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Appendix A Control design and stability analysis
To complete the controll design, we introduce the following assumptions and notation.

Assumption 1. The reference signal yo(t) and its derivative go(t) are bounded, continuous. Only yo(¢) is available for
the controller design.

Assumption 2. The external disturbance d;(¢) is piecewise continuous in ¢ and there exists an unknown constant d? >0
such that |d;(¢)| < dY, (i=1,2,...,n).
Assumption 3. There exist unknown constants 74 > 0 and 6 > 0 such that 74 < 7(¢) < 1 and |6(¢)| < 6.

Assumption 4. There exists a positive and continuous function L;(&;(t), §;(t),t) such that for any &; € R and g; € R?,
|f1(1i1 (t)) —fi (’gz (t))l < Li(:i‘:i(t), Y (t), t)”(i% (t) —Y; (t)” holds for ¢ = 2,3,...,n, where L;(&; (t), Y (t), t) is bounded if :f:@(t)
and g;(t) are bounded.

Assumption 5. Without loss of generality, the sign of function g;(Z;(t)) is definite. Suppose that there exist unknown
positive constants g, and g; such that g, < gs(2:(t)) < gs-

Assumption 6. The sign of function g;(&;(¢)) is unknown for ¢ = 1,2,...,n—1, and for simplicity, the sign of g, (Zn(t))
is known and assumed to be positive. Without loss of generality, suppose that there exist unknown constants g9, > 0 and
gi > 0 such that g, < |g:(Z:(t))| < gs-

Remark 1. Assumption 1 is standard in the literature [1-3]. It is commonly employed to ensure tracking control for
the class of systems under consideration, as evidenced by [4,5]. Similarly, Assumption 2 is also conventional and widely
adopted to guarantee tracking performance, as can be found in [6-8]. In Assumption 3, the loss of effectiveness 7(¢) is lower
bounded by an unknown positive constants 7. This makes the entire system controllable, and 77 only shows up in the
stability analysis. Assumption 4 can be regarded as a generalized Lipschitz condition imposed on unknown nonlinear terms.
It should be emphasized in Assumptions 5 and 6 that both the lower and upper bounds of g;(Z;(t)), where i = 1,2,...,n,
are unknown. This is less restrictive than the assumption in [9], which require the knowledge of all upper and lower bounds
of unknown control coefficients. In real-world control scenarios, it can be difficult to obtain the bound of a practical system.

Notation. Throughout this Appendix, R™ denotes the n-dimensional Euclidean space. |z| denotes the absolute value
of scalar x. ||z|| denotes the Euclidean norm of vector x. @'
function V that is continuous but non-differentiable at wg, the right Dini upper derivative at wq is defined as: DtV (wp) =
lim su V(wo+h)=V(wo)
Pr—ot+ h

represents the transpose of vector «, respectively. For a

. For simplicity, the variable ¢ is omitted without causing ambiguity in what follows.

Appendix A.1 Control design of Theorem 1

In this subsection, we will first establish the control design for the system with known control directions under Assumptions
1-5. Then, we will consider the case where only the direction of actual controller g, (&) is known. In order to achieve the
control objectives, virtual signals and an actual controller are proposed. For clarity and the reader’s convenience, we begin
by reiterating the definition of the function originally introduced in the letter: First, the following exponential function
pi(t):

i e .
pitt) = (5~ pioo) € #1 4 pioes 1= 1,2, o, (A1)

where § > pico > 0 and p;1 > 0. In this case, p;(0) = 7, pi(t) < 0 and p;(t) is bounded. Then, the tracking error ej(t):

e1(t) = y(@) — yo(?), (A2)
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ei(t):aci(t)—ai_l(t), 1=2,3,...,n, (A3)
and the virtual control signals 3;_1(t), the output «;(t) and error z;(¢) of the first-order filter on 8;_1(¢):

dici(t) + ai(t) = Bi(t), i(0)=:i(0), i=1,2,...,n—1, (A4)
zi(t) = Bi(t) —ai(t), i=1,2,...,n—1, (Ab)

where d; > 0. Then, the transformed errors w;(t) and k; (t):

wi(t) = tan (gki(t)), i=1,2,...,n, (A6)
ki(t):%((:;(t)), i=1,2,...,n. (A7)

Additionally, the integral sliding mode variables as:

t
si(t) =)+ X [ sign(ei(o)di, i =1.2m, (A8)
0
and low-pass filters as:
716 () + Ci(t) = —sign(sq(t)), ¢(0) =0, i=1,2,...,n, (A9)

where A;, 7; > 0 are a positive constant and the filter constant, respectively. The virtual signals 8; and actual controller v
of known control directions:

