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Appendix A Motivation and contribution
Appendix A.1 Background

Contrast to optimal control strategies designed for continuous-time systems, discrete-time optimal control has received
considerable attention owing to the pervasive use of digital systems in modern control applications [1]-[5], particularly in
hypersonic flight systems (HFS), which constitute a class of long-range strategic transport aircraft. Discrete-time optimal
control aims to stabilize dynamic systems while minimizing cost functions using dynamic programming methods, typically
by solving the discrete-time Hamilton-Jacobi-Bellman (DHJB) equation. The policy iteration algorithm [6] is commonly
employed to solve the DHJB equation, as demonstrated in seminal works [7], [8]. However, this algorithm requires an
initial admissible control policy, which can be challenging to obtain in practical scenarios. To address this limitation, an
alternative algorithm known as value iteration was introduced, and its convergence properties were rigorously proven for
the first time by Al-Tamimi et al. [9]. Since then, value iteration has emerged as a novel approach offering local convergence
benefits while significantly reducing computational burden and complexity [10].

The aforementioned dynamic programming-based optimal control methods inevitably face the challenge of the curse of
dimensionality, a limitation that can be effectively mitigated through adaptive dynamic programming (ADP) strategies, also
referred to as adaptive critic design (ACD) [11]-[13]. Over the past few decades, a wide range of ADP/ACD-based optimal
control approaches has been developed for discrete-time systems. For example, Wei et al. [14] proposed a novel iterative
algorithm for solving zero-sum differential games in discrete-time nonlinear dynamic systems, with theoretical convergence
analysis and numerical simulations confirming its effectiveness and optimality. Liu et al. [15] investigated optimal tracking
control for nonaffine systems with dead-zone inputs by employing neural networks to approximate optimal control policies
within the ACD framework. Tang et al. [16] introduced an auxiliary compensation mechanism integrated with ACD for
discrete-time systems affected by backlash-like hysteresis, achieving near-optimal control performance while compensating
for non-affine couplings and hysteresis nonlinearities. Wang et al. [17] designed a state observer for state reconstruction and
utilized estimation errors to simultaneously train both critic and actor networks based on high-order neural networks under
the ACD architecture. Luo et al. [18] explored a data-driven optimal control strategy for constrained discrete-time systems,
requiring only a critic network and ensuring that the resulting controller satisfies input saturation constraints. Dong et
al. [19] sought to reduce computational overhead in time-updated neural network-based ADP by formulating enhanced
adaptive laws that update neural network weights intermittently according to event-triggered mechanisms. Furthermore,
significant attention has been devoted to optimal control of constrained dynamic systems. Bian et al. [1] developed a finite-
time neuro-optimal control strategy for nonlinear systems subject to asymmetric constraints, integrating a Sub-Actor-Critic
structure, identifier neural networks, and a policy iteration algorithm to ensure bounded system behavior and finite-time
stability. Zhang et al. [2] proposed an anti-windup control framework for multimotor systems to handle dual saturation
constraints, introducing a saturated super-twisting sliding mode control strategy that minimizes energy consumption while
maintaining consistent traction performance across all motors. Wang et al. [3] formulated an optimal control problem for
trajectory planning and derived the necessary conditions for optimality along with an associated optimal guidance law,
further proposing a parameterized system to facilitate efficient generation of optimal trajectories and address challenges
related to real-time implementation and convergence. Similarly, Chen et al. [4] addressed optimal trajectory planning
by deriving necessary optimality conditions and an optimal guidance law, presenting a parameterized system to efficiently
generate trajectories while focusing on practical issues concerning real-time execution and convergence properties.

Although ADP/ACD-based discrete-time optimal control methods have achieved considerable success, they do not guar-
antee predefined transient and steady-state performance of system outputs. Prescribed performance control (PPC), first
introduced by Bechlioulis et al. [20], has proven to be an effective framework for enforcing desired dynamic behaviors
in system responses. However, the majority of existing PPC research has focused on continuous-time systems [21], [22],
with limited attention given to discrete-time counterparts. Current advances in discrete-time PPC include the followings.
Yoshimura [23] proposed an approximate PPC scheme for uncertain discrete-time nonlinear systems in strict-feedback form,
aiming to simplify control architecture and ensure stability under full-state constraints via adaptive fuzzy backstepping
control. In another study, Yoshimura [24] developed a novel PPC approach for uncertain MIMO stochastic discrete-time
nonlinear systems, emphasizing stability analysis and constrained control design using adaptive fuzzy backstepping tech-
niques. In addition, Huang [25] presented a model-free adaptive sliding mode control method based on a discrete-time
extended state observer, achieving prescribed tracking performance and effective estimation of disturbances and uncertain-
ties.
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Appendix A.2 Motivation

Despite that the aforementioned research progress is impressive, it reveals evident limitations that warrant further investi-
gation and extension.

