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Appendix A Preliminaries

In this section, preliminaries on the graph theory and dynamic privacy-preserving average consensus are given.

Appendix A.1 Graph theory

A graph G = (V, E, A) is used to describe the relationship among n nodes in a communication topology, where V is the

node set, E is the edge set, and A ∈ Rn×n = [aij ] with ∀i ∈ V, aii = 0 being the adjacency matrix. In particular, for

an undirected graph, when i ∈ V, j ∈ V, and i ̸= j, if (i, j) ∈ E, aij = 1, otherwise aij = 0. Besides, if aij = 1, then

j ∈ Ni, where Ni is the neighbor set of the i-th node. L = D(A1n) − A is the Laplacian matrix, where D(·) represents a

diagonalization operation and 1n ∈ Rn consists of 1. In view of the defination of adjacency matrix A, for an undirected

graph, Laplacian matrix L = [lij ] has the following properties [1,2]: ∀i, j ∈ V and i ̸= j, lij = lji ⩽ 0;
∑n

j ̸=i lij + lii = 0; L

is positive semidefinite and has only one eigenvalue 0, where the corresponding eigenvector is 1n.

Appendix A.2 Dynamic average consensus and privacy attack

Consider that the i-th individual in the communication topology network corresponds to the following time-varying infor-

mation:

ṡi(t) = ui(t).

Suppose that there exists an internal state qi(t) for the i-th individual. A dynamic average consensus filter aims to achieve

qi(t) → (
∑n

i=1 si(t))/n through local communication so that the global information is estimated. However, the leakage of

information exchanged among nodes may lead to the disclosure of node state privacy. That is, an attacker can infer the

state privacy of the nodes by using the information exchanged among them. In the relatively earlier consensus work, static

average consensus is typically investigated, where each node’s input is a constant, meaning that the average consensus of the

entire system remains unchanged and is the average of these constants. In this case, random perturbations are considered

for encryption purposes. However, unstructured random perturbations can affect the accuracy of the average consensus [3],

which might lead to the collapse of systems that require an accurate consensus. In [4], a static average consensus encryption

method based on the mask function is designed. It introduces perturbations that decay over time to protect the constant

input by the node, which ensures that the accuracy of consensus will not be affected when the perturbations decay to an

extremely small level. Unfortunately, on the one hand, this method prevents the average consensus filter from converging

to the accurate value until the perturbations have decayed to a certain extent. On the other hand, it is difficult to directly

extend it to dynamic average consensus because the characteristic of the perturbations decaying over time can only ensure

that the initial state information of the nodes is not leaked. In addition to adding random perturbations, work [5] utilized the

state decomposition method to encrypt the static consensus filter without affecting the accuracy of the average consensus.

Subsequently, in work [6], the aforementioned state decomposition-based method has also been further extended to the

category of dynamic average consensus, and it performs well on continuously slowly changing dynamic signals. However,

during our tests, we find that the effect of this method is not satisfactory when dealing with signals that changed rapidly

only within a short period of time and remained stable for the rest of the time. Specifically, in [6], For the following dynamic

average consensus filter:

q̇i(t) = ui(t)− ι
∑

j∈Ni
(qi(t)− qj(t)),

qi(0) = si(0), i = 1, 2, · · · , n,
(A1)
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Figure A1 Communication topologies used in this paper. (a) Numerical simulations. (b) Multi-robot coordination simulations.

(c) Multi-robot coordination experiments.

a privacy attack model is constructed as follows:

˙́qi(t) = úi(t)− ι
∑

j∈Ni
(qi(t)− qj(t)) + v1(qi(t)− q́i(t)),

˙́si(t) = v2(qi(t)− ξi(t)− śi(t)) + úi(t),

úi(t) = v3qi(t) + ǔi(t),

˙̌ui(t)=v3(−úi(t)+ι
∑

j∈Ni
(qi(t)−qj(t)))+v4(qi(t)−q́i(t)),

ξ̇i(t) = −ι
∑

j∈Ni
(qi(t)− qj(t)), ξi(0) = 0,

(A2)

where q́i(t), śi(t), and úi(t) are the estimates of qi(t), si(t), and ui(t), respectively; v1, v2, v3, and v4 are positive constants;

ǔi(t) and ξi(t) are state variables.

Lemma A1. From the dynamic average consensus filter (A1), the privacy attack model (A2) is able to obtain the

time-varying information si(t) of each individual [6].

