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In contrast to optimal control strategies designed for continuous-
time systems, discrete-time optimal control has garnered consid-
erable attention due to the widespread use of digital systems
in modern control applications [1], particularly in hypersonic
flight systems (HFS), which represent a class of long-range strate-
gic aerospace vehicles. Although discrete-time optimal control
methodologies have achieved notable progress, few of them guaran-
tee system outputs with predefined transient and steady-state per-
formance characteristics. Prescribed performance control (PPC)
[2] has emerged as an effective mathematical framework for enforc-
ing desired dynamic behaviors on system outputs. However, ex-
isting research on PPC predominantly focuses on continuous-time
systems, leaving a significant gap in its application to discrete-time
systems. Despite advances in continuous-time PPC [3], studies on
PPC-integrated optimal control remain confined to continuous-
time dynamics, with little effort devoted to extending these meth-
ods to discrete-time optimal control with prescribed performance
guarantees. This raises a critical challenge:
time optimal control strategies be developed to ensure prescribed
performance? Given that most practical computer-controlled sys-
tems operate in discrete time, there is a pressing need to estab-
lish discrete-time optimal control frameworks capable of delivering
guaranteed transient and steady-state performance, particularly
for hypersonic flight systems that require both high precision and
optimal operational qualities. Therefore, the primary objective
of this study is to develop an ADP-based optimal control frame-
work for discrete-time nonlinear systems with unknown dynamics,
aiming to achieve predetermined output behaviors while ensuring
prescribed performance.

How can discrete-

Inspired by the aforementioned discussions (see Appendix
A), the motivation for this study originates from the need for
prescribed-time performance optimal control in discrete-time sys-
tems subject to input saturation constraints. The proposed de-
sign is realized through the integration of value iteration (VI)
and adaptive dynamic programming (ADP) (see Appendix B).
The methodology presented in this work constitutes a significant
step toward establishing an effective framework for prescribed-time
performance-driven optimal control under saturation constraints.

System plant. Without loss of generality, we first consider a
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class of discrete-time systems with control actuators subject to
saturation constraints. For these systems, a novel prescribed-time
performance optimal control approach will be subsequently pro-
posed and applied to HFS.

T+ = flzk) + g(zk)uk, 1)
where z,, = [ml’k,mg’k,...,mn’k}—r € R™ is the system state,
up = w1k, U2 ks - - ,umyk}—r € R™ is the control input with sat-

uration constraint —u < uy < 4 = [U1, U2, ... ,ﬁm]T € §R’>"O, o is
the upper bound of ug, f(zg) : R"™ — R™ and g(zp) : R™ — R*™
are continuous functions of x; satisfying f(:ck)|xk:0 =0, so that
z = 0 is the equilibrium state of (1) under uj; = 0, the positive
integers m € Z~0 and n € Z-9 denote the number of control in-
put and system state, respectively, and k = 0 : 1 : oo is the time
index/step.

The control synthesis for (1) requires the priori knowledge that
the system (1) can be stabilizable on a compact set Q, C R™ (at
least one admissible control uy, exists that for all xp|,_, € Qa C
R™, the state z4|,_, ., — 0). Though existing studies are capable
of optimally stabilizing the system (1), all of them fail to mean-
while achieve prescribed transient and steady-state qualities for
z. In the following subsection, pioneering work will be presented
to guarantee xj;, with those predetermined transient and steady-
state behaviors, by limiting xj within a prescribed boundary in
the discrete-time domain.

Fized-time prescribed performance. For the sake of guaran-
teeing the system state xj of (1) with a novel type of fixed-time
prescribed performance (3), we firstly devise the following discrete-
time performance function p; ;, € R>o:

27
“tanh (m— k| +p, k<K,
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Pl k =
prics k> Ky,

where [ = 1 : 1 : n. The positive integer K; € Z~09 means the
required steps for p;j to converge from its initial value p; o =
Pl,k|k:0 € RN~ to its steady-state value p; x = plvk|k>)cl € R-o,

so that p; o should be larger than p; i, and p;” and plJr are defined

PLO _ PLK + _ PLO PLE
2 3 and p = 5= + =5

as p; =
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To achieve a fixed-time prescribed performance, z should al-
ways evolve within the boundary

