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Appendix A Motivation and contribution

Appendix A.1 Background

Contrast to optimal control strategies designed for continuous-time systems, discrete-time optimal control has received

considerable attention owing to the pervasive use of digital systems in modern control applications [1]-[5], particularly in

hypersonic flight systems (HFS), which constitute a class of long-range strategic transport aircraft. Discrete-time optimal

control aims to stabilize dynamic systems while minimizing cost functions using dynamic programming methods, typically

by solving the discrete-time Hamilton-Jacobi-Bellman (DHJB) equation. The policy iteration algorithm [6] is commonly

employed to solve the DHJB equation, as demonstrated in seminal works [7], [8]. However, this algorithm requires an

initial admissible control policy, which can be challenging to obtain in practical scenarios. To address this limitation, an

alternative algorithm known as value iteration was introduced, and its convergence properties were rigorously proven for

the first time by Al-Tamimi et al. [9]. Since then, value iteration has emerged as a novel approach offering local convergence

benefits while significantly reducing computational burden and complexity [10].

The aforementioned dynamic programming-based optimal control methods inevitably face the challenge of the curse of

dimensionality, a limitation that can be effectively mitigated through adaptive dynamic programming (ADP) strategies, also

referred to as adaptive critic design (ACD) [11]-[13]. Over the past few decades, a wide range of ADP/ACD-based optimal

control approaches has been developed for discrete-time systems. For example, Wei et al. [14] proposed a novel iterative

algorithm for solving zero-sum differential games in discrete-time nonlinear dynamic systems, with theoretical convergence

analysis and numerical simulations confirming its effectiveness and optimality. Liu et al. [15] investigated optimal tracking

control for nonaffine systems with dead-zone inputs by employing neural networks to approximate optimal control policies

within the ACD framework. Tang et al. [16] introduced an auxiliary compensation mechanism integrated with ACD for

discrete-time systems affected by backlash-like hysteresis, achieving near-optimal control performance while compensating

for non-affine couplings and hysteresis nonlinearities. Wang et al. [17] designed a state observer for state reconstruction and

utilized estimation errors to simultaneously train both critic and actor networks based on high-order neural networks under

the ACD architecture. Luo et al. [18] explored a data-driven optimal control strategy for constrained discrete-time systems,

requiring only a critic network and ensuring that the resulting controller satisfies input saturation constraints. Dong et

al. [19] sought to reduce computational overhead in time-updated neural network-based ADP by formulating enhanced

adaptive laws that update neural network weights intermittently according to event-triggered mechanisms. Furthermore,

significant attention has been devoted to optimal control of constrained dynamic systems. Bian et al. [1] developed a finite-

time neuro-optimal control strategy for nonlinear systems subject to asymmetric constraints, integrating a Sub-Actor-Critic

structure, identifier neural networks, and a policy iteration algorithm to ensure bounded system behavior and finite-time

stability. Zhang et al. [2] proposed an anti-windup control framework for multimotor systems to handle dual saturation

constraints, introducing a saturated super-twisting sliding mode control strategy that minimizes energy consumption while

maintaining consistent traction performance across all motors. Wang et al. [3] formulated an optimal control problem for

trajectory planning and derived the necessary conditions for optimality along with an associated optimal guidance law,

further proposing a parameterized system to facilitate efficient generation of optimal trajectories and address challenges

related to real-time implementation and convergence. Similarly, Chen et al. [4] addressed optimal trajectory planning

by deriving necessary optimality conditions and an optimal guidance law, presenting a parameterized system to efficiently

generate trajectories while focusing on practical issues concerning real-time execution and convergence properties.

Although ADP/ACD-based discrete-time optimal control methods have achieved considerable success, they do not guar-

antee predefined transient and steady-state performance of system outputs. Prescribed performance control (PPC), first

introduced by Bechlioulis et al. [20], has proven to be an effective framework for enforcing desired dynamic behaviors

in system responses. However, the majority of existing PPC research has focused on continuous-time systems [21], [22],

with limited attention given to discrete-time counterparts. Current advances in discrete-time PPC include the followings.

Yoshimura [23] proposed an approximate PPC scheme for uncertain discrete-time nonlinear systems in strict-feedback form,

aiming to simplify control architecture and ensure stability under full-state constraints via adaptive fuzzy backstepping

control. In another study, Yoshimura [24] developed a novel PPC approach for uncertain MIMO stochastic discrete-time

nonlinear systems, emphasizing stability analysis and constrained control design using adaptive fuzzy backstepping tech-

niques. In addition, Huang [25] presented a model-free adaptive sliding mode control method based on a discrete-time

extended state observer, achieving prescribed tracking performance and effective estimation of disturbances and uncertain-

ties.
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Appendix A.2 Motivation

Despite that the aforementioned research progress is impressive, it reveals evident limitations that warrant further investi-

gation and extension.

1. Currently, research on continuous-time PPC has achieved substantial progress, whereas studies on discrete-time PPC

remain in the early developmental stage. However, directly discretizing existing continuous-time PPC methods and

applying them to discrete-time systems may result in control failure, as such discretization can lead to instability of

the closed-loop system. This is due to the availability of numerous well-established design strategies in the continuous-

time domain that effectively guarantee system stability and achieve desired transient and steady-state performance. In

contrast, these strategies do not translate effectively to the discrete-time domain. Therefore, given that most modern

control systems are implemented digitally and operate in discrete time, the development of dedicated discrete-time

PPC methodologies is both necessary and imperative.