1. Currently, research on continuous-time PPC has achieved substantial progress, whereas studies on discrete-time PPC
remain in the early developmental stage. However, directly discretizing existing continuous-time PPC methods and
applying them to discrete-time systems may result in control failure, as such discretization can lead to instability of
the closed-loop system. This is due to the availability of numerous well-established design strategies in the continuous-
time domain that effectively guarantee system stability and achieve desired transient and steady-state performance. In
contrast, these strategies do not translate effectively to the discrete-time domain. Therefore, given that most modern
control systems are implemented digitally and operate in discrete time, the development of dedicated discrete-time
PPC methodologies is both necessary and imperative.

2. Recently, several scholars have conducted preliminary investigations into discrete-time PPC [22]-[25]. However, it is
important to note that all of these studies rely on a fixed design framework based on the sliding mode reaching law.
This inherent limitation restricts the generalizability of their approaches to other discrete-time control methodologies
and significantly undermines their practical applicability in real-world engineering contexts.

3. Despite significant advancements in optimal PPC for continuous-time dynamic systems [26]-[29], the extension to
discrete-time optimal control problems with prescribed performance has been largely neglected. This gap poses a
critical challenge: how can discrete-time optimal control strategies be developed to achieve desired prescribed perfor-
mance? Given that most computer-based control systems operate in discrete time, there is an urgent need to establish
discrete-time optimal control frameworks that guarantee both predefined performance and optimalityparticularly for
hypersonic flight systems, which require exceptional transient response, steady-state accuracy, and overall control
efficiency.

Appendix A.3 Contributions

Inspired by the above discussion, the primary objective of this letter is to develop an ADP-based optimal control framework
for discrete-time dynamic systems with unknown nonlinearities, aiming to achieve predetermined system output behaviors.
The key contributions of this study are as follows:

1. To the best of our knowledge, there is currently no discrete-time optimal control approach that simultaneously
guarantees prescribed performance and accounts for actuator saturation constraints. This study aims to bridge this
gap by introducing an asymptotic update mechanism to extend the discrete-time plant into an augmented dynamic
system incorporating fixed-time prescribed performance characteristics. This formulation enables the development
of an optimal control synthesis framework capable of achieving desired transient and steady-state performance in
discrete time.

2. Existing discrete-time PPC methods [30]-[35] are predominantly confined within the sliding mode design (SMD)
framework, which restricts their compatibility with other control methodologies and limits opportunities for per-
formance enhancement. In contrast, the proposed discrete-time optimal PPC approach overcomes the structural
limitations inherent in SMD, thereby broadening its theoretical applicability and potential for integration with ad-
vanced control strategies.

3. A novel cost function is formulated to derive discrete-time optimal PPC protocols, specifically tailored for application
to hypersonic flight systems. The proposed design explicitly incorporates saturation constraints, addressing a critical
limitation observed in existing adaptive dynamic programming (ADP) approaches [1]-[3], where control signals may
exceed actuator limits during computation, leading to implementation failures in practical scenarios.

The overall structure unfolds as follows. A comprehensive exposition of the motivation and contributions graces Appendix
A. The core findings, meticulously derived, are unveiled in Appendix B. The proposed strategy is brought to life through
simulation-based validation in the context of hypersonic flight systems in Appendix C, and finally, the concluding insights
are elegantly synthesized in Appendix D.

Appendix B Main results
Appendix B.1 System plant

Without loss of generality, we first consider a class of discrete-time systems with control actuators subject to saturation
constraints. For these systems, a novel prescribed-time performance optimal control approach will be subsequently proposed
and applied to hypersonic flight systems.

zpy1 = f(zk) + g(zr)ug, (B1)

where x = [T, T2, ,xn,k]—r € N™ is the system state, up = [u k, U2k, ,um’k}—r € R™ is the control input with
saturation constraint —a < ug < @ = [G1,T2,- - ,Um] € Ry, @ is the upper bound of ug, f(zz) : R™ — RN™ and
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Figure B1 Boundary constraint on xy.

g(zk) : R™ — R™X™ are continuous functions of xj, satisfying f(ack)\mkzo = 0, so that xp = 0 is the equilibrium state of
(B1) under up = 0, the positive integers m € Z~9 and n € Z50 denote the number of control input and system state,
respectively, and k = 0: 1 : oo is the time index/step.

