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In recent years, event-triggered online learning (ETOL) control
strategies have gained growing attention due to their ability to en-
hance data efficiency and reduce unnecessary computational costs
in real-time control systems [1-5]. By dynamically adjusting the
frequency of model updates, ETOL algorithms achieve a favorable
balance between learning accuracy and computational complex-
ity. In [1], an ETOL feedback linearizing control law based on GP
models was introduced. Jiao et al. [2] developed a trajectory track-
ing control law for a class of partially unknown nonlinear systems,
integrating backstepping with ETOL. In [3], a tunable GP-based
event-triggered cascaded control framework was proposed for agile
trajectory tracking of quadrotors. In [4], a GP-based distributed
learning consensus controller with auxiliary dynamics was devel-
oped for multi-agent systems with unknown dynamics. Dai et
al. [5] introduced an online cooperative learning strategy for GP-
based multi-agent control. However, it is important to note that
the ETOL mechanisms in [1-5] rely on the precise knowledge of
the Lipschitz constants or the upper bound of the RKHS norm
of the system dynamics. Unfortunately, obtaining accurate infor-
mation about the Lipschitz constants or the upper bounds of the
RKHS norm is often not feasible in many practical systems, which
severely limits the applicability of these methods.

Motivated by the above observations, in this study, we propose
an adaptive ETOL control method for uncertain nonlinear sys-
tems. The main contributions are summarized as follows. (1) Un-
like existing ETOL control algorithms [1-5], which rely on ac-
curate knowledge of the Lipschitz constants or the upper bound
of the RKHS norm of the system dynamics, resulting in it be-
ing difficult to obtain in practical implementations. The proposed
method eliminates this requirement by integrating BF, GPR, and
an adaptive event-triggered mechanism (AETM). Specifically, a
BF is introduced to constrain the system states, defining the op-
erating region for GP learning. Within this region, an adaptive
law is developed to estimate, in real-time, the parameter related
to the Lipschitz constants of the system dynamics, and an AETM
is introduced. The GP model updates its training data only when
the triggering condition is met, ensuring high data efficiency and
reducing computational complexity. (2) In contrast to ETOL con-
trol methods in [1-3], which assume that the unknown nonlinear
dynamics is globally bounded, the proposed method in this study
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only requires the unknown nonlinear dynamics to be locally Lip-
schitz. This relaxation significantly broadens the applicability of
the control method to a wider class of nonlinear systems.

Problem statement. Consider a class of uncertain nonlinear sys-
tems in the following form:

& = &ipr,i=1,..,n—1,
E.n on(§u + Yn(f), (1)

where the state vector is defined as £ = [£1,...,£,]T € X C R™ and
X is a compact set. The control signal is represented by u C R.
The nonlinear function ¢, (€) : R — R is known, whereas the
function ¥, (§) : R™ — R is unknown. Both ¢, (§) and ¥y (§)
satisfy locally Lipschitz condition with respect to &.

The primary objective is to construct a GP-based online learn-
ing state feedback control law w for any initial condition £(0) =
[€1(0), ...,£n(0)]T such that the state tracking error e converges
to a small neighborhood around the origin, while ensuring that
all signals of the closed-loop system remain uniformly bounded.
Here, e = 6 —Yq with gg = [ydv yél)v "'7yl(in71)]T
desired tracking trajectory.

Assumption 1 ([1]). For any £ € X, it has ¢, (§) > 0.
Assumption 2 ([1]). For any time instant ¢, where x € Ng, the
state vector £(#) = £(t,;) and the measurement data of by, (€(%)),
denoted as (") = 1, (6(7))+€(%) | can be collected. Here, the mea-
surement noise €(®) ~ N(0,02,) follows a Gaussian distribution,
with oon > 0 representing the noise variance.

Assumption 3 ([4]). The continuous function ¥y, (€) is a sam-
ple fr(/)m a GP with a Lipschitz kernel x(|§ — §,|) = n(ﬁ,f,) w.r.t.
1€ =& 1.

Assumption 4. The desired trajectory y,; and its n-th time
derivatives are continuous and bounded.

representing the

Assumption 5. The measurement data &, are available noise
free. Thus, 02, = 0 in Assumption 2.