Meanwhile, in order to counter such attacks, a dynamic privacy-preserving consensus filter based on state decomposition

in [6] is presented as follows:

q̇1i (t) = u
1
i (t)−ι

∑
j∈Ni

(q1i (t)−q1j (t)) + ι(q2i (t)− q1i (t)),

q̇2i (t) = u
2
i (t) + ι(q1i (t)− q2i (t)),

q1i (0) = s
1
i (0), q

2
i (0) = s

2
i (0), i = 1, 2, · · · , n,

(A3)

where s1i (0) + s2i (0) = 2si(0) and u1
i (t) + u2

i (t) = 2ui(t). Then, we conducted a numerical test on a communication

topology consisting of four entities, and the specific topology structure is shown in Fig. A1(a). The four input signals of

the above consensus filter are designed as follows: si(t) = 1/(1 + e−20(t−5)) when i = 1, 2; si(t) = 1/(1 + e−20(−t+5))

when i = 3, 4. As shown in Fig. A2, although the dynamic privacy-preserving consensus filter (A3) can ensure that

the information obtained by the privacy attack model (A2) is different from the actual information, it only changes the

amplitude of the signals and does not affect the overall change pattern of the signals. It also indicates that this method is

not applicable for protecting the output of the k-winner-take-all (k-WTA) network. That is, it fails to effectively conceal

the task allocation strategy pattern of the k-WTA network: individuals with relatively higher states are the winners and

execute the tasks, while individuals with relatively lower states are the losers and remain on standby. Moreover, in [7],

another privacy-preserving consensus filter achieves the effect of protecting the original signal by adding a constant bias to

the signal. Evidently, it also faces the same problem. In view of this, it is necessary to further design a privacy-preserving

dynamic consensus filter suitable for k-WTA networks.

Remark 1. The privacy attack approach considered in this paper mainly restores the original input data of the consensus

filter by obtaining the interaction information among individuals in the communication topology, which leads to the disclo-

sure of privacy without destroying the normal operation of the whole system. Although there is no unified privacy attack

model for different consensus methods, direct information interaction is always at risk from these attacks. This point will

be further explained in the simulations in Appendix C.

Appendix B Theoretical analyses

In this section, we first provide detailed proofs for the three theorems presented in the paper. Additionally, an example

demonstrating the existence of lagging errors in an existing k-WTA network [8] is given. Other k-WTA networks can also

be proven using a similar method.

Appendix B.1 The proofs of the theorems in the paper

In this paper, we transformed the k-WTA problem with inequality constraints (Eq. (2) in the paper) into a k-WTA problem

with only equality constraints (Eq. (3) in the paper) by introducing a class of exponential penalty functions βTf(t) [9].

Before presenting the proofs of the three theorems in the paper, we will elaborate from the following two aspects to discuss

the solvability of problem (Eq. (3) in the paper).
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Figure A2 The protection effect of consensus filter (A3) when faced with a set of sigmoid functions that is designed to satisfy the

characteristics of the output of a k-WTA network. (a) The original information. (b) The information obtained by privacy attack

model (A2).

On the one hand, from the perspective of designing the penalty function, according to [10], if the solution h(t) satisfies

inequality constraints, then the value of the auxiliary function βTf(t) should be a positive number that is very close to

zero. Conversely, if the solution h(t) does not satisfy the inequality constraint, then the value of βTf(t) must be a large

positive number, which is a punishment for the solution h(t) that is not within the feasible range of the constraint. In

other words, the effect of the large positive number is to force the solution to the objective function close to the feasible

range of the inequality constraint during the minimization of the objective function. In conclusion, βTf(t) should satisfy

the following conditions: {
βTf(t) ≈ 0, if 0 ⩽ hi(t) ⩽ 1,

βTf(t) ≫ 0, otherwise.
(B1)

Meanwhile, the penalty function βTf(t) must be differentiable. It is known that β = [β1; β2; · · · ; β2n] is a constant

vector. In addition, for the i-th element of f(t) ∈ R2n, when 1 ⩽ i ⩽ n, fi(t) = e−κ(1−hi(t)) and when n + 1 ⩽ i ⩽ 2n,

fi(t) = e−κhi−n(t) with κ being a positive constant. Evidently, the penalty function used is differentiable, and when κ is

large enough, it also meets condition (B1). On the other hand, from the perspective of problem (Eq. (3) in the paper), since

ϖhT(t)h(t)−hT(t)w(t) is strictly convex and βTf(t) is convex, the objective function is also strictly convex. Furthermore,

the linear equality constraint 1T
nh(t) = k defines a convex set. Therefore, according to the convex optimization theory,

problem (Eq. (3) in the paper) has a unique solution.

