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In recent years, event-triggered online learning (ETOL) control

strategies have gained growing attention due to their ability to en-

hance data efficiency and reduce unnecessary computational costs

in real-time control systems [1–5]. By dynamically adjusting the

frequency of model updates, ETOL algorithms achieve a favorable

balance between learning accuracy and computational complex-

ity. In [1], an ETOL feedback linearizing control law based on GP

models was introduced. Jiao et al. [2] developed a trajectory track-

ing control law for a class of partially unknown nonlinear systems,

integrating backstepping with ETOL. In [3], a tunable GP-based

event-triggered cascaded control framework was proposed for agile

trajectory tracking of quadrotors. In [4], a GP-based distributed

learning consensus controller with auxiliary dynamics was devel-

oped for multi-agent systems with unknown dynamics. Dai et

al. [5] introduced an online cooperative learning strategy for GP-

based multi-agent control. However, it is important to note that

the ETOL mechanisms in [1–5] rely on the precise knowledge of

the Lipschitz constants or the upper bound of the RKHS norm

of the system dynamics. Unfortunately, obtaining accurate infor-

mation about the Lipschitz constants or the upper bounds of the

RKHS norm is often not feasible in many practical systems, which

severely limits the applicability of these methods.

Motivated by the above observations, in this study, we propose

an adaptive ETOL control method for uncertain nonlinear sys-

tems. The main contributions are summarized as follows. (1) Un-

like existing ETOL control algorithms [1–5], which rely on ac-

curate knowledge of the Lipschitz constants or the upper bound

of the RKHS norm of the system dynamics, resulting in it be-

ing difficult to obtain in practical implementations. The proposed

method eliminates this requirement by integrating BF, GPR, and

an adaptive event-triggered mechanism (AETM). Specifically, a

BF is introduced to constrain the system states, defining the op-

erating region for GP learning. Within this region, an adaptive

law is developed to estimate, in real-time, the parameter related

to the Lipschitz constants of the system dynamics, and an AETM

is introduced. The GP model updates its training data only when

the triggering condition is met, ensuring high data efficiency and

reducing computational complexity. (2) In contrast to ETOL con-

trol methods in [1–3], which assume that the unknown nonlinear

dynamics is globally bounded, the proposed method in this study

only requires the unknown nonlinear dynamics to be locally Lip-

schitz. This relaxation significantly broadens the applicability of

the control method to a wider class of nonlinear systems.

Problem statement. Consider a class of uncertain nonlinear sys-

tems in the following form:

ξ̇i = ξi+1, i = 1, ..., n− 1,

ξ̇n = ϕn(ξξξ)u+ ψn(ξξξ), (1)

where the state vector is defined as ξξξ = [ξ1, . . . , ξn]T ∈ X ⊆ Rn and

X is a compact set. The control signal is represented by u ⊆ R.

The nonlinear function ϕn(ξξξ) : R
n → R is known, whereas the

function ψn(ξξξ) : Rn → R is unknown. Both ϕn(ξξξ) and ψn(ξξξ)

satisfy locally Lipschitz condition with respect to ξξξ.

The primary objective is to construct a GP-based online learn-

ing state feedback control law u for any initial condition ξξξ(0) =

[ξ1(0), ..., ξn(0)]T such that the state tracking error eee converges

to a small neighborhood around the origin, while ensuring that

all signals of the closed-loop system remain uniformly bounded.

Here, eee = ξξξ − ȳ̄ȳyd with ȳ̄ȳyd = [yd, y
(1)
d
, ..., y

(n−1)
d

]T representing the

desired tracking trajectory.

Assumption 1 ([1]). For any ξξξ ∈ X, it has ϕn(ξξξ) > 0.

Assumption 2 ([1]). For any time instant tκ, where κ ∈ N0, the

state vector ξξξ(κ) = ξξξ(tκ) and the measurement data of ψn(ξξξ(κ)),

denoted as yyy(κ) = ψn(ξξξ(κ))+ǫ(κ), can be collected. Here, the mea-

surement noise ǫ(κ) ∼ N (0, σ2on) follows a Gaussian distribution,

with σon > 0 representing the noise variance.

Assumption 3 ([4]). The continuous function ψn(ξξξ) is a sam-

ple from a GP with a Lipschitz kernel κ(|ξ − ξ
′

|) = κ(ξ, ξ
′

) w.r.t.

|ξ − ξ
′

|.

Assumption 4. The desired trajectory yd and its n-th time

derivatives are continuous and bounded.

Assumption 5. The measurement data ξ̇n are available noise

free. Thus, σ2on = 0 in Assumption 2.

Lemma 1 ([1]). For the GPR model, selecting the squared expo-

nential kernel as the kernel function, the unknown function ψκ(ξξξ)

and variance functions σκ(ξξξ) are bounded and differentiable.