The control synthesis for (B1) requires the priori knowledge [9] that the system (B1) can be stabilizable on a compact
set 2y C RN™ (At least one admissible control uy exists that for all zp|,_, € Q. C R", the state z|,_,., — 0). Though
existing studies [1]-[3] are capable of optimally stabilizing the system (B1), all of them fail to meanwhile achieve prescribed
transient and steady-state qualities for zj. In the following subsection, pioneering work will be presented to guarantee
xp with those predetermined transient and steady-state behaviors, by limiting x; within a prescribed boundary in the
discrete-time domain.

Appendix B.2 Fixed-time prescribed performance

For the sake of guaranteeing the system state zj of (B1) with a novel type of fixed-time prescribed performance (B3), we
firstly devise the following discrete-time performance function p; ; € R>o

p; tanh (ﬂ' - %k) +pl+,k <Ky
pL, k> Ky,

Pk = (B2)

where [ = 1 : 1 : n, the positive integer K; € Z~0 means the required steps for p; ; to convergence from its initial value
pL0 = pl,k|k:0 € R0 to its state-sate value p; x = pl,k|k>)€z € >0, so that p; g should be larger than p; x, and p;” and
PLO _ PLK PLO | PLK

pl+ are defined as p;” = 5= — =3~ and p/” = 5= + =5~

By fixed-time prescribed performance, we mean that x; should always evolve within the boundary

=Pk <Tik <pLk,l=1:1:n (B3)

Remak 1. The boundary constraint on x; and the physical meanings of design parameters are illustrated in Fig. Bl.
The boundary constraint on xj is illustrated in Fig. B1. With such envelope constraint, all the states of (B1) satisfy the
fixed-time prescribed performance: 1) the convergence time isnt than K;Ts where Ts € R0 is the sampling period, 2) the
overshoot is less than p; g, and 3) the steady-state value is within (—p; x,p1,x) with I =1:1 : n, so that all states of (B1)
are able to converge to the steady-state values within a fixed-time, and meanwhile both transient and steady-state qualities
can be achieved by devising suitable parameters for p; . The physical meanings of the above parameters provide valuable
guidance for parameter selection in practical applications. For instance, in flight control systems, appropriate values for the
design parameters can be determined based on specific performance requirementssuch as overshoot, steady-state error, and
convergence timeand the established relationships between these parameters and the corresponding performance metrics,
thereby enabling the achievement of desired control performance objectives.

To limit xj, within the boundary (B3), by the PPC theory [20], we should further define the transformed error a; ; € R

1
al,szln(w),lzlzlzn. (B4)
2 Plk — Tl k

The prescribed performance (B3) for continuous-time PPC [21]-[23] can be easily ensured by stabilizing the dynamic
system to ensure boundedness of o ;; € R. However, in the discrete-time domain, the existing SMC-based framework [30]
fails to construct an effective PPC methodology that achieves control optimality. To address this limitation, we propose an
Inverse Thinking approach, whereby a novel asymptotic iteration for oy j € R is first developed, and subsequently used to
derive a new dynamic system that facilitates the design of discrete-time optimal PPC. The asymptotic iteration for oy j, € R
is defined as follows.

1 Plk+1 + T kg1
apky1 = - In (Q = Mgk, (B5)
2 Plk+1 — T k41

with —-1<m<landli=1:1:n.
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Figure B2 Diagram of the control system.

It is observed from (B5) that
e2mar e _ q

Wl)uwl =X pt1,l=1:1:n. (B6)

Tl k+1 =

In view of (B1) and (B6), we easily construct a new dynamic system

X1 = [(X) + g(Xp)ug, (B7)

2n;
with Xy, = [X1 g, o gy - X k]| €R?, Ay g = %

Remak 2. According to Definition (B5), it follows that L; , = 0‘12,1@ = VL= O‘ZQ,Ichl - aik =(n? - l)a?’k < 0, which
implies that the defined iteration (B5) is asymptotically convergent. Furthermore, it is observed that systems (B7) and
(B1) share identical formulations. Therefore, the new system (B7) is also stabilizable, with X} = 0 being its equilibrium
state. In the following analysis, system (B7)rather than system (B1)will be employed to design constrained optimal control
protocols, which are intended for implementation in system (B1), such that the desired prescribed-time performance (B3)
can be achieved. This leads naturally to a novel framework that differs from the existing SMC-driven PPC structures
[30]-[35], providing an effective approach for prescribed performance optimal control synthesis.

pig,andl=1:1:n.