B1 = —cisign(£1), (A10)
iV Si i1 = 27 ic1lpic1(z2, + @2
5i=—@—géfi¢i L?*‘% _|§ 1li—1(27_4 1),1':2,3,...,71—1, (A11)
si dl‘,:[ §z¢z
1 (cen/sn+onlsnl o, Zno1 |én—1lén-1(zh_1 +27) | <= &iloi H,
v=—— [NV T O L o e | L2+ + +y B Al2
Tn < én d?n—l Endn ; non ( )

where ¢; > 0 (1 = 1,2,...,n), ¢ > 1, and o} > 0 (: = 2,3,...,n) are scalars to be designed. Additionally, we define
L; = Li(&;,9:,t)||®: — Uil|, and &1 = s1, & = 1+ g;sign(s;) (i = 2,3,...,n). Under these definitions, it follows that &; # 0

for all s; where ¢ = 2,3,...,n. Let s(t) = max{|s;(¢)|,-.., |sn(¢)|}. Then the feedback gain H;(t) is defined as:
Hi(t) = hq(t) + ri(lwlle +Qe)e™"", (A13)
where HWHt = maX{Supogﬂét ‘wl(lu‘)l’ -5 SUDPogugt |"J’ﬂ(iu')‘}7 riy, 7 >0, Qe = {q € N+|s(tq) = Orsign(s(tt;)) # 0,tg-1 <

tq < t,to = 0}, NT represents the positive integer set, and |Q¢| is the cardinality of Q¢. Then the switching gain h;(t) is
designed as follows:
o if s(t) # 0, then h;(t) evolves according to
hi(t) = hitlsi ()] + hiz, hi(0) > 0; (A14)
e if s(¢t) = 0, then h;(t) is switched to
hi(t) = hiz|Gi(8)] + hia, (A15)
where h;j >0, j = 1,2,4 and h;3 = H;(t;), with t; being the latest instant up to ¢ such that sign(s(¢; )) # 0 and s(t;) = 0.

According to Eq. (A7), e; = tan(k;p;). Taking the derivative of e, and combining it with Eq. (A2), we have
é1 = m(klm + k1p1) = g1(®1)x2 + f1(21) + d1 — Yo. Therefore, we get

i :pil['yl(gl(:il)am + f1(@1) + di —50) — kip1]

= g1 (@) tan(hap) + B1 = 21) + 71 (@) +dh — o) — k]

érl(kl,kg,t). (AIG)

Similarly, we have

. 1 Zi— .
ki =—[vi (gi(ii)wiﬂ + fi(®i) +di — = 1) — kips]
pi di—1

20 (k1. ., kiv1,t), i=2,3,...,n—1, (A17)
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. 1 _ _ Zn—1 .
kn :7[777‘ (gn(mn)u + fn(wn) +dn — Jn ) — knpn}
n n—1
A0 (k1,. .. kn,t), (A18)

where 0 < v; = cos?(kip;) <1, (i =1,2,...,n). Letk=[k1,...,kn]T € R®, T =[[1,...,T,]T € R*", 22 (=1,1) x --- x (=1, 1).

n

Combining Egs. (A16)-(A18), we have

k=T(k,t).

We can obtain that I'(k,t) is locally Lipschitz in k since p;i, pi, gi(&i), 7i are bounded. From Egs. (Al) and (A6), we
have k(0) € =. From Assumption 2, and Eqgs. (A10)-(A12), we can get that d;, Bi, zi, v, gi(&;) are piecewise continuous
and f;(&i), Yo, Yo, pi, Pi are continuous. Thus, I'(k,t) is piecewise continuous in ¢. Consequently, according to Lemma 1
of [10], there exists a unique maximal solution k € Z on [0, tmax), where 0 < tmax < +00.