Theorem B1. For the proposed DPP-kWTA network (Eq. (8) in the paper), variable b(t), that is, [h(t);α(t)], globally

converges to the theoretical solution. In other words, the output h(t) of the proposed DPP-kWTA network (Eq. (8) in the

paper) converges to the optimal solution of the k-WTA problem (Eq. (3) in the paper).

Proof. It is worth pointing out that the theoretical solution of variable b(t) should satisfy the Karush-Kuhn-Tucker

conditions (Eq. (4) in the paper), that is, γ(t) = 0. In view of this, a Lyapunov function is first constructed:

R1(t) =
1

2
γT(t)γ(t). (B2)

Then, taking the time derivative of the above equation yields

Ṙ1(t) = γ
T(t)γ̇(t)

= −θγT(t)γ(t) ⩽ 0.
(B3)

In particular, according to eqaution (B2) and equation (B3), it is concluded that γ(t) is capable of converging to zero

globally based on the Lyapunov stability theorem [11]. Thus, the proof is completed. ■

Theorem B2. The proposed DPP-kWTA network (Eq. (8) in the paper) enables b(t) to converge to the theoretical

solution b∗(t) in an exponential form with rate θ.

Proof. Let φ(t) = b(t)− b∗(t), and then a Lyapunov function is constructed as follows:

R2(t) =
1

2
φT(t)φ(t). (B4)

Take the derivative of the above equation with respect to time t:

Ṙ2(t) = φ
T(t)φ̇(t). (B5)

Substituting Eq. (6) in the paper yields

Ṙ2(t) = φ
T(t)(E−1(t)(−θ(Qb(t)− c(t)) + d(t))− ḃ∗(t)). (B6)

Theoretical solution b∗(t) should satisfy the Karush-Kuhn-Tucker conditions (Eq. (4) in the paper). That is, the vector

error function γ(t) = Qb(t) − c(t) (Eq. (5) in the paper) and its derivative with respect to time γ̇(t) = E(t)ḃ(t) − d(t)
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(Eq. (5) in the paper) should both be equal to zero. Thus, it can be concluded that ḃ∗(t) = E−1(t)d(t). By combining Eq.

(B6), the following equation can be obtained:

Ṙ2(t) = −θφT(t)(E−1(t)(Qb(t)− c(t)))

= −θφT(t)(E−1(t)γ(t)).
(B7)

Then, assume γ(t) is a smooth function γ(b(t), t) of b(t). By performing a first-order Taylor expansion around b∗(t), the
following equation can be obtained:

γ(b(t), t) ≈ γ(b∗(t), t) + E(t)(b(t)− b∗(t)).

Since γ(b∗(t), t) = 0, the above equation can be written as

γ(b(t), t) ≈ E(t)(b(t)− b∗(t)).

Then, substituting the above equation into Eq. (B7) yields

Ṙ2(t) = −θφT(t)(E−1(t)E(t)(b(t)− b∗(t)))

= −θφT(t)φ(t) ⩽ 0.
(B8)

Subsequently, taking the integral of the above equation with respect to time t yields∫ t

0
Ṙ2(σ)dσ = R2(t)−R2(0)

= −θ

∫ t

0
φT(σ)φ(σ)dσ.

(B9)

Noting that R2(0) = 1/2φT(0)φ(0) and as t → ∞, R2(t) → 0. In view of this, the relationship between the convergence

rate of ∥φ(t)∥2 and the parameter θ is as follows:

∥φ(t)∥2 ≈ exp(−θt)∥φ(0)∥2, (B10)

where exp(·) is the natural exponential function, and ∥ · ∥2 represents the 2-norm. Thus, the proof is completed. ■

Theorem B3. In an undirected communication topology, the key information hi(t) of the DPP-kWTA network can

not be obtained by an external eavesdropper. Specifically, the privacy attack model is only able to obtain the encrypted

information from the privacy-preserving consensus filter (Eq. (7) in the paper).

Proof. According to equation (Eq. (7) in the paper), the following formula is able to be obtained:

n∑
i=1

pi(t) =

n∑
i=1

qi(t)−
n∑

i=1

∑
j∈Ni

δij(ϵ) +

n∑
i=1

∑
j∈Ni

δji (ϵ).