Appendix B.3 Control aim

In this article, the control synthesis aims to find a saturated optimal controller uy, which is constrained by u; € [—a, ],
to maintain the system state xy, starting from any initial point z4|,_, € Qx C R™, at its equilibrium state z3 = 0, with
the convergence trajectory of zj satisfying desired prescribed performance (B3), and also to minimize the following cost
function

T () = D> (X QueXj + W(uy)) = r( X, ur) + T (Xep1), (B8)
=k

with r( Xy, ug) = X,CTQXquLW(uk), W(u;) =2 fouj atanh T (%) Ruyudt, and atanh (%) = [atanh (ﬂ%) ,-++ ,atanh (i)]T,
where 7 is the integration variable, and Qx € R"*™ and R, € R™*X™ are positive definite symmetric matrices. In (BS8),
the infinite-horizon cost function (B8) is necessary for the considered control problem, as the finite-horizon cost function is
typically applicable to dynamic programming problemsensuring state evolution from current to final values. In contrast, for
control design problems, an infinite-horizon performance function must be adopted, which not only ensures the transition
of states from their current values to the desired final values but also guarantees that the states remain at these final values
(i.e., the equilibrium points) indefinitely.

Appendix B.4 Prescribed performance optimal control design

By Bellman’s optimality principle, we can derive the optimal cost function J*(&X}%) via solving the following discrete-time
HJB equation

T (X)) = 7ﬂr<1'11ifkl<ﬂ{r(xk7uk) + I (Xt1)}- (B9)

From (B9), we further get the optimal controller u}, as shown in Fig. B2

up =arg  min_ {r(Xy, ug) + T (Xet1)}- (B10)
—uLu <a
The existence of saturation constraint (i.e., — < wup < %) leads to the failure of existing solution methods for uj

[1]-[3]. Thanks to the newly defined cost function (B8), we can still solve for u}, which satisfies the saturation constraint
—@ < uj, < 4, by taking partial derivatives of the right side of (B10) with respective to wuy.

_ Or(Xg, uk) N X, 0T (K1)
Ouy, Ouy, 0X 11

0

*
= uj, = utanh (Ufk> , (B11)
a



Sci China Inf Sci 5

Algorithm 1: value iteration algorithm

Initialization: Set @, e 7 € R0, eu € N0, and N € Z50.
Define py 1, oy, X, and J(Xy).

Output: uj, and J*(Xy).

1: whilei < N do

2: Iterate u;j via (B12);

3: Iterate J;4+1 (X)) via (B13);

4: if |Z+1(Xk) — Z(Xk)‘ < ez and
[lwit1,6 — wikl| < ewori> N;

5: then J*(Xy) + Ji(Xk) and uj, < ug k;

6: break

7: else

8 it itl;

9: end if

10: end while

: _1p-1_7T 0T " (Xk41)
with vy = —5=Ru g (Xk)ﬁ
Remak 3. Tt can be seen from (B11) that up = if vy 2 U, up = —U if vy > —1, and otherwise —u < uj, < @, so that

the calculated optimal controller uj, = 4 tanh (%) is always within the saturated bound [—u,@]. This avoids a practical
scenario [28] where there is a risk of control failure that the obtained control value exceeds its reasonable range, making it
impossible to be actually executed.

Subsequently, both the optimal cost function and controller will be determined using the value iteration algorithm [9].
By setting a zero initial cost function Jo(X)) = 0, we get the i-th iteration for the control protocol

ujp =arg min_ {r(X,ug) + Ji(Xes1)}

—u<uE <%
=arg min_ {X] Qu Xy + W(ug) + Ji(Xiy1)}
—uLuE LU
1 i (X
=i tanh 7iR;1gT(Xk)M) , (B12)
2u BA%+1
withi=0:1:oc0.
The (i+1)-th iteration for the cost function is given by
Jit1(Xg) = min_ {r(Xk, uk) + Ji(Xp+1)}
—uu<a
= min_ {X Qx X + W(up) + Ti(Xiy1)}
—a<up<a
=X Qu Xy + Wi k) + Ti(f(Xk) + 9(Xk)ui k), (B13)

with=0:1:0c0.
The above iterations can be summarized as Algorithm 1

Appendix B.5 Convergence proof

In this section, we will rigorously demonstrate the convergence of Algorithm 1 and establish the attainment of the defined
prescribed performance (B3). To facilitate the subsequent proof, we first introduce the following lemmas.

