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As automation advances, flexible robotic manipulators are increas-
ingly vital in high-precision applications like aerospace assembly
and minimally invasive surgery. However, their inherent structural
flexibility leads to challenging nonlinear dynamics and vibrations,
which can severely degrade performance [1,2]. Traditional model-
based controllers struggle with the unavoidable uncertainties in
these systems, while conventional reinforcement learning (RL)
approaches often require extensive, model-specific prior knowl-
edge, limiting their adaptability. To overcome these limitations,
this study proposes an innovative adaptive dynamic programming
(ADP) method [3]. Our approach utilizes a novel dual-critic net-
work architecture to achieve superior vibration suppression and
trajectory tracking for a flexible two-link manipulator (FTLM)
without requiring a precise system model. The main contribu-
tions are twofold: first, the introduction of a dual-critic structure
that significantly reduces reliance on predefined models by gener-
ating adaptive internal goals; and second, the development of an
adaptive control scheme that robustly handles system uncertain-
ties, leading to enhanced performance.

Methodology. The dynamics of the FTLM are derived using the
assumed modes method, which discretizes the infinite-dimensional
PDE model into a finite-dimensional ordinary differential equation
(ODE) representation. The system’s motion is governed by the
Lagrangian dynamic equation

A(z)d + O(z, )t + H(z) = 7(t), (1)

where z = [0, p]T is the state vector containing joint angles § and
flexible coordinates p. A(z) is the inertia matrix, O(x, &) repre-
sents Coriolis and centrifugal effects, H(x) is the stiffness matrix,
and 7(¢) is the control torque vector. The design of our controller
is based on the following fundamental assumptions.

Assumption 1. The system states are available for feedback.

Assumption 2. The uncertainties in the system dynamics,
including unknown parameters and external disturbances, are
bounded.
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To control this complex system without precise knowledge of its
dynamics, we designed a novel ADP controller based on a dual-
critic network architecture. This structure synergistically inte-
grates three collaborative radial basis function neural networks
(RBFNNSs) to achieve online learning and optimal control. The
objective is to find a control policy 7(¢) that minimizes a long-
term cost function J(¢), which is an integral of an instantaneous
cost k(t) = el De1 + 7TS7, where e; is the tracking error. The
three networks collaborate as follows.

e Reference network. This network is central to our dual-
critic design. It adaptively generates a continuous internal rein-
forcement signal R(t) = W,X'S,.(U,), acting as a dynamic, state-
dependent goal to guide the learning process based on the system
state vector U,.

e Critic network. The critic approximates the cost function
with J(t) = WIS.(U.). Tt evaluates the system’s performance by
comparing the actual state transitions against the adaptive goals
R(t) from the reference network, providing crucial feedback for
policy refinement.

e Actor network. The actor formulates the optimal control
policy. Guided by the critic’s evaluation, it generates the control
torque using the following law:

T(t) = —e1 — Kaea + Wgsa (Ua)7 (2)

where e; and ez are tracking error terms, K is a gain matrix, and
WTS,(Uys) is the RBFNN output that compensates for system
uncertainties.

The controller’s learning process is driven by a set of precisely
defined error signals. The primary and secondary tracking errors,
based on a backstepping design, are defined as

e1 =T — T, (3)
ex = é1 + Kieq, (4)

where x, is the reference trajectory and Kj is a positive definite
gain matrix. The critic network’s learning is guided by the tempo-
ral difference (TD) error, which represents the discrepancy in the

info.scichina.com  link.springer.com


http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-025-4700-4&domain=pdf&date_stamp=2026-1-15
https://doi.org/10.1007/s11432-025-4700-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-025-4700-4
https://doi.org/10.1007/s11432-025-4700-4

Gao H J, et al.