Then, from Eq. (A6), we have w; = W(gkl)kl Let ¢; = m, (i=1,2,...,n). From Eq. (Al), we easily
get that ¢; > 1. Combined with Eq. (A8), the following closed-loop system can be obtained as:

31 =¢1[v1(91(Z1)z2 + f1(21) + d1 — Yo) — k1p1] + Aisign(wi)
=¢1[g91(®1)72 — (1 — 71)g1(®1)w2 + 71 (f1(Z1) + d1 — Jo) — k1p1] + Arsign(wr)

=p1[91(21)P1 — g1(&1)21 — (1 — 71)g1(Z1)z2 + Q1] (A19)
where
, _ _ . . Arsign(wi)
) =g1(21)e2 + M (fr(®1) +d1 — o) — k1p1 + a0 (A20)
Similarly, we have
8 =dilvi (gi(ii)wi-‘-l + fi(®:) — fi(gs) + fi(Gi) + di — Z{:) — kips] + Aisign(w;)
=¢i[gi(®:)zir1 — (1 — %) g: (i) Titr + % (fi(‘i’i) = fi(a) + fi(ys) + di — Z—Z:i) — kipi] + Assign(w;)
=¢il9i(®:)Bi — 9i(@:)zi — (1 — 7i)9i (&) Tis1 + v (fi(@s) — Fi (@) — i j;'il +Q,i=23,...,n—1,  (A21)

i—1

S =0ubr (30(@2)7 (00 + 60 @O0 + (@) = FuB0) + Fa(0) + 0a0) = =) — k] + Arsign(in)
= Tn)T(1)v n_n_n_n_zfnil '
bl (90@)T(O0 + (@) = () - F1) 0] (a22)

where

Aisign(w;) ;

Q; =i (@:)eir1 + i (fi(Fs) +di) — kipi + ry =23,...,n—1 (A23)
1
, _ _ . Ansign(wn)
Qp =y (gn(2n)0(t) + fr(Yn) + dn) — knpn + T (A24)
n
Then, we prove the boundedness of Q). For t € [0,tmax), ki € E implies %n@”) € Z. When t € [t‘r‘;",tmax), the

definition of p; yields the bound |e;| < tan(pi(t“‘;" )). Since e; is continuous in ¢, it is bounded on [0, tm;"]. Consequently,
e; remains bounded on [0, tmax). The continuity of f;(-) and Assumption 1 ensure f;(gn) is bounded on [0, ¢max). From
Assumptions 1-4 and the boundedness of ez, p1, it follows that €} is bounded on [0,¢max). Similarly, Q5,...,9Q; are
bounded on [0, tmax). Then, define Q;, (i =1,2,...,n) as:

=2
2 = 0 +sign(&1) L, (A25)
1 G20l |€i|ds + 1
Qi:iQ;J’_M,i:Z&”.,n—l, (A26)
g, 28197 0; i
o - L o " 1 ) (A27)
" 79, " 2£n7?3i941¢n7

From the definition of §;, we get the boundedness of &; for i = 2,3,...,n. From the boundedness of g;, g, (i=1,2,...,n),

o, o, ¢, Q, &, (1 =2,3,...,n), we obtain ; is bounded for ¢ = 1,2,...,n. Therefore, |Q;]| < Qi, Zz =1,2,...,n) for
some unknown positive constants ; > 0 on [0, tmax)-
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Then, consider the following Lyapunov function:

n
V=> Vi,
i=1
where V1 = %s%, Vo = _rfg ——(8n + onlsnl), Vi = i(si + 0ilsil), (1 =2,3,...,n —1). Differentiating Vi along with Egs.

(A19) and (A20), we obtain

=£161(g1(Z1)B1 — 91(Z1)z1 — (1 — 71)g1(&1)x2 + Q).

Then, combining Eq. (A10) and the boundedness and definition of Q; in Eq. (A25), we get

|§1|¢191

—V2e19191(@1)V Vi + |€1] 123 + [€1]d1a? + + 119

=2
= — V216191 (@1)VV1 + [€1]o1 (22 + 23) + €161 (9’1 + sign(&)%)

—V2e119, VVi + [61]1(2F + 23) + [€1]61 Q1. (A28)

Similarly, taking the right Dini upper derivatives of V;, (i = 2,3,...,n — 1) along with Eqs. (A21) and (A23), then
substituting B8; with using Eq. (A11) and applying Eq. (A26), we have

Dty :gqsi[gi(?ii)ﬂi = 9i(®@i)zi — (L= 7)gi (@) ziv1 +vi(fi(®:) — fi(Fs)) — v 212—1 + )

I 1—1
k3 k3 1
< cgpi+ Eleloital + 2 |£z|¢z|zz+1\+22,
+ o0& o7 (fi(@i) — fi(9i))? +glgz¢>2 g—émsz;
z 1 e
i\ Lq 20! i|Pi 1
SLCOPSPP /1L I PPN S

2g20;

=4

+ 0i&7 67 <(f¢(m¢) fi@))? + ) + Leno
7, 1 e

gz(wz)

gzd)zﬁl + |’£7«|¢Z(Z + mz«l»l)

