τfgn
Ω′

n +
1

2τ2f g
2
n
ϱ′n

. (A54)

Then, we can easily have Ω∗
i are bounded, for i = 1, 2, . . . , n. Therefore, |Ω∗

i | ⩽ Ω̄∗
i , (i = 1, 2, . . . , n) for some unknown

positive constants Ω̄∗
i > 0 on [0, tmax). Consider the following Lyapunov function:

V =
n∑

i=1

Vi,

where V1 = 1
2
s21, Vn = 1

τfg
n

(sn + ϱn|sn|), Vi = si + ϱi|si|, (i = 2, 3, . . . , n− 1). Differentiating V1 with using Eqs. (A47),

(A44) and (A53), we obtain

V̇1 =ξ1ϕ1(b1β1 − b1z1 − (γ1g1(x̄1)− b1)x2 +Ω′
1)

⩽−
√
2c1ϕ1

√
V1 + |ξ1|ϕ1z

2
1 + |ξ1|ϕ1x

2
2 + |ξ1|ϕ1

3b21
4

+ |ξ1|ϕ1
ḡ21
2

+ ξ1ϕ1Ω
′
1

⩽−
√
2c1ϕ1

√
V1 + |ξ1|ϕ1(z

2
1 + x2

2) + |ξ1|ϕ1Ω̄
∗
1. (A55)

Similarly, taking the right Dini upper derivatives of Vi, (i = 2, 3, . . . , n− 1) along with Eq. (A48) and substituting βi with

using Eq. (A45) and applying Eq. (A53), we have

D+Vi ⩽ξiϕibiβi + |ξi|ϕi(z
2
i + x2

i+1) + ϕi
3b2i + 2ḡ2i

4
+ |ξi|ϕi

(
|fi(x̄i)− fi(ȳi)|+

|zi−1|
d̄i−1

)
+ ξiϕiΩ

′
i

⩽− ciϕi

√
Vi − |ξi−1|ϕi−1(z

2
i−1 + x2

i ) + |ξi|ϕi(z
2
i + x2

i+1) + |ξi|ϕiΩ̄
∗
i . (A56)

For Vn, combining Eqs. (A49), (A46), (A54) and its right Dini upper derivative, we obtain

D+Vn ⩽− cnϕn
√

τfgn

√
Vn − |ξn−1|ϕn−1(z

2
n−1 + x2

n)−
n∑

i=1

|ξi|ϕiHi + |ξn|ϕnΩ̄
∗
n. (A57)
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Similarly, combining Eqs. (A55)-(A57), we have

V̇ ⩽− a′V
1
2 +

n∑
i=1

|ξi|ϕi(Ω̄
∗
i −Hi), (A58)

where a′ = min{
√
2c1ϕ1, c2ϕ2, · · · , cn

√
τfgnϕn}.

Proof. With Eqs. (A58), we can easily prove Theorem 2 following the proof of Theorem 1 in Appendix A.2. ■

Remark 4. Compared with methods that only ensure practical stability [3, 14, 15], asymptotic stability [4, 16, 17] or

exponential stability [18], the proposed approach can achieve global performance-guaranteed finite-time exact-tracking

control for uncertain strict-feedback nonlinear systems under simultaneous actuator faults and external disturbances. This

is achieved through integral sliding mode techniques, which enable the establishment of prescribed transient and steady-state

performance bounds. The feasibility and effectiveness of the proposed control scheme are demonstrated through various

simulation examples and comparative studies provided in Appendix B.

Appendix B Simulations

In this section, simulations and comparisons are presented to demonstrate the effectiveness of the proposed control methods

of Theorem 1.

The first example is to verify the effectiveness of exact tracking within a finite time compared to the method in [3].

Consider the dynamics of that in [3]:

ẋ1 = x2,

ẋ2 = f2(x̄2, t) + g2(x̄2)u, (B1)

with

f2(x̄2, t) =
g sin(x1)−

mlx2
2 sin(x1) cos(x1)

m+mc

l( 4
3
− m cos2(x1)

m+mc
)

η(t),

g2(x̄2) =

1
m+mc

l( 4
3
− m cos2(x1)

m+mc
)
,

where x1, x2, l = 0.5m, m = 0.1kg, mc = 1kg are the angle of the pendulum, the angular velocity, the half length of a pole,

the mass of a pole and a cart, respectively. g = 9.8m/s2 is the gravitational acceleration. The existing component fault

η(t), and the actuator fault are the same with that in [3], which is

η(t) =


1, t < 15,

4, 15 ⩽ t ⩽ 20,

2, 20 ⩽ t ⩽ 25,

5 sin(10t), 25 ⩽ t ⩽ 30.

The actuator fault happens at t = 10s, i.e.,

u(t) =

{
v(t), t < 10,

0.5v(t) + 0.5, t ⩾ 10.

The controller in [3] is denoted as v′(t) for convenience. Let ρ1(t) = (π
2
−0.01)e−0.5t+0.01 and ρ2(t) = (π

2
−0.5)e−0.5t+0.5.