Lemma 1 [9]. Define {p1; 1, € R™} as the arbitrary control sequence and update Jj1(X}%) via (B13). We then conclude
$+1(Xk) < %+1(Xk) with jo(Xk) = V()(Xk) =0 and

Vie1 (Xi) = Xy Que Xy + Wipi ) + Vi(f(Xn) + 9(Xi) i k) (B14)

Lemma 2 [9]. For ¢ = 0:1: oo, the cost function J;(X}), being solved from (B13), satisfies: 1) there exists an upper
bound J(X) € R0 so that 0 < J;(Xx) < J(&Xx); and 2) 0 < Ji (X)) < T*(A) < T (Xg)-

Lemma 3 [36]. For I =1 :1 :n, the boundedness of the transformed error o j can be guaranteed if the system (B7)
is stabilized so that its state Xj; is bounded. This also indicates that the defined prescribed performance (B3) can be
achieved under such conditions.

To enhance the convergence proof, we present the following theorem.

Theorem 1. Considering the closed-loop system consisting of system (B1), control sequence (B12), and cost function
sequence (B13) with Jo(&X%) = 0, we obtain:

1. For i =0:1: 00, we get J;(Xx) < Jig1(Xg) with Jo(Xg) = Vo(X) = 0;

2. As i — oo, we get u; ) — uj and J;(Xy) = T (Xk), i.e.; Uoo,k = uf, and Joo (Xk) = T *(Xk);



Sci China Inf Sci 6

3. The expected prescribed performance (B3) is achievable.

Proof. We will prove Theorem 1 step-by-step.
e Proof of the first item.
Let p; 1 = uip1,5. In view of Lemma 1, we have

Vi1 (Xg) =X, Qa Xy + Wluirr k) + Vi(F(Xe) + g(Xn)uit1 k)
4
Vi(Xe) =X Qa X + Wwi i k) + Vie1 (f(Xk) + g(Xe)ui k), (B15)

withi=0:1:o00.
The first item will be proved utilizing the inductive method.

1. Firstly, we note that Jo(Xj) = Vo(Xk) = 0, so that Jo(Xp) — Vi (X)) = —Vi(X) <0 = Jo(X) < Vi(Xg).
2. By assuming that J;(Xx) < Vi—1(X%), we then prove Ji+1(Xg) < Vig1(X), withi=0:1: oco.

3. Invoking (B13) and (B15)

Vi(Xk) — Tit1(X) =Vie1 (f (Xk) + 9( X )ui k) — Ti(f(Xk) + 9(Xe)wi k)
=Vic1(Xg41) — Ji(Xe41) < 0= Vi(Xy) < Tit1(Xe)- (B16)

It has been proved by Lemma 1 that J;11(Xk) < Vig1(Xg). We thereby get Vi(Xy) < Jit1(Xk) < Vig1(Xk) =
Vi (&) < Vi (X).

This completes the proof of the first item.
e Proof of the second item.
As i — 00, we conclude from (B13) that

Too (A1) =X,] Qe X, + Witioo k) + Too (f (Xk) + 9(Xi) oo k)
=] QX + W(too ) + Joo (Xit1)
Y
Ao (X)) =To0(Xiet1) — Too (X)) = =X, Qv X = W(tioo 1) < 0. (B17)

The positive-definite function Jo (X% ) is a Lyapunov function candidate and its difference A Jo (X% ) is negative definite,
so that we know Joo(Xg) = J(X%). Lemma 2 shows that J*(X%) < Joo(Xk). By the combination of Lemma 2 and the
first item of Theorem 1, we further obtain J;(Xx) = Joo(Xk) < T*(Xk) as ¢ — oco. We finally get Joo (X)) < T*(Xk) <
Joo (Xy) = Joo (Xk) = T*(Xy), which also reveals that use = uj, according the definition of J*(X%). This completes the
proof of the second item.

o Proof of the third item.

The second item of Theorem 1 has demonstrated that u; , — u} as ¢ — oco. Because uj, is an admissible control, the
state X, must be bounded and also satisfies that X — 0 as k — oo.

The desired prescribed performance (B3) is thus attained, as demonstrated by Lemma 3. This concludes the proof of
the third item, thereby completing the proof of Theorem 1.