Zq

+Qi5i¢i(<fz(wz) fi(g:)” + d? 1>+§z¢z <g Q; + 2&929/_@_ >

X

< - Ci¢i\/§i\/‘7i— €i—1ldim1 (27 1 +23) + & di (22 + 221) + |€i]di Q. (A29)

For Vj,, combining Eqs. (A22), (A24), (A12) and (A27) and its right Dini upper derivative, we obtain

DV, gq_f%ﬁn‘bn'}’ngn (®n)7(t)v + Qngn(bz (fn(@n) — fn(gn))Q

=n

1
2?&

22 1
+ ohéndn = L —tndn,
79,

n—1

L g (@) + 0026 (fn(@n) — fu(Gn))?

9,
2
Zn—1 1 / 1
+ Q 5 2 +&ndn Q, +
nsSn dn—l ngn 25”17-?231@;1(]5”
<= endn /TG, V Vi = en—1ldn—1(zn_1 +20) = D &ilds Hi + [nldn . (A30)

i=1

Therefore, combining Egs. (A28)-(A30), we get
n—1 n B
DYV <= V2ei¢19, VVi = Y it /G Vi — cndn /778 Ve + D |Gil6i(Q — Hi)
=2 =1
PR ~
<—aVz + ) |&l6i(Q — Hi), (A31)
i=1

where a = min{ﬂc1¢1gl,02¢2 /Gps s Cnbn,/TFG -
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Appendix A.2 The proof of Theorem 1

Proof.  To begin with the proof of Theorem 1, we prove the Vt € [0, +00), |e;(¢t)| < tan(p;(¢)), (i =1,2,...,n). According
to Egs. (A6) and (A7), we only need to prove that there exists @; > 0 such that |w;| < @;, for t € [0,4+00). Then we can
easily obtain

—1< —k; <k; <k; <1, (A32)

where k; £ % arctan(w;). By seeking a contradiction, suppose that there exists wj, j € {1,2,...,n} unbounded on [0, tmax)-
Then we have lim; ¢, ||w||¢ = 400, t2 € (0, tmax]. Thus, there exist 0 < ¢t1 < t2 such that

2
>
ol > 5 (A33)
Therefore, when t € [t1,t2),
Qi — 7t A
Hi(t) > ri—t it = Q. (A34)
rieTit1
Combining Eq. (A34) with Eq. (A31), we have
DTV < —aV3, Vte [t,ta), (A35)
which means s;, (¢ = 1,2,...,n) are bounded on [t1,t2). Furthermore, according to the boundedness of ||w||¢, t € [0,¢1] and
Eq. (A8), we can obtain that s;, (¢ =1,2,...,n) are bounded on [0,¢2). From Lemma 1 in [11], we have w;, (i =1,2,...,n)

are bounded on [0,t2), which contradicts lim¢—s¢, ||w||t = 4+00. Therefore, for all ¢ € [0, tmax), Eq. (A32) holds, which
implies k; € [7’;‘1, El] X oo X [flén, En] C E. We can conclude that tmax = 400 by Proposition C.3.6 of [12]. Then, we have
vt € [0, +00), |ei(t)| < tan(p;(¢)), (i =1,2,...,n).

Next, we turn to the sliding motion occurs within a finite time. Suppose that there does not exist a T" such that s; =0,
Vt € [T, 400). There are three cases satisfying this assumption.

Case A: If there is no switching for all t € [0, +0c), as shown in Eq. (A14), h;(t) keeps increasing and h;(t) > hia. Then,
there exists an instant t3 > 2; such that H;(t) > hi(t) > Q;,Vt € [t3,+00). Therefore, Eq. (A35) holds for t € [t5, +0c0),

1
which leads to s; converging to zero within a finite time T < t3 + 2V+(t3>, thus resulting in a contradiction.

Case B: If there exists a finite switching series {tq}g:17 where p is finite, then h;(t) stops switching. Combining the
expression of s(t), we get s(t) > 0 for all ¢ € (tp, +00), which implies that h;(¢t) evolves according to Eq. (Al4) after tp.
Similar to the proof in Case A, this is also a contradiction.