Sct China Inf Sci

Elastic vibration of the first link

June 2026, Vol. 69, Iss. 6, 169202:2

_Elastic vibration 9f the §econq link

(b) T
3losf 5 | T 3 s [memeafornn 1
0N X a, for RL L ] X13.25 o, forRL
13.214 g 2 = H
aposf? | N Y 148516 = = o, frADP] s i &y N e p = bRl
1, 7 " L] g ||, i AR Aebard
HEEEA jie . H i ’ F. ‘{\;‘
] Ji\uh‘;{;f;’-s}'— .Ill? !‘, 132752!\ ‘t' \.’\_1,;
< IR :\./\4 VA n,.fw iE oarria 4 ¥ VYT
Tal iy ey ';.?,'. i
'R Ik y |
2F + ? y
St I i i L i I I
0 2 4 6 10 12 14 16 18 20
t[s]
© 10 Tracking errors of the first link @, Tracking errors of the second link
. . " i . : . . | ¢ T 7 T . T -
2 -0, errorforNN 74 R .
8 a 26 ‘ /. i —==v0, emor NN
by ] 6, error for RL. ¥ [ ] N
% o i — — 8, erorfor ADP 3 28 CRE it 6, emor RL
3 A [ h - - X11.704 | 1||= = o, emorA0P
PR " \ S I i Y 1.17969 |i
£ ) X0302  oue” ! N H 1—"‘3 81 82 53 e
[ y-491017 ] 7 i :
1 X, Ao | IR O el §u ow!i:':il\f‘/ul‘ ot sl X 11,684 “!“ .‘tv |f_,\,.,,,,~
IR A/ o i A g [TVl | V0761328 v ‘02 o
& Wt g - |’ T o 1
2 | | 1 E | Bed 4
f |
V! o APy J
'44? 4 sk 'j | 01(',1 o2 V-4 |
Iy v I I I I I | | I I I i | i —PTy 2o L

6 10
t[s]

Figure 1

20

(Color online) Experimental results comparing elastic vibration and tracking errors.
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(a) and (b) show the vibration suppression

for Link 1 and Link 2, respectively. (¢) and (d) show the corresponding tracking errors. The results highlight the superior performance of the

proposed ADP controller.

Bellman equation: )
ec(t) = w(t) + J(t). (5)

The weights of the three RBFNNs (I/i/a7 Wc7 Wr) are tuned on-
line using gradient descent-based update laws designed to mini-

mize their respective error functions. These laws generally take

the form W = —oeS, where o is a positive learning rate, e repre-
sents an error signal like e, and S is the vector of RBF activations.

The stability of the entire closed-loop system is rigorously
proven, as formally stated in Theorem 1. The proof is based
on the Lyapunov direct method, utilizing the following candidate
function:
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Theorem 1. Consider the FTLM system described by (1) under
Assumptions 1 and 2, with the proposed dual-critic ADP control
scheme. For bounded initial states, all signals in the closed-loop
system, including the tracking errors ey, ez and the NN weight esti-

mation errors Wy, W,, We, are semi-globally uniformly ultimately
bounded (SGUUB).

The proof, based on the Lyapunov direct method, is detailed in
the supplementary document. It confirms that the system remains
stable and that tracking errors converge to a small residual set.

Results. The proposed dual-critic ADP controller was experi-
mentally validated on a Quanser FTLM platform. Its performance
was benchmarked against a standard neural network (NN) con-
troller [4] and a state-of-the-art reinforcement learning (RL) con-
troller [5], which notably utilizes a single-critic architecture with
an adaptive law. All controllers were tested using identical square
wave reference trajectories to challenge their vibration suppression
capabilities.

The experimental results, depicted in Figure 1, demonstrate the
clear superiority of our ADP method. As shown in Figures 1(a)
and (b), our method achieves significantly more effective vibration
damping for both links compared to the NN and RL controllers,
with the vibration amplitude being noticeably smaller. Similarly,
Figures 1(c) and (d) highlight the enhanced tracking performance,
where the ADP controller results in smaller peak errors and faster
settling times. Quantitatively, for the first link, it reduced the

maximum tracking error by up to 22.8% compared to the NN
controller and by 11.6% compared to the RL controller. The per-
formance improvement was even more pronounced in vibration
suppression, which is the primary challenge for flexible manipula-
tors. Our method successfully attenuated the steady-state vibra-
tion of the first link by a remarkable 49.1% compared to the NN
controller and by 46.2% compared to the RL controller. Further-
more, the ADP controller achieved these results while maintaining
a smooth and stable control input profile, indicating high control
efficiency and enhanced overall system stability. These quantita-
tive improvements, supported by the visual evidence in Figure 1,
strongly validate the effectiveness of the proposed dual-critic ar-
chitecture in navigating the complex dynamics of flexible systems.

Conclusion. This work introduced and experimentally vali-
dated a novel dual-critic ADP framework that significantly im-
proves both vibration damping and trajectory accuracy in FTLM
systems. By generating adaptive internal reinforcement signals,
the controller overcomes the limitations of traditional model-based
and RL methods, demonstrating superior performance in a real-
world experimental setting. Future work will explore the extension
of this framework to more complex spatial manipulators, its appli-
cation in human-robot interaction, and a rigorous analysis of its
robustness against practical challenges like impulsive sensor noise.
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