2. Recently, several scholars have conducted preliminary investigations into discrete-time PPC [22]-[25]. However, it is

important to note that all of these studies rely on a fixed design framework based on the sliding mode reaching law.

This inherent limitation restricts the generalizability of their approaches to other discrete-time control methodologies

and significantly undermines their practical applicability in real-world engineering contexts.

3. Despite significant advancements in optimal PPC for continuous-time dynamic systems [26]-[29], the extension to

discrete-time optimal control problems with prescribed performance has been largely neglected. This gap poses a

critical challenge: how can discrete-time optimal control strategies be developed to achieve desired prescribed perfor-

mance? Given that most computer-based control systems operate in discrete time, there is an urgent need to establish

discrete-time optimal control frameworks that guarantee both predefined performance and optimalityparticularly for

hypersonic flight systems, which require exceptional transient response, steady-state accuracy, and overall control

efficiency.

Appendix A.3 Contributions

Inspired by the above discussion, the primary objective of this letter is to develop an ADP-based optimal control framework

for discrete-time dynamic systems with unknown nonlinearities, aiming to achieve predetermined system output behaviors.

The key contributions of this study are as follows:

1. To the best of our knowledge, there is currently no discrete-time optimal control approach that simultaneously

guarantees prescribed performance and accounts for actuator saturation constraints. This study aims to bridge this

gap by introducing an asymptotic update mechanism to extend the discrete-time plant into an augmented dynamic

system incorporating fixed-time prescribed performance characteristics. This formulation enables the development

of an optimal control synthesis framework capable of achieving desired transient and steady-state performance in

discrete time.

2. Existing discrete-time PPC methods [30]-[35] are predominantly confined within the sliding mode design (SMD)

framework, which restricts their compatibility with other control methodologies and limits opportunities for per-

formance enhancement. In contrast, the proposed discrete-time optimal PPC approach overcomes the structural

limitations inherent in SMD, thereby broadening its theoretical applicability and potential for integration with ad-

vanced control strategies.

3. A novel cost function is formulated to derive discrete-time optimal PPC protocols, specifically tailored for application

to hypersonic flight systems. The proposed design explicitly incorporates saturation constraints, addressing a critical

limitation observed in existing adaptive dynamic programming (ADP) approaches [1]-[3], where control signals may

exceed actuator limits during computation, leading to implementation failures in practical scenarios.

The overall structure unfolds as follows. A comprehensive exposition of the motivation and contributions graces Appendix

A. The core findings, meticulously derived, are unveiled in Appendix B. The proposed strategy is brought to life through

simulation-based validation in the context of hypersonic flight systems in Appendix C, and finally, the concluding insights

are elegantly synthesized in Appendix D.

Appendix B Main results

Appendix B.1 System plant

Without loss of generality, we first consider a class of discrete-time systems with control actuators subject to saturation

constraints. For these systems, a novel prescribed-time performance optimal control approach will be subsequently proposed

and applied to hypersonic flight systems.

xk+1 = f(xk) + g(xk)uk, (B1)

where xk = [x1,k, x2,k, · · · , xn,k]
⊤ ∈ ℜn is the system state, uk = [u1,k, u2,k, · · · , um,k]

⊤ ∈ ℜm is the control input with

saturation constraint −ū ⩽ uk ⩽ ū = [ū1, ū2, · · · , ūm]⊤ ∈ ℜm
>0, ū is the upper bound of uk, f(xk) : ℜn 7→ ℜn and
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Figure B1 Boundary constraint on xk.

g(xk) : ℜn 7→ ℜn×m are continuous functions of xk satisfying f(xk)|xk=0 = 0, so that xk = 0 is the equilibrium state of

(B1) under uk = 0, the positive integers m ∈ Z>0 and n ∈ Z>0 denote the number of control input and system state,

respectively, and k = 0 : 1 :∞ is the time index/step.

The control synthesis for (B1) requires the priori knowledge [9] that the system (B1) can be stabilizable on a compact

set Ωx ⊆ ℜn (At least one admissible control uk exists that for all xk|k=0 ∈ Ωx ⊆ ℜn, the state xk|k→∞ → 0). Though

existing studies [1]-[3] are capable of optimally stabilizing the system (B1), all of them fail to meanwhile achieve prescribed

transient and steady-state qualities for xk. In the following subsection, pioneering work will be presented to guarantee

xk with those predetermined transient and steady-state behaviors, by limiting xk within a prescribed boundary in the

discrete-time domain.

Appendix B.2 Fixed-time prescribed performance

For the sake of guaranteeing the system state xk of (B1) with a novel type of fixed-time prescribed performance (B3), we

firstly devise the following discrete-time performance function ρl,k ∈ ℜ>0

ρl,k =

 ρ−l tanh
(
π − 2π

Kl
k
)
+ ρ+l , k ⩽ Kl

ρl,K, k > Kl,
(B2)

where l = 1 : 1 : n, the positive integer Kl ∈ Z>0 means the required steps for ρl,k to convergence from its initial value

ρl,0 = ρl,k
∣∣
k=0
∈ ℜ>0 to its state-sate value ρl,K = ρl,k

∣∣
k>Kl

∈ ℜ>0, so that ρl,0 should be larger than ρl,K, and ρ−l and

ρ+l are defined as ρ−l =
ρl,0
2
− ρl,K

2
and ρ+l =

ρl,0
2

+
ρl,K
2

.