Case C': If there exists an infinite switching series {tq}gozl, then h;(t) keeps switching during ¢ € [0, +00). Then, there
exist 0 < t; < oo such that

Qul > (A36)
Therefore, when t € [t1, +00),
QG _sn =
Hz(t) > ri———e "'l = Q. (A37)
rie~Titl

This also implies that Eq. (A35) holds for ¢ € [t1, +00). Similar to the proof in Case A, this is a contradiction. To sum up,
the sliding mode occurs within a finite time. When the sliding mode occurs within a finite time, we have that there exists
a T such that s; =0, Vt > T. Then, for Vt > T, according to Eq. (A8), we get

w;i + Assign(w;) = 0. (A38)
Then, we construct a Lyapunov function:
- 1
V= wa

Differentiating V' and combining with Eq. (A38), we obtain that
V = —Nilwi| < —A V2V, (A39)

As a result, for ¥Vt > T* £ T + %\/ZV(T), V(t) = 0, which means w; = 0, V¢ > T*. Then, we obtain e; = 0, Vt > T* from
Egs. (A6) and (AT), which meanls the tracking error converges to zero within a finite time 7.

Lastly, we prove the closed-loop signals are all globally bounded. The closed-loop signals include z;, s;, w;, ki, zi, &g, Bi,
v. From the proof above, we get the global boundedness of k;, w;, s;, €;, 1. From Eqgs. (A4) and (A10), 1, a1 are bounded.
Then, we get x2, z1 is bounded from Eqs. (A3) and (A5). Similarly, we obtain the boundedness of z;, (¢ = 3,4,...,n) and
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&, Biy zi, (1 =2,3,...,n). The boundedness of the controller v depends on H;. Firstly, when ¢t € [0,7™*), h; is bounded
since T* is bounded. Then, when t € [T*,+c0), h; is bounded according to Eq. (A15). Since 7;(|lw|l¢ + |Q¢])e~ Tt is
bounded for Vt € [0,400), we have H; is bounded which means v is bounded. In conclusion, the closed-loop signals are
all globally bounded. To summarize, all three control objectives are satisfied: First, the output y(¢) tracks the reference
signal yo(t) with prescribed performance; Second, exact tracking is guaranteed within a finite time; Third, all signals in the
closed-loop system are uniformly bounded globally. |

Remark 2. Theorem 1’s proof shows that the feedback gain H; is introduced to handle the uncertainty ; with unknown
upper bound. Here, h; is designed to drive the sliding variable s; to the sliding surface s; = 0 and maintain it there within a
finite time. The term 7;||lw|[te~"! is incorporated to prevent finite-time escape of s; from the sliding surface, while the latter
term r;|Q¢|e "¢ in Eq. (A13) suppresses infinite switching. Multiple tunable parameters exist in the prescribed performance
function and the control scheme. Based on linear filter theory in sliding mode control, the filter parameters d; and 7; should
be chosen sufficiently small to achieve satisfactory approximation accuracy. The performance function parameters p;; and
pico should be selected according to practical requirements, under the constraint 0 < p;oe < % Generally, a larger value
of p;1 yields faster convergence, while a smaller p;o, leads to improved tracking performance. As indicated by Eq. (A31)
and the proof of Theorem 1, the parameters c;, r;, 7;, hi1, and h;o have a significant influence on the settling time of the
sliding motion. Specifically, a smaller 7; together with larger values of ¢;, r;, hi1, and hso results in a reduced settling time.

Remark 3. In this remark, we demonstrate that the proposed control method is also applicable to cases with sensor
faults. We consider the following model defined in [13] in detail:

y(t) = K@)z1(t) + B(t),

where 0 < K < K(t) < 1 represents the loss of effectiveness, and B(t) depicts bias, drift and loss of accuracy. Both K(t),
B(t) and B(t) are bounded. Then we let e1(t) = y(t) — yo(t) = K(t)z1(t) + B(t) — yo(t). Taking the derivative of e1, and
combining it with Eq. (A2), we have é; = (k1p1 + k1p1) = K(g1(®1)z2 + f1(&1) + d1) + Kz1 + B — go. Then,
we get

1
cosZ(k1p1)

. . .
k1 :;[yl (K(g1(5:1)$2 +fi(Z1) +d1) + Kz1 + B _?90) —kipn]
1

:pil[%Kgl(ﬁ:l)(tan(kzpz) +B1—2z1)+m (K(ﬁ(ah) +di)+ B - yo> — k1p1]. (A40)

Similarly, from Eq. (A6), we have w; = W{ik)kl Let ¢; = (i=1,2,...,n). Combined with Egs. (A8)
Ski

and (A40), the following closed-loop system can be obtained as:

[ | S
2p; cos?(Z ki)

51 =¢1[n (K(gl(a‘n)xz + f1(Z1) +d1) + Ko + B — yo) — k1p1] + Aisign(wi)