Furthermore, combining the Laplacian matrix L of the undirected graph yields

n∑
i=1

pi(t) =
n∑

i=1

qi(t) + tr(LH(ϵ))− tr(LHT(ϵ)),

where tr(·) means taking the trace of a matrix; if i = j, the (i, j)-th element of matrix H(ϵ) is 0 and if i ̸= j, the (i, j)-th

element of matrix H(ϵ) is δji (ϵ). Note that the Laplacian matrix L of the undirected graph is symmetric. It is obtained

that

tr(LHT(ϵ)) = tr(H(ϵ)LT) = tr(H(ϵ)L) = tr(LH(ϵ)).

Therefore, it is concluded that
n∑

i=1

pi(t) =

n∑
i=1

qi(t),

which means that the privacy-preserving consensus filter (Eq. (7) in the paper) is equivalent to the following expression:

ṗi(t) = ḣi(t)− ι
∑

j∈Ni
(pi(t)− pj(t)),

pi(0) = hi(0)−
∑

j∈Ni
δij(ϵ) +

∑
j∈Ni

δji (ϵ).

In view of this, based on Lemma 1, one can obtain that the privacy attack model (A2) is only able to recover the signal

hi(t)−
∑

j∈Ni
δij(ϵ) +

∑
j∈Ni

δji (ϵ). Thus, the proof is completed. ■
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Appendix B.2 Proof example of lagging errors

To better illustrate lagging errors, analyses on a state-of-the-art k-WTA network which adopts modified gradient [8] are

given as follows. Specifically, the network in [8] can be written as

ḣ(t) = −κcSc(αch(t)−w(t)), (B11)

where w(t) and h(t) are the inputs and outputs of the k-WTA process, respectively; κc ∈ R+ is a convergence parameter;

Sc = E −B(BTB)−1BT with an identity matrix E and B defined as

B =

{
[1,x(t)− PΞ(x(t))], if x(t) /∈ Ξ,

1, if x(t) ∈ Ξ,

where Ξ = {ς ∈ Rm|0 ⩽ ςi ⩽ 1}, and PΞ(x(t)) = argmino∈Ξ∥h(t) − o∥2 is a projection operator. Moreover, this network

has the following requirements for the initial state of h(t): h(0) ∈ Ξ and 1Th(0) = k. Note that Sc is a symmetric matrix

which has the following property:

ScSc = ST
c Sc = (E −B(BTB)−1BT)(E −B(BTB)−1BT) = Sc.

To explore the convergence of network (B11) for solving the k-WTA problem (Eq. (3) in the paper), an auxiliary Lyapunov

function candidate is designed as Lc(t) = ΥT(t)Υ (t)/2 ⩾ 0 with Υ (t) = Sc(αch(t) −w(t)). Taking the time derivative of

Lc(t) generates

L̇c(t) = Υ
T(t)Υ̇ (t)

= (Sc(αch(t)−w(t)))T(αcScḣ(t) + αcṠch(t)− Scẇ(t)− Ṡcw(t))

= −κcαc(Sc(αch(t)−w(t)))T(ScSc(αch(t)−w(t))) + (Sc(αch(t)−w(t)))T(αcṠch(t)− Scẇ(t)− Ṡcw(t))

= −κcαc∥Υ (t)∥22 + ΥT(t)(Υ̇ (t)− αcScḣ(t)).

Considering that there exists an upper bound on the time variational rate of each deterministic and unknown variable, i.e.,

∥Υ̇ (t)∥2 ⩽ ν1 and ∥ḣ(t)∥2 ⩽ ν2, it can be obtained that

L̇c(t) ⩽ −κcαc∥Υ (t)∥22 + ∥ΥT(t)∥2∥Υ̇ (t)− αcScḣ(t)∥2
⩽ −κcαc∥Υ (t)∥22 + ∥ΥT(t)∥2(∥Υ̇ (t)∥2 + αc∥Scḣ(t)∥2)

⩽ −κcαc∥Υ (t)∥22 + (ν1 + αcν2ν3)∥ΥT(t)∥2
= ∥Υ (t)∥2(−κcαc∥Υ (t)∥2 + (ν1 + αcν2ν3)),

(B12)

where ν3 is the Frobenius norm of Sc. In view of equation (B12), as Υ (t) evolves over time, there will be three cases for

L̇c(t):

• −κcαc∥Υ (t)∥2 + (ν1 + αcν2ν3) > 0: It means that L̇c(t) > 0 or L̇c(t) < 0. For the former, ∥Υ (t)∥2 increases until

−κcαc∥Υ (t)∥2 + (ν1 + αcν2ν3) = 0. For the latter, according to L̇c(t) < 0 and the Lyapunov theory, ∥Υ (t)∥2 infinitely

approaches (ν1 + αcν2ν3)/(κcαc).