Lemma 2 ([1]). For Assumption 3 holding and δ ∈ (0, 1) be-

ing chosen, the following inequality holds with probability at least
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1− δ:

|ψn(ξξξ)− ψ̂κ(ξξξ)| 6 βκσκ(ξξξ), ∀ξξξ ∈ X, κ ∈ N0, (2)

where σκ(ξξξ) represents the posterior standard deviation of the

GP, and βκ =
√

2ψ̄ + 300γκ log( 1+κ

δ
) with γκ being the maxi-

mum mutual information obtained from the training dataset of

the GPR model and ψ̄ being an unknown constant that satisfies

||ψn(ξξξ)||2Hk
6 ψ̄.

Control law development. To start, we employ coordinate trans-

formations as follows:

e1 = ξ1 − yd, (3)

ei = ξi − y
(i−1)
d

, i = 2, ..., n, (4)

and the state filtering variable is defined as

r = en + λn−1en−1 + · · ·+ λ1e1, (5)

where λi, i = 1, ..., n − 1 are the coefficients of the Hurwitz poly-

nomial H(p) = pn−1 + λn−1pn−2 + · · ·+ λ1. The online learning

controller u is designed as

u =
1

ϕn(ξξξ)
(−ψ̂κ(ξξξ) − η1r − ρ)−

η2r

ζ2 − r2
, t ∈ [tκ tκ+1), (6)

where ζ and ηi (i = 1, 2) are positive design constants, satisfy-

ing ζ > |r(0)|. The GP mean functions ψ̂κ(ξξξ) estimate unknown

function ψn(ξξξ) based on the time-varying dataset Dκ with κ ∈ N0.

According to Lemma 2, after each model update, the posterior

variance function of the GP can reliably quantify the modeling

error of the GPR model with high probability. To this end, an

event-triggered mechanism, as proposed in [1], is designed as fol-

lows:

tκ+1 = inf
{

t > tκ|βκσκ(ξξξ) > η1|r|
}

, (7)

where the triggering time tκ+1 is defined as the first time after

tκ when βκσκ(ξξξ) becomes larger than or equal to η1|r|. However,

as shown in Lemma 2, βκ depends on the unknown parameter ψ̄,

making it difficult to determine accurately. This uncertainty may

significantly compromise the practical applicability of the result-

ing GP-based control algorithm. To address this issue, an adaptive

estimator β̂κ is introduced in this study, designed as follows:

˙̂
βκ = |r|σκ(ξξξ) − τκβ̂κ, β̂κ(0) = β̂κ0, (8)

where β̂κ0 ∈ R>0 and τκ is a positive constant. The AETM with-

out and with noise measurements are, respectively, designed as

follows:

tκ+1 = inf
{

t > tκ|β̂κσκ(ξξξ) > η1|r|
}

, (9)

tκ+1 = inf
{

t > tκ|β̂κσκ(ξξξ) > η1|r| ∩ r /∈ Bσon

}

, (10)

where

Bσon
=

{

r ∈ Υ1||r| 6
β̂κσon

η1

}

. (11)

Remark 1. In contrast to the results in [1–5], this study es-

timates the unknown parameter βκ by introducing an adaptive

estimator β̂κ, as shown in (9). The updated value of β̂κ is de-

termined by the current system state r and σκ(ξξξ), allowing for

real-time adjustments that more directly reflect the system dy-

namics. This approach effectively controls the amount of training

data, enhances data utilization efficiency, reduces computational

burden, and improves the real-time performance of the system.

Theorem 1. Consider the uncertain nonlinear system (1) un-

der Assumptions 1–5, and apply the online learning controller (6),

where ϕn(ξξξ) is modeled by a GP mean function ψ̂κ(ξξξ), which

is updated according to the AETM (9). Then, for any initial

condition ξξξ(0), all signals of the closed-loop system remain uni-

formly bounded, and the interevent time ∆tκ = tκ+1 − tκ is lower

bounded by a positive constant tlb, for all κ ∈ N with probability

1− δ.

Theorem 2. Consider the uncertain nonlinear system (1) un-

der Assumptions 1–4, and apply the online learning controller (6),

where ψn(ξξξ) is modeled by a GP mean function ψ̂κ(ξξξ), which is up-

dated according to the AETM (10). Then, for any initial condition

ξξξ(0), all signals of the closed-loop system are uniformly bounded to

the set Bσon
in (11), and the interevent time △t′κ is lower bounded

by a positive constant t′
lb
, for all κ ∈ N, with probability 1− δ.

Conclusion. We proposed an adaptive ETOL control strat-

egy for uncertain nonlinear systems. Specifically, we introduced

a BF to constrain the system states, effectively defining the op-

erational region for GP learning. Within this region, an adaptive

law was developed to estimate parameters related to the Lipschitz

constant of the system. The proposed AETM ensures that the

GP model updates its training data only when the trigger con-

dition is violated, thereby enhancing data efficiency and reducing

computational complexity. Unlike existing event-triggered learn-

ing mechanisms, our approach does not rely on precise knowledge

of the Lipschitz constants of the system dynamics. Using Lya-

punov stability theory, we proved that the proposed control algo-

rithm guarantees the boundedness of all signals in the closed-loop

system. Simulation experiments confirmed the effectiveness and

advantages of the proposed method, demonstrating its potential

for real-time applications in GP-based online learning control.
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