=¢1[g1(Z1)r2 — (1 — 1 K)g1(T1)w2 + M (K(fl(il) +d1)+ Ka1 + B — 2)0)
- klpl] + Alsign(wl)
=¢1[g1(Z1)B1 — 91(%1)z1 — (1 — 1 K)g1(Z1)z2 + Q] (A41)

where

A1sign(wi)

QY =g1(Z1)e2 +m (K(fl(il) +di)+ Kz1+ B — yo) —kip1 + p
1

(A42)

Following the same reasoning as in the proof of the boundedness of 2}, it can be concluded that QY is bounded. Define
-2

QY =Qf + sign(fl)‘%7 and since both terms on the right-hand side are bounded, Q}" is also bounded. Therefore, there

exists an unknown positive constant Q’l > 0 such that [Q}’] < Q’l holds on the interval [0, tmax)-

Consider the same Lyapunov function: V = 3% | Vi, where Vi = 15}, V,, = (sn + onlsnl), Vi = %(si + oilsil),

2 ngn
(i =2,3,...,n —1). Differentiating V7 along with Egs. (A41) and (A42), we obtain

Vi =61¢1(g1(31)B1 — 91(Z1)21 — (1 — 1 K)g1(B1)z2 + QF).
Then, combining Eq. (A10) and the boundedness and the definition of Q}’, we get

|€1l¢1 (1 + (1 —mK)?) 57

V< — \/501¢lgl(jl)\/vl+ |€1|p127 + |€1|p1ad + 7] L1619
2
<= VEBagian @)V +lerlon(aE + o)+ @n (9] + sienen 2 )
<= V2e119,VVi + [€1]¢1 (27 + 23) + 1] D (A43)

The second inequality follows from the fact that (1 — 1 K)? < 1 for K and 71 both lying in the interval (0,1]. V;, Q;, s;,
ki, (1 =2,3,...,n) are the same with those above. With Eq. (A43), we can conclude that the controller and adaptive laws
designed in Egs. (A10)-(A12) are also applicable to the system containing sensor faults.
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Appendix A.3 Control design and the proof of Theorem 2

In this subsection, we consider the case where the directions of virtual control signals g;, (¢ =1,2,...,n — 1) are unknown
while Assumption 6 holds. The virtual signals 3; and actual controller v of unknown virtual control directions:

Br = — o BB, (A44)
b1
. 2 2
/s, s, N o/ . io1|bio1(z2, + 2
ﬁi:_cz 31+Q74|s’b‘ _51gn(§1) (L'L+ ‘2';1 ll)_ |£ 1‘(1) 1(21 1 xz)7 7;:2737.“771_17 (A45)
bi&i b; di—1 bi&idi
1 [ env/sn + onlsn] P 22_, |en—1lpn—1(22_; + a2 |&|pi H;
v=—— | —"——F———+o0, | Ly + + , A46
Tn < én dﬁifl Endn ; non ( )

where ¢; >0, (i=1,2,...,n), 0; > 1, (i =2,3,...,n), g, > 0 are scalars to be designed. Variables &;, ¢;, L; and feedback
H; are the same in Appendix A.1. Similarly, the following closed-loop systems can thus be obtained:

31 =¢1[brz2 + (7191(21) — bi)ze +y1(f1(21) + di — Po) — k1p1(t)] + Aisign(wr)
=¢1[b181 — b1z1 + (1191(Z1) — b1)z2 + Q] (A47)

=¢i[biBi — bizi + (Vigi(®i) — bi)ziv1 +vi(fi(®:) — fi(9:)) — "/zd - L 4Q, i=23,...,n—1, (A48)
Sy = Tn)T(t)v nin_nin_;inil !
S =0nre (30 (@) 700 + Ful@a) — fulmn) = 22 ) 4, (A19)

where b; are nonzero constants which can be designed arbitrarily, and €2} is defined in Eqgs. (A50), (A51) and (A52).