Remak 4. Theorem 1 proves the convergence of iteration algorithm 1, which also indicates that the defined prescribed
performance (B3) can be guaranteed for zj. To the best of our knowledge, there is currently no discrete-time optimal
control scheme that can achieve such predetermined transient and steady-state behaviors. As proved in Theorem 1, we
theoretically get that ;3 — wj and J;(Xy) — J*(A}%) only when ¢ — oo. Hence, in practical applications, the ADP
approach is typically employed to approximate the algorithm.

Appendix C Application to hypersonic flight systems via simulation validation

In this section, the proposed controller is approximately implemented using the ADP approach (see Fig. B2), with simulation
validation conducted in MATLAB 2024b that is a platform widely adopted in the control systems domain to verify the
precision and effectiveness of control strategies. The simulation comprises the following examples.

Appendix C.1 Example 1

The addressed controller is applied to a first-order system xp 1 = f(xk) + g(zg)ug with f(zr) = 2, € R, g(zx) = 1, and
ug € R. It is obvious that z = 0 is the equilibrium state. The state zj, satisfies the prescribed performance —pg < zx < pg
with
p’tanh(w—%k)-i—er,kélC (1)
p =

pic, k> K,
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where p~ = £2 — 2K pt = B0 4 X and K is a positive integer.
2na
Define the transformed error ap = %ln (%). From (B6), we get a new state Xj11 = %pwﬂ and a new
o
dynamic system Xj41 = f(Xk) + g(Xk)ur with n = 0.45. Define the cost function J(X%) = Z (X]-T QxXj + W(uy)) with

Jj=k
. 2 ]
Wiuy) =2 [19 atanhT (Z) Ry adr = Ry a2 In (1 - %) + 2R ugatanh (5.

a
Inspired by [37], the optimal controller uy, and the optimal cost function J* (Xx) are approximately estimated as follows:
i, = W pbu(Xn), T () = W7 pbg (X), (C2)
where 4} and J* (&) are the estimations of u}, and J*(X}), respectively, with
Wu,k = [":’ul,kv":)u2,k:7":’u3,k7‘:’u4,kv":}u5,k]-r € §R5
Wa k= 071k 072,k @73,k D74k, O75,k] T € RO
Su(Xi) = b7 (Xk) = [N, X, 2, X, 3T
Wu,o = [-0.8,—0.26, —0.14, —0.08, —0.08] T
WJ,O =[0.09,0.06,0.04,0.2,0.2] T.

Define the controller estimation error e, ; and the cost function estimate error ey j as

1. aT*(X R
€y k = —U tanh ~ LRty T g 2T ) ) g ), (C3)
2u 8Xk+1 ’
ek =X QX + W(ug) + T (Xey1) — T*(Xn) = X Qe Xy + W(ug) + W b7 (X, (C4)
with
8T* (X . . . . .
# = w‘]lyk + 2wJ27ka+1 + 3WJ37kX;3+1 + 4&)‘747ka3:+1 + 5w‘75,k?(,f+1, (05)
+1
X1 — Xk
~ Xl?-H - Xl?
b7 (Xk) = ¢g (Xky1) — g (Xp) = | X2 — A2 |, (C6)
Xl?+1 - Xl?
Xl§+1 - Xl?
X1 = () + 9(X) W, bu(X). (C7)

Employing the gradient-based adaptation [10] to minimize E,, j = %ei rand Bz = %6‘27 > we develop the following
adaptive laws for VAVuyk and Wj,k

2 z OBy 1 Oey i 2
Woha1 = W — g ok Zowk - X), cs
w k1 w,k — Oy Dewr OWor w,k — Cuy kPu(Xk) (C8)
. N OE g Oeg < bt
Wrks1=Wgp —a I Tk — Wk —ages wds (i), (C9)

T deq i OW s

with o, = diag{0.2}5x5 and oy = diag{0.05}5x5.

In this example, we examine the following two cases.

Case 1. In this case, we evaluate the prescribed performance by adjusting the parameters of the prescribed performance
function.

Case 2. In this case, we adjust the relative weights between control effort and tracking error within the cost function to
analyze the sensitivity of the control strategy to performance trade-offs.