• −κcαc∥Υ (t)∥2 + (ν1 + αcν2ν3) = 0: At this point, L̇c(t) = 0 and ∥Υ (t)∥2 = (ν1 + αcν2ν3)/(κcαc) holds.

• −κcαc∥Υ (t)∥2 + (ν1 + αcν2ν3) < 0: In this case, L̇c(t) < 0 so that ∥Υ (t)∥2 is bound to converge. Considering that

∥Υ (t)∥2 > (ν1 + αcν2ν3)/(κcαc), ∥Υ (t)∥2 infinitely approaches (ν1 + αcν2ν3)/(κcαc).

In summary, for the residual error ∥Υ (t)∥2, it has lim
t→∞

∥Υ (t)∥2 = lim
t→∞

∥Sc(αch(t) − w(t))∥2 = (ν1 + αcν2ν3)/(κcαc).

Evidently, ∥Υ (t)∥2 is not 0 and varies with time. Hence, the k-WTA network (B11) is of less efficiency in solving the

k-WTA problem (Eq. (2) in the paper) with dynamical inputs.

It is worth pointing out that although some k-WTA literatures have solved the lagging error problem [12], they are

difficult to be distributed to meet the requirements of multi-robot distributed coordination due to the use of the nonlinear

complementarity problem function to deal with inequality constraints. In view of the above discussions, we introduce the

exponential penalty function to handle the inequality constraints of the k-WTA problem (Eq. (2) in the paper), and then

construct a lagging-error-free and distributable k-WTA network.

Appendix C Simulations and experiments

In this section, comparisons with existing works are provided to verify the privacy protection capability and the lagging-

error-free feature of the proposed DPP-kWTA network (Eq. (8) in the paper). In addition, simulations and experiments

on a multi-robot platform are performed to further verify the effectiveness of the proposed network.

Appendix C.1 Comparisons

First of all, a comparison of the proposed DPP-kWTA network (Eq. (8) in the paper) with an existing distributed k-WTA

network [13] based on numerical simulations is carried out. In particular, before presenting the simulation details, the
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Table C1 Comparisons with Existing k-WTA Networks

Publish
year

Communication
strategy

Considering privacy
protection

Lagging
errors

Application
scenarios

Our work — Distributed Yes Free Moblie robots

Network in [16] 2025 Distributed No Non-free UAVs

Network in [17] 2024 Distributed No Non-free Moblie robots

Network (C1) [13] 2023 Distributed No Non-free NA+

Network in [8] 2023 Centralized No∗ Non-free NA+

Network in [15] 2023 Distributed No Non-free Robot arms

Network in [12] 2022 Centralized No∗ Free NA+

Network in [18] 2022 Centralized No∗ Non-free Multi-agent

Network in [14] 2019 Distributed No Non-free Multi-agent

No∗: In a centralized k-WTA network, each individual directly interacts with a preset control center,
which may also bring the risk of privacy leakage.
NA+: This work is not further applied to specific scenarios.
UAVs: It is a shortened form of unmanned aerial vehicles.

distributed k-WTA network in [13] is provided as follows:

aẏ(t) = −h(t) +
k1n

n
− Ly(t),

h(t) = Γ(y(t) +
w(t)

ϖ
),

(C1)

where y(t) is a state variable; 1/a is the convergence parameter; Γ(ε) is a projection operation, which is able to be expressed

as Γ(ε) = argminρ∈Υ∥ε − ρ∥2 with Υ = {ρ ∈ Rn | 0 ⩽ ρi ⩽ 1, i = 1, 2, · · · , n}. Furthermore, referring to model (A2), a

privacy attack model in compact form for network (C1) is able to be designed as

˙́y(t) = r1η(t)− r2Ly(t) + r3(y(t)− ý(t)),
η̇(t) = −r1η(t) + r2Ly(t) + r3(y(t)− ý(t)),

h́(t) = −η(t) +
k1n

n
,

(C2)

where h́(t) and ý(t) are the estimates of h(t) and y(t), respectively; η(t) is a state variable; r1, r2, and r3 are positive

constant.