. . Arsign(w
Q1 =brez +y1(f1(21) + da —yO)_klpl"F%(l), (A50)
1
, _ . Aisign(w;)
Q =bieir1 +vi(fi(Y;) + di) — kipi + & 1=2,3,...,n—1, (A51)
T
, _ _ . Ansign(wn)
Qp =y (gn(Bn)0(t) + frn(¥pn) + dn) — knpn + B (A52)
n
The proof of the boundedness of €2} is similar to that in Appendix A.1. Define Q as:
3b2 4 252
Qf:Qg—l—sign({i)#, i=1,2,...,n—1, (A53)
1
Q= Endn U+ (A54)
79, 2ngngn
Then, we can easily have Q7 are bounded, for ¢ = 1,2,...,n. Therefore, || < Q;‘, (i =1,2,...,n) for some unknown

positive constants Q:‘ > 0 on [0, tmax). Consider the following Lyapunov function:

where V] = 731, Vo = sn + onlsnl), Vi = si + 0ilsi], (i =2,3,...,n —1). Differentiating V1 with using Eqgs. (A47),

= (
Tf9,
(A44) and (A53), we obtain

Vi =€1¢1(b181 — b1z1 — (v191(®1) — b1)z2 + Q)
b2 =2
—V2e101V/ Vi + €1 128 + [€1|p12F + \§1|¢>13171 + |€1|¢>1%1 + &1
— V2161V Vi + [€1]61(2F + 23) + 61|12 (A55)

Similarly, taking the right Dini upper derivatives of V;, (i = 2,3,...,n — 1) along with Eq. (A48) and substituting 8; with
using Eq. (A45) and applying Eq. (A53), we have

b + 2 i z
DV <ibibifi+ Ilon(:E +at) + 0 2 L e, (\mmi) ~ sl + 2= 1') 600
17—
—ci9iV Vi — |§i—1]¢i— 1( Zi_1 +xj ) + ‘EZMH(Z + Iz+1) + |£Z|¢19* (A56)
For V;,, combining Eqs. (A49), (A46), (A54) and its right Dini upper derivative, we obtain
DHVi < = enbn TGN Vi — [ntlbno1 (24 +02) = ST 1616 H + 6alén (A5T)

i=1
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Similarly, combining Eqgs. (A55)-(A57), we have

n
V<—a'VE+ > (616 — Hy), (A58)

=1

where o’ = min{v/2c1¢1,cagp2, -+ ,cn \/@qbn}

Proof.  With Egs. (A58), we can easily prove Theorem 2 following the proof of Theorem 1 in Appendix A.2. ]
Remark 4. Compared with methods that only ensure practical stability [3, 14, 15], asymptotic stability [4,16,17] or
exponential stability [18], the proposed approach can achieve global performance-guaranteed finite-time exact-tracking
control for uncertain strict-feedback nonlinear systems under simultaneous actuator faults and external disturbances. This
is achieved through integral sliding mode techniques, which enable the establishment of prescribed transient and steady-state
performance bounds. The feasibility and effectiveness of the proposed control scheme are demonstrated through various
simulation examples and comparative studies provided in Appendix B.

Appendix B Simulations

In this section, simulations and comparisons are presented to demonstrate the effectiveness of the proposed control methods
of Theorem 1.
The first example is to verify the effectiveness of exact tracking within a finite time compared to the method in [3].
Consider the dynamics of that in [3]:

T1 = T2,
T2 = f2(ZT2,t) + g2(F2)u, (B1)
with
. 1z2 sin(z1) cos(xy)
_ gsin(zy) — TR
f2(x2’t) = (4 m cos?(z1) n(t)’
(§ - m—+me )
1
_ _ m—+me
92(Z2) = —l(é - mcosg(m)),
3 m-+me

where 1, 2, [ = 0.5m, m = 0.1kg, m. = lkg are the angle of the pendulum, the angular velocity, the half length of a pole,
the mass of a pole and a cart, respectively. g = 9.8m/s? is the gravitational acceleration. The existing component fault
n(t), and the actuator fault are the same with that in [3], which is

1, t < 15,

4, 15 < t < 20,
n(t) =

2, 20 < t < 25,

5sin(10t), 25 <t < 30.

The actuator fault happens at ¢ = 10s, i.e.,

v(t), t <10,
u(t) =
0.50(t) + 0.5, t > 10.

The controller in [3] is denoted as v'(t) for convenience. Let p1(t) = (5 —0.01)e~9-3t 4+0.01 and p2(t) = € —0.5)e0-5t +0.5.
For the purpose of rigor in simulations, the parameters of v’(t) are set the same as that in [3]. The parameters in the bounding
functions in [3] are set as 0.5. The reference signal is set as y}(t) = sin(¢). The parameters in v(t) as shown in Eq. (A12)
are set as di = 0.01, g2 = 20, g5 = 0.01, \; = 1, 7; = 0.001, r; = 1, 7 = 10, h;; = 1, h;3(0) = 0, where s = 1,2, j = 1,2,4
and the initial value is chosen as #1(0) = [0.2, —0.2] 7. The simulation results are displayed in Figures. B1-B2.