By fixed-time prescribed performance, we mean that xk should always evolve within the boundary

−ρl,k < xl,k < ρl,k, l = 1 : 1 : n. (B3)

Remak 1. The boundary constraint on xk and the physical meanings of design parameters are illustrated in Fig. B1.

The boundary constraint on xk is illustrated in Fig. B1. With such envelope constraint, all the states of (B1) satisfy the

fixed-time prescribed performance: 1) the convergence time isnt than KlTs where Ts ∈ ℜ>0 is the sampling period, 2) the

overshoot is less than ρl,0, and 3) the steady-state value is within (−ρl,K, ρl,K) with l = 1 : 1 : n, so that all states of (B1)

are able to converge to the steady-state values within a fixed-time, and meanwhile both transient and steady-state qualities

can be achieved by devising suitable parameters for ρl,k. The physical meanings of the above parameters provide valuable

guidance for parameter selection in practical applications. For instance, in flight control systems, appropriate values for the

design parameters can be determined based on specific performance requirementssuch as overshoot, steady-state error, and

convergence timeand the established relationships between these parameters and the corresponding performance metrics,

thereby enabling the achievement of desired control performance objectives.

To limit xk within the boundary (B3), by the PPC theory [20], we should further define the transformed error αl,k ∈ ℜ

αl,k =
1

2
ln

(
ρl,k + xl,k

ρl,k − xl,k

)
, l = 1 : 1 : n. (B4)

The prescribed performance (B3) for continuous-time PPC [21]-[23] can be easily ensured by stabilizing the dynamic

system to ensure boundedness of αl,k ∈ ℜ. However, in the discrete-time domain, the existing SMC-based framework [30]

fails to construct an effective PPC methodology that achieves control optimality. To address this limitation, we propose an

Inverse Thinking approach, whereby a novel asymptotic iteration for αl,k ∈ ℜ is first developed, and subsequently used to

derive a new dynamic system that facilitates the design of discrete-time optimal PPC. The asymptotic iteration for αl,k ∈ ℜ
is defined as follows.

αl,k+1 =
1

2
ln

(
ρl,k+1 + xl,k+1

ρl,k+1 − xl,k+1

)
:= ηlαl,k, (B5)

with −1 < ηl < 1 and l = 1 : 1 : n.
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Figure B2 Diagram of the control system.

It is observed from (B5) that

xl,k+1 =
e2ηlαl,k − 1

1 + e2ηlαl,k
ρl,k+1 := Xl,k+1, l = 1 : 1 : n. (B6)

In view of (B1) and (B6), we easily construct a new dynamic system

Xk+1 = f(Xk) + g(Xk)uk, (B7)

with Xk = [X1,k,X2,k, · · · ,Xn,k]
⊤ ∈ ℜn, Xl,k = e

2ηlαl,k−1−1

1+e
2ηlαl,k−1

ρl,k, and l = 1 : 1 : n.

Remak 2. According to Definition (B5), it follows that Ll,k = α2
l,k ⇒ ∇Ll,k = α2

l,k+1 − α2
l,k = (η2l − 1)α2

l,k ⩽ 0, which

implies that the defined iteration (B5) is asymptotically convergent. Furthermore, it is observed that systems (B7) and

(B1) share identical formulations. Therefore, the new system (B7) is also stabilizable, with Xk = 0 being its equilibrium

state. In the following analysis, system (B7)rather than system (B1)will be employed to design constrained optimal control

protocols, which are intended for implementation in system (B1), such that the desired prescribed-time performance (B3)

can be achieved. This leads naturally to a novel framework that differs from the existing SMC-driven PPC structures

[30]-[35], providing an effective approach for prescribed performance optimal control synthesis.

Appendix B.3 Control aim

In this article, the control synthesis aims to find a saturated optimal controller u∗
k, which is constrained by u∗

k ∈ [−ū, ū],
to maintain the system state xk, starting from any initial point xk|k=0 ∈ Ωx ⊆ ℜn, at its equilibrium state xk = 0, with

the convergence trajectory of xk satisfying desired prescribed performance (B3), and also to minimize the following cost

function

J (Xk) =

∞∑
j=k

(X⊤
j QXXj +W(uj)) = r(Xk, uk) + J (Xk+1), (B8)

with r(Xk, uk) = X⊤
k QXXk+W(uk),W(uj) = 2

∫ uj

0 atanh⊤
(
τ
ū

)
Ruūdτ , and atanh

(
τ
ū

)
=
[
atanh

(
τ
ū1

)
, · · · , atanh

(
τ

ūm

)]T
,

where τ is the integration variable, and QX ∈ ℜn×n and Ru ∈ ℜm×m are positive definite symmetric matrices. In (B8),

the infinite-horizon cost function (B8) is necessary for the considered control problem, as the finite-horizon cost function is

typically applicable to dynamic programming problemsensuring state evolution from current to final values. In contrast, for

control design problems, an infinite-horizon performance function must be adopted, which not only ensures the transition

of states from their current values to the desired final values but also guarantees that the states remain at these final values

(i.e., the equilibrium points) indefinitely.