It is worth pointing out that, due to different construction methods of consensus-based distributed k-WTA networks,

designs of corresponding privacy attack models are also different, such as model (A2) and model (C2). In fact, in a communi-

cation topology, if all individuals directly exchange information with their neighbors without any protective measures, such

consensus-based distributed k-WTA networks are at risk of privacy attacks. Specifically, according to the communication

topology in Fig. A1(a), the settings of the numerical simulations are as follows: the number of individuals participating

in the competition is set to 4 (n = 4); the number of winners is set to 2 (k = 2); the i-th individual corresponds to the

time-varying signal ei(t) = sin(0.25π(t + i)), which is used as the input wi(t) of the k-WTA networks. Moreover, for the

proposed DPP-kWTA network (Eq. (8) in the paper), it has the following parameter settings: ϖ = 0.002; the parameters

of the exponential penalty function are set to β1 = β2 = · · · = β2n = 0.05 and κ = 500; the parameter ι of the consensus

filter (Eq. (7) in the paper) is set to 100; the convergence parameter θ = 100. In particular, for network (C1), as shown

in Fig. C1(b), since its construction ignores the dynamic change of information, it has significant lagging errors under the

same convergence parameter (1/a = θ = 100) as DPP-kWTA network (Eq. (8) in the paper). More intuitively, as shown

in Fig. C1(d), network (C1) fails to satisfy the constraint that the number of winners is k, that is, |1T
nh(t)− k| ̸= 0 when

the convergence parameter 1/a is 100, which means that network (C1) is not able to complete the k-WTA opeartion (Eq.

(1) in the paper) commendably. In view of this, to better compare the performance of the two networks under privacy

attacks in normal operation next, the convergence parameter of network (C1) is set large enough (1/a = 100000). Note

that at this point, as shown in Fig. C1(c) and Fig. C1(d), network (C1) performs better than before. Nonetheless, in Fig.

C1(d), for constraint |1T
nh(t)−k| = 0, network (C1) still has fluctuations compared to DPP-kWTA network (Eq. (8) in the

paper). Furthermore, for DPP-kWTA network (Eq. (8) in the paper) and network (C1) with the convergence parameter

θ = 100 and 1/a = 100000, privacy attack models (A2) and (C2) are used to obtain the information in Fig. C1(a) and Fig.

C1(c), respectively, where v1 = v2 = v4 = 10000, v3 = 100, and r1 = r2 = r3 = 10000. As shown in Fig. C1(e) and Fig.

C1(f), privacy attack model (A2) is only able to obtain the encrypted information from DPP-kWTA network (Eq. (8) in

the paper), while privacy attack model (C2) is basically able to restore the original information from network (C1), which

indicates that the proposed DPP-kWTA network has the ability to protect the privacy of the key information.
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Figure C1 Simulations based on the input ei(t) = sin(0.25π(t + i)) i = 1, 2, 3, 4. (a) The output of the proposed DPP-kWTA

network (Eq. (8) in the paper) with θ = 100. (b) The output of network (C1) with 1/a = 100. (c) The output of network (C1)

with 1/a = 100000. (d) |1T
nh(t) − k| about DPP-kWTA network (Eq. (8) in the paper) (θ = 100) and network (C1) (1/a = 100

and 1/a = 100000). (e) The output of DPP-kWTA network (Eq. (8) in the paper) (θ = 100) restored by privacy attack model

(A2). (f) The output of network (C1) (1/a = 100000) restored by privacy attack model (C2).

Remark 2. When 1/a = 100, as shown in Fig. C1(b), network (C1) is unable to accurately perform the k-WTA

operation (Eq. (1) in the paper) due to the lagging errors. That is, the outputs of network (C1) can not satisfy the

constraint
∑n

i=1 hi(t) = k. It further leads to the fact that the attack model (C2) does not obtain the accurate outputs in

Fig. C1(b), but this phenomenon does not mean that network (C1) has the ability for privacy protection. It is meaningless

to compare the privacy protection ability of network (C1) when it has already crashed. Therefore, in this section, to better

compare the privacy protection performance of the proposed DPP-kWTA network (Eq. (8) in the paper) with that of

network (C1), we set the convergence parameter 1/a large enough to suppress the lagging errors of network (C1) as much

as possible.