—pik <Tip <prE, l=1:1:n

®3)

To limit zj, within the boundary (3), by the PPC theory [3],
we should further define the transformed error a;, € R

1 x
al,k:_m(w),l:lzlzn.
2 PlLk — X1k

(4)

We propose the inverse thinking approach, in which a novel
asymptotic iteration for ;) € R is first developed and subse-
quently employed to derive a new dynamic system that enables
the design of discrete-time optimal PPC. The asymptotic itera-
tion for oy ; € R is defined as follows:

1 Plk+1 T T k+1
ap g1 = 5 In (7 =mog
2 Plk+1 — Tl k41

(®)

with -1 <m<landl=1:1:n.
It is observed from (5) that

e2mark —

14 e2Mmek

Ty k1 = PLE+1 =X g1, l=1:1:mn. (6)
In view of (1) and (6), we easily construct a new dynamic sys-

tem

g1 = [(A) + g(Xr)ug (7)

. 2MY k—1
with Ay, = [X] g, Xo - - Wﬁl,h
andl=1:1:n.

Control aim. The control synthesis aims to find a saturated
optimal controller uj;, which is constrained by uj € [—a,a], to
maintain the system state xj, starting from any initial point
Tplp—g € Qa C N”, at its equilibrium state xp = 0, with the
convergence trajectory of xj satisfying desired prescribed perfor-
mance (3), and also to minimize the following cost function:

Xkl T ERT, Xy =

T (X)) =D (X Qu &) + W(uy)) = (X, ur) + T (Xkg1) (8)
ik

with 7(Xj, ug) = X,] Qx Xy + W(ug), W(y;) = 2f(¢j atanh T (%)
‘Ruytudr, and atanh(r/a) = [atanh(7/@1),atanh(7/a2),...,
atanh(7/@.m)] ", where 7 is the integration variable, and Qx €
RMXM and Ry € R™MX™ are positive definite symmetric matrices.

Control implementation. Inspired by [4], the optimal controller
uj, and the optimal cost function J* (X ) are approximately esti-
mated as follows:

g =W, 1 ou(Xe), T*(X) =W b7 (X), (9)

where 4y and J*(Xy) are the estimations of uy, and J*(Xy), re-
spectively, with

Wu,k: = [":Jul,lw":’u2,k:7‘ZJU,B,Iw"311,4,197":%5,1@}T S %57
Wark=071,6 @72,k @78,k 0Tk, 0756 € R,
Du(Xp) = ¢ (Xe) = [N, X2, X3, X, 01T
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Employing the gradient-based adaptation [5] to minimize
Ey = %ei rand Eg = %ezj > we develop the following adap-
tive laws for VAVu’k and ijk:

N N OFE, 1 Oey i
W ka1 =W g — oy ——%
it “ “ 8eu,k aWu,k
:Wu,k - aueu,kd)u(xk): (10)
z ) OEg  Oegk
Wj,k 1 :Wj,k — Qg —
M 86J,k aW‘jyk
=Wk —ageq 1dg(X). (1)

Contributions. (1) This study introduces an asymptotic update
mechanism to extend the discrete-time plant into an augmented
dynamic system incorporating fixed-time prescribed performance
characteristics. This formulation enables the development of an
optimal control synthesis framework capable of achieving desired
transient and steady-state performance in discrete time. (2) Exist-
ing discrete-time PPC methods are predominantly confined within
the sliding mode design (SMD) framework, which restricts their
compatibility with other control methodologies and limits oppor-
tunities for performance enhancement. In contrast, the proposed
discrete-time optimal PPC approach overcomes the structural lim-
itations inherent in SMD, thereby broadening its theoretical appli-
cability and potential for integration with advanced control strate-
gies. (3) A novel cost function is formulated to derive discrete-
time optimal PPC protocols, specifically tailored for application
to hypersonic flight systems. The proposed design explicitly in-
corporates saturation constraints, addressing a critical limitation
observed in existing adaptive dynamic programming (ADP) ap-
proaches [1-3], where control signals may exceed actuator limits
during computation, leading to implementation failures in practi-
cal scenarios.
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