Appendix B.4 Prescribed performance optimal control design

By Bellman’s optimality principle, we can derive the optimal cost function J ∗(Xk) via solving the following discrete-time

HJB equation

J ∗(Xk) = min
−ū⩽uk⩽ū

{r(Xk, uk) + J ∗(Xk+1)}. (B9)

From (B9), we further get the optimal controller u∗
k, as shown in Fig. B2

u∗
k = arg min

−ū⩽uk⩽ū
{r(Xk, uk) + J ∗(Xk+1)}. (B10)

The existence of saturation constraint (i.e., −ū ⩽ uk ⩽ ū) leads to the failure of existing solution methods for u∗
k

[1]-[3]. Thanks to the newly defined cost function (B8), we can still solve for u∗
k, which satisfies the saturation constraint

−ū ⩽ u∗
k ⩽ ū, by taking partial derivatives of the right side of (B10) with respective to uk.

0 =
∂r(Xk, uk)

∂uk
+

∂X⊤
k+1

∂uk

∂J ∗(Xk+1)

∂Xk+1
⇒ u∗

k = ū tanh

(
υ∗
k

ū

)
, (B11)



Sci China Inf Sci 5

Algorithm 1: value iteration algorithm

Initialization: Set ū, εJ ∈ ℜ>0, εu ∈ ℜ>0, and N ∈ Z>0.

Define ρl,k, αl,k, Xk, and J (Xk).

Output: u∗
k and J ∗(Xk).

1: while i ⩽ N do

2: Iterate ui,k via (B12);

3: Iterate Ji+1(Xk) via (B13);

4: if |Ji+1(Xk)− Ji(Xk)| ⩽ εJ and

||ui+1,k − ui,k|| ⩽ εu or i ⩾ N ;

5: then J ∗(Xk)← Ji(Xk) and u∗
k ← ui,k;

6: break

7: else

8: i← i+ 1;

9: end if

10: end while

with υ∗
k = − 1

2ū
R−1

u g⊤(Xk)
∂J ∗(Xk+1)

∂Xk+1
.

Remak 3. It can be seen from (B11) that u∗
k = ū if υ∗

k ⩾ ū, u∗
k = −ū if υ∗

k ⩾ −ū, and otherwise −ū ⩽ u∗
k ⩽ ū, so that

the calculated optimal controller u∗
k = ū tanh

(
υ∗
k
ū

)
is always within the saturated bound [−ū, ū]. This avoids a practical

scenario [28] where there is a risk of control failure that the obtained control value exceeds its reasonable range, making it

impossible to be actually executed.

Subsequently, both the optimal cost function and controller will be determined using the value iteration algorithm [9].

By setting a zero initial cost function J0(Xk) = 0, we get the i-th iteration for the control protocol

ui,k =arg min
−ū⩽uk⩽ū

{r(Xk, uk) + Ji(Xk+1)}

=arg min
−ū⩽uk⩽ū

{X⊤
k QXXk +W(uk) + Ji(Xk+1)}

=ū tanh

(
−

1

2ū
R−1

u g⊤(Xk)
∂Ji(Xk+1)

∂Xk+1

)
, (B12)

with i = 0 : 1 :∞.

The (i+1)-th iteration for the cost function is given by

Ji+1(Xk) = min
−ū⩽uk⩽ū

{r(Xk, uk) + Ji(Xk+1)}

= min
−ū⩽uk⩽ū

{X⊤
k QXXk +W(uk) + Ji(Xk+1)}

=X⊤
k QXXk +W(ui,k) + Ji(f(Xk) + g(Xk)ui,k), (B13)

with i = 0 : 1 :∞.

The above iterations can be summarized as Algorithm 1

Appendix B.5 Convergence proof

In this section, we will rigorously demonstrate the convergence of Algorithm 1 and establish the attainment of the defined

prescribed performance (B3). To facilitate the subsequent proof, we first introduce the following lemmas.

Lemma 1 [9]. Define {µi,k ∈ ℜm} as the arbitrary control sequence and update Ji+1(Xk) via (B13). We then conclude

Ji+1(Xk) ⩽ Vi+1(Xk) with J0(Xk) = V0(Xk) = 0 and

Vi+1(Xk) = X⊤
k QXXk +W(µi,k) + Vi(f(Xk) + g(Xk)µi,k). (B14)

Lemma 2 [9]. For i = 0 : 1 : ∞, the cost function Ji(Xk), being solved from (B13), satisfies: 1) there exists an upper

bound J̄ (Xk) ∈ ℜ>0 so that 0 ⩽ Ji(Xk) ⩽ J̄ (Xk); and 2) 0 ⩽ Ji(Xk) ⩽ J ∗(Xk) ⩽ J̄ (Xk).

Lemma 3 [36]. For l = 1 : 1 : n, the boundedness of the transformed error αl,k can be guaranteed if the system (B7)

is stabilized so that its state Xl,k is bounded. This also indicates that the defined prescribed performance (B3) can be

achieved under such conditions.

To enhance the convergence proof, we present the following theorem.

Theorem 1. Considering the closed-loop system consisting of system (B1), control sequence (B12), and cost function

sequence (B13) with J0(Xk) = 0, we obtain:

1. For i = 0 : 1 :∞, we get Ji(Xk) ⩽ Ji+1(Xk) with J0(Xk) = V0(Xk) = 0;

2. As i→∞, we get ui,k → u∗
k and Ji(Xk)→ J ∗(Xk), i.e., u∞,k = u∗

k and J∞(Xk) = J ∗(Xk);
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3. The expected prescribed performance (B3) is achievable.