Figure B1 presents the tracking errors arctan(e(t)) and arctan(e*(¢)) of system (B1) under the control laws v(t) and
v’ (t), respectively. Unlike the protocol v’ (¢) from [3], which only guarantees uniformly bounded error (blue dashed line),
our method v(t) achieves finite-time convergence of the tracking error to zero while maintaining prescribed performance
(red solid line).

Figure B2 compares the reference signal yé (t) with the output trajectories under the two control schemes. Here, the red
solid line y1(¢) and the blue dashed line y}(t) correspond to the outputs under v(t) and v’(t), respectively. It can be seen
that the output under v(¢) tracks the reference signal more rapidly than under v’(t), confirming both the effectiveness of
the proposed method and its advantage over the existing approach.

Remark 5. It should be noted that system (B1) is intentionally designed without disturbances, since the comparative
controller from [3] is only applicable to disturbance-free systems. The rest part verifies the proposed control signal’s
applicability to systems with external disturbances.
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2 i ‘ v 4 ' - i
——arctan(e(t)) with z3(0) — (1)
- --arctan(e*(t)) with z3(0) —yi(t) with 21(0)
gl pi(t) [ -y (t) with 7(0)]
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Figure B1 Tracking errors arctan(e(t)) and arctan(e*(t)) of Figure B2 Reference signal yg(t) and output trajectories.
system (B1) under the control of the proposed signal v(t) in
Eq. (A12) and v/(t) in [3], respectively.
2 v - 0.8 - ‘
—arctan(e(t)) with 3(0) - —yd(t)
- - -arctan(e*(t)) with z3(0) O | |12 (t) with #3(0)
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Figure B3 Tracking errors arctan(e(t)) and arctan(e**(t)) of Figure B4 Reference signal y2(t) and output trajectories.

system (B2) under the control of the proposed signal v(¢) in Eq.
(A12) and v"'(t) in [11], respectively.

Next, we provide comparisons with the controller in [11] to validate that the proposed control method’s robustness
against both the actuator faults and external disturbances. Consider the following perturbed pendulum system:

&1 (t) = z2(t) + di (D), (B2)
Ea(t) = _gsm(fl(t)) _ kwfn(t) + #u(t) + da(t),

where the dynamics originates from a nonlinear pendulum model mi2§(t) +mgl sin(q(t)) + kl2¢(t) = u(t) with d;(t),s = 1,2
representing external disturbances. They are set as di(t) = 0.5cos(2t) and d2(t) = 2sin(t). Let reference signal y2(t) =
0.2sin(¢) and initial value #3(0) = [0.8,—1]T. For clarity, the controller in [11] is denoted as v"/(t). In order to ensure
precision and accuracy in simulations, the prescribed performance functions are set as pj(t) = % - 0.05)6_0'5t + 0.05
and p3(t) = (5 — 0.5)e"%-5* 4+ 0.5. The controller parameters for the proposed control signal v(t) in Eq. (A12) are set as
dy = 0.01, g2 =20, ¢4, =0.01, \; =1, 7; = 0.001, r; =1, 7; = 10, hy; = 1, h;3(0) = 0, where ¢ = 1,2, j = 1,2,4. Those
for v/ (t) are set the same as that in [11]. To demonstrate the effect of an actuator fault, we add an actuator fault to both
control signals i.e., u(t) = 0.2v(t), u’'(t) = 0.2v"(t). Figures. B3-B4 present the simulation results.

Figure B3 compares the tracking performance of system (B2) under the proposed controller v(¢t) and the existing approach
v’ (t) from [11], evaluated through the tracking errors arctan(e(t)) and arctan(e**(¢)). While the benchmark method v" (t)
only achieves uniformly bounded error without convergence, our proposed v(t) drives the tracking error to zero in finite
time while preserving prescribed performance constraints (red solid line).

Figure B4 displays the reference signal yg (t) alongside the corresponding output trajectories under both control schemes.
The output y(t) (red solid line) generated by v(t) and y2(t) (blue dashed line) produced by v”(t) clearly demonstrate
the improved transient performance of our method. Notably, the proposed controller exhibits faster convergence to the
reference signal, confirming its theoretical soundness and practical superiority over conventional methods.

In summary, the proposed controller v(t) in Eq. (Al2) achieves finite-time exact tracking of reference signals in the
presence of actuator faults, component faults, and external disturbances. Its superior performance is demonstrated through
faster convergence and lower overshoot compared to existing methods.
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