Lemma 1 ([1]). For the GPR model, selecting the squared expo-
nential kernel as the kernel function, the unknown function . (§)
and variance functions o« (§) are bounded and differentiable.
Lemma 2 ([1]). For Assumption 3 holding and § € (0,1) be-
ing chosen, the following inequality holds with probability at least
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[n (&) — Vn(€)] < Brow(€),V€ € X,k € Ny, (2)

where o (§) represents the posterior standard deviation of the
GP, and B, = /2t + 3007, log(HT") with 7, being the maxi-
mum mutual information obtained from the training dataset of
the GPR model and v being an unknown constant that satisfies
ln @113, < ¥

Control law development. To start, we employ coordinate trans-
formations as follows:

er = &1 - va, ®3)
€ = g’b - y;i71)7i =2,..,n, (4)

and the state filtering variable is defined as

r=en+ An—1€n—1+ -+ Aie, (5)
where \;, i = 1,...,n — 1 are the coefficients of the Hurwitz poly-
nomial H(p) = p" ! + Ape1p™ 2 + -+ + A1. The online learning
controller u is designed as

1 R
u = m(—wn(ﬁ) —mr—p) -

o LE [t ter), ©)
where ¢ and n; (i = 1,2) are positive design constants, satisfy-
ing ¢ > |7(0)]. The GP mean functions ¢, (€) estimate unknown
function 1, (€) based on the time-varying dataset D, with x € Np.
According to Lemma 2, after each model update, the posterior
variance function of the GP can reliably quantify the modeling
error of the GPR model with high probability. To this end, an
event-triggered mechanism, as proposed in [1], is designed as fol-
lows:
lxt1 = inf {t > ti|Brow(§) = 771|7"|}7 (7)
where the triggering time t,41 is defined as the first time after
tx when B0k (§) becomes larger than or equal to n1|r|. However,
as shown in Lemma 2, 8, depends on the unknown parameter 1,
making it difficult to determine accurately. This uncertainty may
significantly compromise the practical applicability of the result-
ing GP-based control algorithm. To address this issue, an adaptive
estimator Bﬁ is introduced in this study, designed as follows:

Bn = ‘7“0':1(5) - Tanan(O) = Bm(), (8)

where BKO € R>p and 74 is a positive constant. The AETM with-

out and with noise measurements are, respectively, designed as
follows:

9)
(10)

ti+1 = inf {t > t~|B~U~(£) 2 771‘7"}7

tpt1 = inf {t > tN‘BnUN(g) =mlr|Nr ¢ BUOn}’

where

Boy, = {r € Tilir <

Bno'on
- } (11)
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Remark 1. In contrast to the results in [1-5], this study es-
timates the unknown parameter S, by introducing an adaptive
estimator B, as shown in (9). The updated value of B is de-
termined by the current system state r and o, (€), allowing for
real-time adjustments that more directly reflect the system dy-
namics. This approach effectively controls the amount of training
data, enhances data utilization efficiency, reduces computational
burden, and improves the real-time performance of the system.

Theorem 1. Consider the uncertain nonlinear system (1) un-
der Assumptions 1-5, and apply the online learning controller (6),
where ¢, (€) is modeled by a GP mean function 9, (£), which
is updated according to the AETM (9). Then, for any initial
condition £(0), all signals of the closed-loop system remain uni-
formly bounded, and the interevent time At,, = t,41 — tx is lower
bounded by a positive constant ¢, for all K € N with probability
1-4.
Theorem 2. Consider the uncertain nonlinear system (1) un-
der Assumptions 1-4, and apply the online learning controller (6),
where 1, (€) is modeled by a GP mean function e (&), which is up-
dated according to the AETM (10). Then, for any initial condition
£(0), all signals of the closed-loop system are uniformly bounded to
the set Bs,,, in (11), and the interevent time At/ is lower bounded
by a positive constant thv for all k € N, with probability 1 — §.

Conclusion. We proposed an adaptive ETOL control strat-

egy for uncertain nonlinear systems. Specifically, we introduced
a BF to constrain the system states, effectively defining the op-
erational region for GP learning. Within this region, an adaptive
law was developed to estimate parameters related to the Lipschitz
constant of the system. The proposed AETM ensures that the
GP model updates its training data only when the trigger con-
dition is violated, thereby enhancing data efficiency and reducing
computational complexity. Unlike existing event-triggered learn-
ing mechanisms, our approach does not rely on precise knowledge
of the Lipschitz constants of the system dynamics. Using Lya-
punov stability theory, we proved that the proposed control algo-
rithm guarantees the boundedness of all signals in the closed-loop
system. Simulation experiments confirmed the effectiveness and
advantages of the proposed method, demonstrating its potential
for real-time applications in GP-based online learning control.
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