Proof. We will prove Theorem 1 step-by-step.

• Proof of the first item.

Let µi,k = ui+1,k. In view of Lemma 1, we have

Vi+1(Xk) =X⊤
k QXXk +W(ui+1,k) + Vi(f(Xk) + g(Xk)ui+1,k)

⇓

Vi(Xk) =X⊤
k QXXk +W(ui,k,k) + Vi−1(f(Xk) + g(Xk)ui,k), (B15)

with i = 0 : 1 :∞.

The first item will be proved utilizing the inductive method.

1. Firstly, we note that J0(Xk) = V0(Xk) = 0, so that J0(Xk)− V1(Xk) = −V1(Xk) ⩽ 0⇒ J0(Xk) ⩽ V1(Xk).

2. By assuming that Ji(Xk) ⩽ Vi−1(Xk), we then prove Ji+1(Xk) ⩽ Vi+1(Xk), with i = 0 : 1 :∞.

3. Invoking (B13) and (B15)

Vi(Xk)− Ji+1(Xk) =Vi−1(f(Xk) + g(Xk)ui,k)− Ji(f(Xk) + g(Xk)ui,k)

=Vi−1(Xk+1)− Ji(Xk+1) ⩽ 0⇒ Vi(Xk) ⩽ Ji+1(Xk). (B16)

It has been proved by Lemma 1 that Ji+1(Xk) ⩽ Vi+1(Xk). We thereby get Vi(Xk) ⩽ Ji+1(Xk) ⩽ Vi+1(Xk) ⇒
Vi(Xk) ⩽ Vi+1(Xk).

This completes the proof of the first item.

• Proof of the second item.

As i→∞, we conclude from (B13) that

J∞(Xk) =X⊤
k QXXk +W(u∞,k) + J∞(f(Xk) + g(Xk)u∞,k)

=X⊤
k QXXk +W(u∞,k) + J∞(Xk+1)

⇓

∆J∞(Xk) =J∞(Xk+1)− J∞(Xk) = −X⊤
k QXXk −W(u∞,k) ⩽ 0. (B17)

The positive-definite function J∞(Xk) is a Lyapunov function candidate and its difference ∆J∞(Xk) is negative definite,

so that we know J∞(Xk) = J̄ (Xk). Lemma 2 shows that J ∗(Xk) ⩽ J∞(Xk). By the combination of Lemma 2 and the

first item of Theorem 1, we further obtain Ji(Xk) → J∞(Xk) ⩽ J ∗(Xk) as i → ∞. We finally get J∞(Xk) ⩽ J ∗(Xk) ⩽
J∞(Xk)⇒ J∞(Xk) = J ∗(Xk), which also reveals that u∞,k = u∗

k according the definition of J ∗(Xk). This completes the

proof of the second item.

• Proof of the third item.

The second item of Theorem 1 has demonstrated that ui,k → u∗
k as i → ∞. Because u∗

k is an admissible control, the

state Xk must be bounded and also satisfies that Xk → 0 as k →∞.

The desired prescribed performance (B3) is thus attained, as demonstrated by Lemma 3. This concludes the proof of

the third item, thereby completing the proof of Theorem 1.

Remak 4. Theorem 1 proves the convergence of iteration algorithm 1, which also indicates that the defined prescribed

performance (B3) can be guaranteed for xk. To the best of our knowledge, there is currently no discrete-time optimal

control scheme that can achieve such predetermined transient and steady-state behaviors. As proved in Theorem 1, we

theoretically get that ui,k → u∗
k and Ji(Xk) → J ∗(Xk) only when i → ∞. Hence, in practical applications, the ADP

approach is typically employed to approximate the algorithm.

Appendix C Application to hypersonic flight systems via simulation validation

In this section, the proposed controller is approximately implemented using the ADP approach (see Fig. B2), with simulation

validation conducted in MATLAB 2024b that is a platform widely adopted in the control systems domain to verify the

precision and effectiveness of control strategies. The simulation comprises the following examples.

Appendix C.1 Example 1

The addressed controller is applied to a first-order system xk+1 = f(xk) + g(xk)uk with f(xk) = xk ∈ ℜ, g(xk) = 1, and

uk ∈ ℜ. It is obvious that xk = 0 is the equilibrium state. The state xk satisfies the prescribed performance −ρk < xk < ρk
with

ρk =

{
ρ− tanh

(
π − 2π

K k
)
+ ρ+, k ⩽ K

ρK, k > K,
(C1)
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where ρ− = ρ0
2
− ρK

2
, ρ+ = ρ0

2
+ ρK

2
, and K is a positive integer.

Define the transformed error αk = 1
2
ln
(

ρk+xk
ρk−xk

)
. From (B6), we get a new state Xk+1 = e2ηαk−1

1+e2ηαk
ρk+1 and a new

dynamic system Xk+1 = f(Xk) + g(Xk)uk with η = 0.45. Define the cost function J (Xk) =
∞∑
j=k

(X⊤
j QXXj +W(uj)) with

W(uj) = 2
∫ uj

0 atanh⊤
(
τ
ū

)
Ruūdτ = Ruū2 ln

(
1−

u2
j

ū2

)
+ 2Ruūujatanh

(
uj

ū

)
.