For the purpose of rigor in simulations, the parameters of v′(t) are set the same as that in [3]. The parameters in the bounding

functions in [3] are set as 0.5. The reference signal is set as y10(t) = sin(t). The parameters in v(t) as shown in Eq. (A12)

are set as d̄1 = 0.01, ϱ2 = 20, ϱ′2 = 0.01, λi = 1, τi = 0.001, ri = 1, r̄i = 10, h̄ij = 1, h̄i3(0) = 0, where i = 1, 2, j = 1, 2, 4

and the initial value is chosen as x̄1
2(0) = [0.2,−0.2]⊤. The simulation results are displayed in Figures. B1-B2.

Figure B1 presents the tracking errors arctan(e(t)) and arctan(e∗(t)) of system (B1) under the control laws v(t) and

v′(t), respectively. Unlike the protocol v′(t) from [3], which only guarantees uniformly bounded error (blue dashed line),

our method v(t) achieves finite-time convergence of the tracking error to zero while maintaining prescribed performance

(red solid line).

Figure B2 compares the reference signal y10(t) with the output trajectories under the two control schemes. Here, the red

solid line y11(t) and the blue dashed line y12(t) correspond to the outputs under v(t) and v′(t), respectively. It can be seen

that the output under v(t) tracks the reference signal more rapidly than under v′(t), confirming both the effectiveness of

the proposed method and its advantage over the existing approach.

Remark 5. It should be noted that system (B1) is intentionally designed without disturbances, since the comparative

controller from [3] is only applicable to disturbance-free systems. The rest part verifies the proposed control signal’s

applicability to systems with external disturbances.
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Figure B1 Tracking errors arctan(e(t)) and arctan(e∗(t)) of

system (B1) under the control of the proposed signal v(t) in

Eq. (A12) and v′(t) in [3], respectively.

Figure B2 Reference signal y1
0(t) and output trajectories.

Figure B3 Tracking errors arctan(e(t)) and arctan(e∗∗(t)) of

system (B2) under the control of the proposed signal v(t) in Eq.

(A12) and v′′(t) in [11], respectively.

Figure B4 Reference signal y2
0(t) and output trajectories.

Next, we provide comparisons with the controller in [11] to validate that the proposed control method’s robustness

against both the actuator faults and external disturbances. Consider the following perturbed pendulum system:{
ẋ1(t) = x2(t) + d1(t),

ẋ2(t) = − g sin(x1(t))
l

− kx2(t)
m

+ 1
ml2

u(t) + d2(t),
(B2)

where the dynamics originates from a nonlinear pendulum model ml2q̈(t)+mgl sin(q(t))+kl2q̇(t) = u(t) with di(t), i = 1, 2

representing external disturbances. They are set as d1(t) = 0.5 cos(2t) and d2(t) = 2 sin(t). Let reference signal y20(t) =

0.2 sin(t) and initial value x̄2
2(0) = [0.8,−1]⊤. For clarity, the controller in [11] is denoted as v′′(t). In order to ensure

precision and accuracy in simulations, the prescribed performance functions are set as ρ∗1(t) = (π
2
− 0.05)e−0.5t + 0.05

and ρ∗2(t) = (π
2
− 0.5)e−0.5t + 0.5. The controller parameters for the proposed control signal v(t) in Eq. (A12) are set as

d̄1 = 0.01, ϱ2 = 20, ϱ′2 = 0.01, λi = 1, τi = 0.001, ri = 1, r̄i = 10, h̄ij = 1, h̄i3(0) = 0, where i = 1, 2, j = 1, 2, 4. Those

for v′′(t) are set the same as that in [11]. To demonstrate the effect of an actuator fault, we add an actuator fault to both

control signals i.e., u(t) = 0.2v(t), u′′(t) = 0.2v′′(t). Figures. B3-B4 present the simulation results.

Figure B3 compares the tracking performance of system (B2) under the proposed controller v(t) and the existing approach

v′′(t) from [11], evaluated through the tracking errors arctan(e(t)) and arctan(e∗∗(t)). While the benchmark method v′′(t)
only achieves uniformly bounded error without convergence, our proposed v(t) drives the tracking error to zero in finite

time while preserving prescribed performance constraints (red solid line).

Figure B4 displays the reference signal y20(t) alongside the corresponding output trajectories under both control schemes.

The output y21(t) (red solid line) generated by v(t) and y22(t) (blue dashed line) produced by v′′(t) clearly demonstrate

the improved transient performance of our method. Notably, the proposed controller exhibits faster convergence to the

reference signal, confirming its theoretical soundness and practical superiority over conventional methods.

In summary, the proposed controller v(t) in Eq. (A12) achieves finite-time exact tracking of reference signals in the

presence of actuator faults, component faults, and external disturbances. Its superior performance is demonstrated through

faster convergence and lower overshoot compared to existing methods.
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