Besides, in order to better show the differences and advantages of the proposed DPP-kWTA network (Eq. (8) in the

paper) compared to existing works, a comparative table is provided. As shown in Table I, although [13–17] realize the

distribution of the k-WTA networks based on consensus methods, these networks have lagging errors when performing

the k-WTA operation (Eq. (1) in the paper) because they do not consider the characteristics of dynamic inputs when

constructed. This problem also exists in the centralized works [8, 18]. Although [12] overcomes the problem of lagging

errors, it is a centralized k-WTA network and not further applied to scenarios with dynamic inputs. Moreover, the above

works all carry out direct information interaction, which means that there are risks of privacy disclosure. Overall, the above

discussions demonstrate the advantages of the proposed DPP-kWTA network (Eq. (8) in the paper).

Appendix C.2 Applications to Multi-Robot Task Allocation

To verify the effectiveness of the proposed DPP-kWTA network (Eq. (8) in the paper), simulations of a target capture task

based on multiple mobile robots are demonstrated. Specifically, the task is set up as follows: the number of robots is n = 8;

the number of winners selected to perform the task is k = 3; the initial positions of eight robots are randomly generated

as [(4.3, 2.8); (8.44, 1.95); (2.26, 1.7); (2.3, 4.35); (3.11, 9.23); (4.3, 2.4); (6.75, 7.87); (4.39, 1.11)] m; the initial position of the

target is randomly generated as (5.43, 7.81) m; the communication topology is presented in Fig. A1(b). Moreover, the other

parameters are the same as the settings in the numerical simulations. In particular, for i-th robot, it has the following

equation:

ς̇i(t) = −ϱhi(t)
ςi(t)− ς0(t)

∥ςi(t)− ς0(t)∥2
, (C3)

where ςi(t) is the position vector of the i-th robot so that ς̇i(t) represents the velocity vector; ς0(t) is the position vector

of the target; ϱ is a positive parameter. It is worth pointing out that in this task, the k robots closest to the target at

the current moment are expected to be chosen as winners to perform the task. Thus, for the i-th robot, the input to

DPP-kWTA network (Eq. (8) in the paper) is set to

wi(t) = −∥ςi(t)− ς0(t)∥2. (C4)
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Figure C2 Simulations based on mobile robots. (a) At the beginning of the task, the three robots (k = 3) closest to the target

track and surround the target. (b) As the target moves, two new winners replace the previous two robots to perform the task

and the target is eventually captured. (c) The outputs h(t) of DPP-kWTA network (Eq. (8) in the paper) and the information

recovered by privacy attack model (A2).
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Figure C3 Snapshots of simulations based on CoppeliaSim platform and E-puck2 robots.

Specifically, as shown in Fig. C2(a), at the beginning of the task, according to the input of each robot (C4), three robots

start to track and surround the target. Then, the input of each robot (C4) changes due to the movement of the target and

the robots, which leads to a change in the robots performing the task as performed in Fig. C2(b). That is, new winners are

generated to replace the robots that are no longer suitable to continue the task. Overall, the output hi(t) of DPP-kWTA

network (Eq. (8) in the paper) that controls whether the i-th robot acts or not is presented in the subgraph of the upper

half of Fig. C2(c). Similarly, as demonstrated in another subgraph of Fig. C2(c), privacy attack model (A2) is not able to

obtain these output information from the direct information interaction among robots. Besides, to make the simulation in

Fig. (C2) more visual, the snapshots of simulations based on Coppliasim platform and E-puck2 robots are provided in Fig.

C3.

Furthermore, a physical experiment based on six E-puck2 robots is performed, where five robots (n = 5) compete and

produce two individuals (k = 2) that perform a target capture task, while the other one is set as the target. In particular,

the communication topology is presented in Fig. A1(c), while the other network parameters are the same as the settings

in the simulations. Concretely, as shown in Fig. C4, on a platform with a size of 1.5 m × 0.9 m, facing a target coming

from the top left of the platform, the two closest robots start to surround the target and one of them successfully captures

it. Therefore, this experiment further verifies the feasibility of the proposed DPP-kWTA network (Eq. (8) in the paper).