Inspired by [37], the optimal controller u∗
k and the optimal cost function J ∗(Xk) are approximately estimated as follows:

û∗
k = Ŵ⊤

u,kϕu(Xk), Ĵ ∗(Xk) = Ŵ⊤
J ,kϕJ (Xk), (C2)

where û∗
k and Ĵ ∗(Xk) are the estimations of u∗

k and J ∗(Xk), respectively, with

Ŵu,k = [ω̂u1,k, ω̂u2,k, ω̂u3,k, ω̂u4,k, ω̂u5,k]
⊤ ∈ ℜ5

ŴJ ,k = [ω̂J 1,k, ω̂J 2,k, ω̂J 3,k, ω̂J 4,k, ω̂J 5,k]
⊤ ∈ ℜ5

ϕu(Xk) = ϕJ (Xk) = [Xk,X 2
k ,X

3
k ,X

4
k ,X

5
k ]

⊤

Ŵu,0 = [−0.8,−0.26,−0.14,−0.08,−0.08]⊤

ŴJ ,0 = [0.09, 0.06, 0.04, 0.2, 0.2]⊤.

Define the controller estimation error eu,k and the cost function estimate error eJ ,k as

eu,k = −ū tanh

(
−

1

2ū
R−1

u g⊤(Xk)
∂Ĵ ∗(Xk+1)

∂Xk+1

)
+ ŴT

u,kϕu(Xk), (C3)

eJ ,k = X⊤
k QXXk +W(uk) + Ĵ ∗(Xk+1)− Ĵ ∗(Xk) = XT

k QXXk +W(uk) + Ŵ⊤
J ,kϕ̃J (Xk), (C4)

with

∂Ĵ ∗(Xk+1)

∂Xk+1
= ω̂J 1,k + 2ω̂J 2,kXk+1 + 3ω̂J 3,kX 2

k+1 + 4ω̂J 4,kX 3
k+1 + 5ω̂J 5,kX 4

k+1, (C5)

ϕ̃J (Xk) = ϕJ (Xk+1)− ϕJ (Xk) =



Xk+1 −Xk

X 2
k+1 −X

2
k

X 3
k+1 −X

3
k

X 4
k+1 −X

4
k

X 5
k+1 −X

5
k


, (C6)

Xk+1 = f(Xk) + g(Xk)Ŵ
⊤
u,kϕu(Xk). (C7)

Employing the gradient-based adaptation [10] to minimize Eu,k = 1
2
e2u,k and EJ ,k = 1

2
e2J ,k, we develop the following

adaptive laws for Ŵu,k and ŴJ ,k

Ŵu,k+1 = Ŵu,k − αu
∂Eu,k

∂eu,k

∂eu,k

∂Ŵu,k

= Ŵu,k − αueu,kϕu(Xk), (C8)

ŴJ ,k+1 = ŴJ ,k − αJ
∂EJ ,k

∂eJ ,k

∂eJ ,k

∂ŴJ ,k

= ŴJ ,k − αJ eJ ,kϕ̃J (Xk), (C9)

with αu = diag{0.2}5×5 and αJ = diag{0.05}5×5.

In this example, we examine the following two cases.

Case 1. In this case, we evaluate the prescribed performance by adjusting the parameters of the prescribed performance

function.

Case 2. In this case, we adjust the relative weights between control effort and tracking error within the cost function to

analyze the sensitivity of the control strategy to performance trade-offs.

The simulation results of Example 1 are presented in Figs. C1−C10 and Table C1. Figs. C1 and C6 indicate that the

state always evolves within the prescribed boundary −ρk < xk < ρk, thereby satisfying the desired transient and steady-

state performance across all cases. As can be observed from Figs. C1, C3, and Table C1, different prescribed boundaries

enable distinct performance specificationssuch as convergence time and steady-state valuesas well as varying cost function

values. Furthermore, Figs. C6, C8, and Table C1 demonstrate that, in comparison with the prescribed boundaries, the

weighting coefficients exert a more significant influence on the cost function. It is clearly evident from Figs. C2 and C7 that,

in both scenarios, the computed control input uk adheres to the predefined saturation constraint |uk| ⩽ ū. Finally, Figs.

C4, C5, C9, and C10 illustrate the convergence behavior of Ŵu,k and ŴJ ,k. In summary, the simulation results confirm

that the proposed method achieves optimal stabilization of the dynamic system, while ensuring that the state exhibits the

desired prescribed performance and that the controller satisfies the given constraints.
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Table C1 Comparisons of control performance in Example 1.

Cases Design parameters Cost function Convergence time Steady-state value

Case 1 ρ0 = 1.2, ρK = 0.2,K = 0.05 0.33 ⩽ 0.05 s (−0.02, 0.17)
QX = 8,Ru = 1 ρ0 = 5, ρK = 2,K = 0.1 0.14 ⩽ 0.07 s (−0.02, 0.28)
|u| ⩽ ū = 0.3 ρ0 = 15, ρK = 8,K = 0.2 0.13 ⩽ 0.09 s (−0.02, 0.45)

Case 2 QX = 1,Ru = 100 0.73 ⩽ 0.05 s (−0.01, 0.06)
ρ0 = 1.2, ρK = 0.2 QX = 1,Ru = 1 0.23 ⩽ 0.05 s (−0.01, 0.05)
K = 0.05, |u| ⩽ 0.5 QX = 100,Ru = 1 1.1 ⩽ 0.05 s (−0.01, 0.04)

 
Figure C1 System state in Case 1.