The simulation results of Example 1 are presented in Figs. C1—C10 and Table C1. Figs. C1 and C6 indicate that the
state always evolves within the prescribed boundary —pp < x < pg, thereby satisfying the desired transient and steady-
state performance across all cases. As can be observed from Figs. C1, C3, and Table C1, different prescribed boundaries
enable distinct performance specificationssuch as convergence time and steady-state valuesas well as varying cost function
values. Furthermore, Figs. C6, C8, and Table C1 demonstrate that, in comparison with the prescribed boundaries, the
weighting coefficients exert a more significant influence on the cost function. It is clearly evident from Figs. C2 and C7 that,
in both scenarios, the computed control input ug adheres to the predefined saturation constraint |ug| < 4. Finally, Figs.
C4, C5, C9, and C10 illustrate the convergence behavior of Wu,k and WJJC. In summary, the simulation results confirm
that the proposed method achieves optimal stabilization of the dynamic system, while ensuring that the state exhibits the
desired prescribed performance and that the controller satisfies the given constraints.
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Table C1 Comparisons of control performance in Example 1.

Cases Design parameters Cost function | Convergence time | Steady-state value
Case 1 po =1.2,px =0.2,K =0.05 0.33 <0.05s (—0.02,0.17)
Qx =8, Ry =1 po =5,pc=2,K=0.1 0.14 <0.07s (—0.02,0.28)
|lu| <2 =0.3 po=15px =8,K=0.2 0.13 < 0.09 s (—0.02,0.45)
Case 2 Qx =1, Ry =100 0.73 < 0.05s (—0.01,0.06)
po=12,px =0.2 OQx =1,R, =1 0.23 < 0.05s (—0.01,0.05)
K =0.05,|u| <0.5 Qx =100,R, =1 1.1 <0.05s (—0.01,0.04)
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Figure C1 System state in Case 1.
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Figure C3 Cost function in Case 1.

Appendix C.2 Example 2

In this example, to further validate the superiority, the proposed controller is applied to the SSP (See Fig. C11.), and then
is compared with a traditional proportional control (TPC) scheme and one existing PPC (EPPC) strategy which uses a
traditional performance function [30]. The plant model of SSP is xx41 = f(xx) + g(xk)ur with z, = [xlﬁk,:czk}—r € R2,
flrr) = [z1,p — 14.17Ts (21,5 — T2,1), T2,k — 7-56Tsxq ) — 82.26T5x2,k]T, g(zx) = [0,2.34T5] T, and uy, € R. Tt is clear that
x = (0,0) is the equilibrium state. We expect the state xj, to satisfy the prescribed performance —py j < 1,5 < p1,5 and
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—p2,k < T2k < P2k, With
0.5tanh (7 — 22k) 4+ 0.7,k < 12
PLE = 12 (C10)

0.2

k> 12,
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P2k = (C11)
0.2,k > 2.

Define transformed errors oy = %ln (%) and as = %ln (%) By the definition (B6), we derive

e2M2%2 K _q

210k _ i
< 1p1,k+1 and Xp 41 = TToPmaan P21, 88 well as the new dynamic system X1 =

210y

14e ’

F(X) + g(Xp)ug with Xy = [X1 g, Ao k] T, f(AR) = [A0, — 141TTe(Xy g — Ao i), Xa g — T.56Ts X — 82.26Ts X 1] T,
jee)

g(Xy) = [0,2.347%] T, and m = n2 = 0.5. All controllers use the same cost function J(X3) = 3 (XjT QxX; + W(uy))
j=k

, 2 )
with W(u;) = 2 f;7 atanh T (2) Ryadr = Raa?In (1 - %) + 2Ry Gujatanh ("71) Qx = [5,0.1;0.1,1], Ry = 0.1, and

u

new states X1 py1 =

u = 0.2.
In this example, both the optimal controller u} and the optimal cost function J*(X}) are also approximately estimated

as follows:

g =W, bu(Xe), T* (X)) = W] b7 (Xn), (C12)
where 4 and J*(Xy) represent the estimations of uj, and J*(X}) with

a N . . N . . . . T 8
Wk = [@ut, k> @uz, k> @us, k> Dud, k> Dus,kr Dub ks Dt ks Dus,k] € R, (C13)
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Table C2 Comparisons of control performance in Example 2.