 
Figure C2 Control input in Case 1.

 
Figure C3 Cost function in Case 1.

Appendix C.2 Example 2

In this example, to further validate the superiority, the proposed controller is applied to the SSP (See Fig. C11.), and then

is compared with a traditional proportional control (TPC) scheme and one existing PPC (EPPC) strategy which uses a

traditional performance function [30]. The plant model of SSP is xk+1 = f(xk) + g(xk)uk with xk = [x1,k, x2,k]
⊤ ∈ ℜ2,

f(xk) = [x1,k − 14.17Ts(x1,k − x2,k), x2,k − 7.56Tsx1,k − 82.26Tsx2,k]
⊤, g(xk) = [0, 2.34Ts]⊤, and uk ∈ ℜ. It is clear that

xk = (0, 0) is the equilibrium state. We expect the state xk to satisfy the prescribed performance −ρ1,k < x1,k < ρ1,k and
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Figure C4 Ŵu,k in Case 1.

 
Figure C5 ŴJ ,k in Case 1.

 
Figure C6 System state in Case 2.

 

(a) (b) (c)

Figure C7 Control input in Case 2.

−ρ2,k < x2,k < ρ2,k, with

ρ1,k =

{
0.5 tanh

(
π − 2π

12
k
)
+ 0.7, k ⩽ 12

0.2, k > 12,
(C10)
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Figure C8 Cost function in Case 2.

 
Figure C9 Ŵu,k in Case 2.

 
Figure C10 ŴJ ,k in Case 2.

ρ2,k =

{
0.5 tanh

(
π − 2π

2
k
)
+ 0.7, k ⩽ 2

0.2, k > 2.
(C11)

Define transformed errors α1,k = 1
2
ln
(

ρ1,k+x1,k

ρ1,k−x1,k

)
and α2,k = 1

2
ln
(

ρ2,k+x2,k

ρ2,k−x2,k

)
. By the definition (B6), we derive

new states X1,k+1 = e
2η1α1,k−1

1+e
2η1α1,k

ρ1,k+1 and X2,k+1 = e
2η2α2,k−1

1+e
2η2α2,k

ρ2,k+1, as well as the new dynamic system Xk+1 =

f(Xk) + g(Xk)uk with Xk = [X1,k,X2,k]
⊤, f(Xk) = [X1,k − 14.17Ts(X1,k −X2,k),X2,k − 7.56TsX1,k − 82.26TsX2,k]

⊤,

g(Xk) = [0, 2.34Ts]⊤, and η1 = η2 = 0.5. All controllers use the same cost function J (Xk) =
∞∑
j=k

(X⊤
j QXXj +W(uj))

with W(uj) = 2
∫ uj

0 atanh⊤
(
τ
ū

)
Ruūdτ = Ruū2 ln

(
1−

u2
j

ū2

)
+ 2Ruūujatanh

(
uj

ū

)
, QX = [5, 0.1; 0.1, 1], Ru = 0.1, and

ū = 0.2.

In this example, both the optimal controller u∗
k and the optimal cost function J ∗(Xk) are also approximately estimated

as follows:

û∗
k = Ŵ⊤

u,kϕu(Xk), Ĵ ∗(Xk) = Ŵ⊤
J ,kϕJ (Xk), (C12)

where û∗
k and Ĵ ∗(Xk) represent the estimations of u∗

k and J ∗(Xk) with

Ŵu,k =
[
ω̂u1,k, ω̂u2,k, ω̂u3,k, ω̂u4,k, ω̂u5,k, ω̂u6,k, ω̂u7,k, ω̂u8,k

]⊤ ∈ ℜ8, (C13)
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MJ LJ

cT



au

aR

aL

ai

Seeker 
stabilized 
platform

equivalent circuit

au

ai

armature voltage, V;

armature current, A;

aL inductance of armature winding, H;

cT output torque, N.m;

 disturbed angular velocity, rad/s

MJ
LJ

moment of inertia of servo motor, N.m

moment of inertia of load, N.m

Figure C11 Seeker stabilized plat-

form.

 

Figure C12 x1,k in Example 2.

 

Figure C13 x2,k in Example 2.

 

Figure C14 Control input in Exam-

ple 2.

 

Figure C15 Cost function in Exam-

ple 2.
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-0.5
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-0.3
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-0.1

0

Figure C16 Ŵu,k in Example 2.

Table C2 Comparisons of control performance in Example 2.

Performance indicators x1,k x2,k

Proposed method none none

Overshoot EPPC -0.45 rad/s 0.76 N.m

TPC -0.42 rad/s 0.59 N.m

Proposed method ⩽ 0.12 s ⩽ 0.02 s

Convergence time EPPC ⩾ 0.23 s ⩾ 0.26 s

TPC ⩾ 0.5 s ⩾ 0.5 s

Steady-state value Proposed method (0, 0.03) rad/s (−3.5, 0)× 10−3 N.m

t ∈ [0.2, 0.5] s EPPC (0.15, 0.2) rad/s (−0.3, 0.4) N.m

TPC (0.3, 0.4) rad/s (−0.6, 0.6) N.m

Proposed method 0.45

Cost function EPPC 153.4

TPC 475.2
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0 10 20 30 40 50

Time steps k

0

0.05

0.1

0.15

Figure C17 ŴJ ,k in Example 2.

ŴJ ,k =
[
ω̂J 1,k, ω̂J 2,k, ω̂J 3,k, ω̂J 4,k, ω̂J 5,k, ω̂J 6,k, ω̂J 7,k, ω̂J 8,k

]⊤ ∈ ℜ8, (C14)

ϕu(Xk) = ϕJ (Xk) =
[
X1,k,X2,k,X 2

1,k,X
2
2,k,X1,kX2,k, X 2

1,kX2,k,X1,kX 2
2,k,X

2
1,kX

2
2,k

]⊤
, (C15)

Ŵu,0 = [−0.4,−0.5,−0.02,−0.09,−0.08, −0.09,−0.08,−0.09]⊤, (C16)

ŴJ ,0 = [0.1, 0.08, 0.09, 0.1, 0.07, 0.06, 0.1, 0.12]⊤. (C17)

Define controller approximation error eu,k and cost function approximation error eJ ,k as

eu,k = −ū tanh

(
−

1

2ū
R−1

u g⊤(Xk)
∂Ĵ ∗(Xk+1)

∂Xk+1

)
+ Ŵ⊤

u,kϕu(Xk), (C18)

eJ ,k = X⊤
k QXXk +W(uk) + Ĵ ∗(Xk+1)− Ĵ ∗(Xk) = X⊤

k QXXk +W(uk) + Ŵ⊤
J ,kϕ̃J (Xk), (C19)

with

∂Ĵ ∗(Xk+1)

∂Xk+1
=

[
B21
B22

]
, (C20)

B21 =2ω̂J 3,kX1,k+1 + ω̂J 5,kX2,k+1 + 2ω̂J 6,kX1,k+1X2,k+1

+ ω̂J 1,k + ω̂J 7,kX 2
2,k+1 + 2ω̂J 8,kX1,k+1X 2

2,k+1, (C21)

B22 =2ω̂J 4,kX2,k+1 + ω̂J 5,kX1,k+1 + 2ω̂J 7,kX1,k+1X2,k+1

+ ω̂J 6,kX 2
1,k+1 + 2ω̂J 8,kX 2

1,k+1X2,k+1 + ω̂J 2,k, (C22)

ϕ̃J (Xk) = ϕJ (Xk+1)− ϕJ (Xk) =



X1,k+1 −X1,k

X2,k+1 −X2,k

X 2
1,k+1 −X

2
1,k

X 2
2,k+1 −X

2
2,k

X1,k+1X2,k+1 −X1,kX2,k

X 2
1,k+1X2,k+1 −X 2

1,kX2,k

X1,k+1X 2
2,k+1 −X1,kX 2

2,k

X 2
1,k+1X

2
2,k+1 −X

2
1,kX

2
2,k


, (C23)

X1,k+1 = X1,k − 14.17Ts(X1,k −X2,k), (C24)

X2,k+1 = X2,k − 7.56TsX1,k − 82.26TsX2,k + 2.34TsŴ
⊤
u,kϕu(Xk). (C25)
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By the gradient-based adaptation [10], we aim to minimize Eu,k = 1
2
e2u,k and EJ ,k = 1

2
e2J ,k by defining the following

adaptive laws for Ŵu,k and ŴJ ,k

Ŵu,k+1 = Ŵu,k − αu
∂Eu,k

∂eu,k

∂eu,k

∂Ŵu,k

= Ŵu,k − αueu,kϕu(Xk), (C26)

ŴJ ,k+1 = ŴJ ,k − αJ
∂EJ ,k

∂eJ ,k

∂eJ ,k

∂ŴJ ,k

= ŴJ ,k − αJ eJ ,kϕ̃J (Xk), (C27)

with αu = diag{0.35}8×8 and αJ = diag{0.15}8×8.

In this example, the effectiveness of the proposed method and its superiority over the existing TPC and EPPC method-

ologies are clearly demonstrated in Figs. C12−C17 and Table C2. As shown in Figs. C12, C13, and Table C2, the predefined

performance specifications are successfully achieved by the proposed control strategy, which also exhibits improved transient

and steady-state responses compared to the conventional TPC and EPPC methods. Fig. C14 illustrates that the control

input generated by the proposed approach remains within the saturation constraint |uk| ⩽ ū = 0.2, whereas the existing

controllers violate this limit. Furthermore, the evolution of the cost function is provided in Fig. C15, and the system

responses of Ŵu,k and ŴJ ,k are depicted in Figs. C16 and C17.

Appendix D Conclusions

A prescribed-time performance optimal control strategy is investigated for discrete-time systems subject to actuator sat-

uration, with application to hypersonic flight systems. Fixed-time performance functions are utilized to impose boundary

constraints on system outputs, ensuring asymptotic regulation of transformed errors. This leads to the formulation of a

new discrete-time dynamic system for optimal controller design. By introducing a novel cost function, saturated optimal

control protocols are derived to guarantee the desired prescribed-time performance. The value iteration algorithm is em-

ployed to compute both the cost function and the control sequence for implementing the developed controller. Finally, the

effectiveness of the proposed approach is validated through comparative simulations based on ADP. In our future work, the

proposed method will be further applied to physical experiments to comprehensively validate its effectiveness.
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