Performance indicators Z1 K T2k
Proposed method none none
Overshoot EPPC -0.45 rad/s 0.76 N.m
TPC -0.42 rad/s 0.59 N.m
Proposed method <0.12 s <0.02s
Convergence time EPPC >0.23s >0.26s
TPC >05s >0.5s
Steady-state value | Proposed method (0,0.03) rad/s (—3.5,0) x 1073 N.m
t€[0.2,0.5] s EPPC (0.15,0.2) rad/s (—=0.3,0.4) N.m
TPC (0.3,0.4) rad/s (—0.6,0.6) N.m
Proposed method 0.45
Cost function EPPC 153.4
TPC 475.2
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% ~ N N N N N N N T
Wag k= [wjl,kuUJJ2,k:WJ3,k»UJ.74,k7wJ5,k7 wJe,kMJﬂij&k} S %8,
2 2 2 2 2 2 T
u(X) = 6.7 (Xe) = [ X1 0, Kooy X2 oy X oy X1, Kooy XE X, X1, 0 Xy, X214, ]
W0 = [-0.4,—0.5,—0.02, —0.09, —0.08, —0.09, —0.08, —0.09] ',

W 0 =[0.1,0.08,0.09,0.1,0.07,0.06,0.1,0.12] .

Define controller approximation error e, j and cost function approximation error ey j as

AT *(Xpa1)

1
= —atanh [ ——R; 19T (X
Cu,k U tan < o U g ( k) 8Xk+1

)+ Wt
ek =X QX + W(ug) + T (Xiy1) — T*(Xn) = X Qx X + Wur) + W b7 (X),
with

0JT* (Xit1) _ | Bn
8‘)(.kjtl 322 ’

Ba1 =20 73 kX1 k+1 + O 75, kX2 k1 + 2076, kX1 k+1X2 k41
. . 2 . 2
F o071k T OT7 RS 1 2078 kX k41X g1

B2 =2074 kX2 k41 + D75 kX1, k41 + 2077, kX1 k41 X2 k41
N 2 N 2 N
+ 076,k X k1 T 2078 kX k1 X2 k1 + 0285

X1 kt1 — X1k
Xo g1 — Aok

2 2
X op1 — Xk
_ X2 _ XZ
b7 (X)) = o7 (A1) — 07 (Xk) = DL T2k ;

X1 k41X, k41 — X162k
X2 Xo pg1 — Xﬁk-XQ,k

1,k+1
2 2
Xl,k+1X2,k+1 - X17kX2,k
2 2 2 2
L Xl,k+1X2,k+1 - Xl,kXQ,k ]

X1 k1 = X1 — 14.17Ts (X ) — Ao i),

Xo k1 = Xop — T.56T5 Xy — 82.26T5 X i + 2.34T5 W, o (Xi).

(C14)

(C15)

(C16)

(C17)

(C18)

(C19)

(C:20)

(C21)

(C22)

(C23)

(C24)

(C25)
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By the gradient-based adaptation [10], we aim to minimize E, ; = %ei zand Eg g = %e% i, by defining the following
adaptive laws for VAVuJC and Wlk

= = 8Eu,k aeu,k

Wu,k+1 = Wu,k — Oy 8eu,k BWu’k = Wu,k - aueu,k¢u(xk)v (026)
. “ OE 7 Oeg i R -
W1 = Wag —ag —28 T8 3oy —ages vda (X)), (C27)

7 aej,k 8Wj7k

with an, = diag{0.35}sxs and a7 = diag{0.15}gxs.

In this example, the effectiveness of the proposed method and its superiority over the existing TPC and EPPC method-
ologies are clearly demonstrated in Figs. C12—C17 and Table C2. As shown in Figs. C12, C13, and Table C2, the predefined
performance specifications are successfully achieved by the proposed control strategy, which also exhibits improved transient
and steady-state responses compared to the conventional TPC and EPPC methods. Fig. C14 illustrates that the control
input generated by the proposed approach remains within the saturation constraint |ug| < @ = 0.2, whereas the existing
controllers violate this limit. Furthermore, the evolution of the cost function is provided in Fig. C15, and the system
responses of W%k and Wj,k are depicted in Figs. C16 and C17.

Appendix D Conclusions

A prescribed-time performance optimal control strategy is investigated for discrete-time systems subject to actuator sat-
uration, with application to hypersonic flight systems. Fixed-time performance functions are utilized to impose boundary
constraints on system outputs, ensuring asymptotic regulation of transformed errors. This leads to the formulation of a
new discrete-time dynamic system for optimal controller design. By introducing a novel cost function, saturated optimal
control protocols are derived to guarantee the desired prescribed-time performance. The value iteration algorithm is em-
ployed to compute both the cost function and the control sequence for implementing the developed controller. Finally, the
effectiveness of the proposed approach is validated through comparative simulations based on ADP. In our future work, the
proposed method will be further applied to physical experiments to comprehensively validate its effectiveness.
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