Remark 3. In a multi-robot system, the privacy protection is more inclined to protect the real-time strategies and control

laws of multiple robots. Therefore, although [6] can also be used to encrypt the output of the k-WTA network to prevent

the attacker from obtaining the actual output, as shown in Fig. A2, it cannot hide the control laws of the k-WTA network,

that is, the robot with a higher output state performs the task, and the robot with a lower output state is on standby. In

contrast, the method we propose does better in this regard. From another perspective, in scenarios where the node state

information changes slowly and continuously, [6] is more advantageous than our method.

Appendix D Discussions on future research directions

We will discuss the possible future research directions from two aspects. On the one hand, from an application perspective,

the proposed distributed privacy-preserving k-WTA network (Eq. (8) in the paper) can be further extended to different

scenarios. For instance, the inputs of the k-WTA network can not only be limited to the distance between each robot and

the target. The robots’ own attributes such as their battery levels can also be incorporated into the inputs. Moreover,

the task allocation objects of the k-WTA network can be further expanded to different robots, such as redundant robots,

to complete more complex tasks. On the other hand, the proposed dynamic privacy-preserving consensus filter (Eq. (8)

in the paper) utilizes the symmetry of the undirected graph Laplacian matrix to construct a random number sequence,
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Figure C4 Physical experiment based on six E-puck2 robots where five robots compete and produce two individuals that perform

a target capture task, while the other one is set as the target. (a) Snapshots of the experiment. (b) The outputs h(t) of DPP-kWTA

network (Eq. (8) in the paper) and the information recovered by the privacy attacker based on privacy attack model (A2).

which not only protects privacy but also ensures that the accuracy of the average consensus is not affected. This encryption

mechanism based on random number switching can also be applied to other distributed k-WTA networks. To prove this

point, we attempted to apply this encryption mechanism to an existing k-WTA work [14].

Specifically, in [14], a distributed k-WTA network model is presented as follows:

ν1ṙ(t) = −ϕ(t) +
k1n

n
,

ϕ̇(t) = ν2(h(t)− ϕ(t))− ν3L(ϕ(t) +ψ(t)),

ψ̇(t) = −Lϕ(t),

h(t) = Γ(r(t) +
w(t)

ϖ
),

(D1)

where r(t) is the state variable; ϕ(t) and ψ(t) are the interaction information among nodes; ν1, ν2, and ν3 are positive

constants. Γ(ε) is a projection operation, which is able to be expressed as Γ(ε) = argminρ∈χ∥ε − ρ∥2 with χ = {ρ ∈
Rn | 0 ⩽ ρi ⩽ 1, i = 1, 2, · · · , n}. Correspondingly, we designed a model that functionally resembles the attack model

(A2), which can utilize the interaction information ϕ(t) and ψ(t) among nodes to estimate the output h(t) of the k-WTA

network model (D1). Specifically, it is as follows:

˙́
ϕ(t) = χ1(h́(t)− ϕ(t))− χ2L(ϕ(t) +ψ(t)) + χ3(ϕ(t)− ϕ́(t)),
˙́
h(t) = χ1(ϕ́(t)− h́(t)) + χ2L(ϕ(t) +ψ(t)),

(D2)

where ϕ́(t) and h́(t) are the estimates of the privacy attack model for ϕ(t) and h(t), respectively, and χ1, χ2, and χ3

are positive constants. Furthermore, to verify the privacy-stealing effect of the attack model (D2) on the k-WTA network
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Figure D1 Simulations based on the input ei(t) = 5sin(0.25π(t + i)) i = 1, 2, 3, 4. (a) The output of model (D1). (b) The

output estimated by the attack model (D2) when targeting model (D1). (c) The output estimated by the attack model (D2) when

targeting model (D3).

model (D1), we conducted a numerical simulation. In this simulation, the number of network nodes is four (n = 4), and

the number of winners is two (k = 2). Meanwhile, the other parameter settings are as follows: the inputs of the four

network nodes are set to ei(t) = 5sin(0.25π(t+ i)) with i = 1, 2, 3, 4; the communication topology is shown in Fig. A1(a);

ϖ = 0.002; ν1 = 10−6; ν2 = 200; ν3 = 106; χ1 = 200; χ2 = 106; χ3 = 105. As shown in Fig. D1(a) and Fig. D1(b), the

privacy attack model (D2) can successfully estimate the output h(t) of the k-WTA network model (D1). Based on this, we
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consider combining the random number switching encryption mechanism with the k-WTA network model (D1) to obtain

the following new model:

ν1ṙ(t) = −ϕ̃(t) +
k1n

n
,

ϕ̇(t) = ν2(h(t)− ϕ(t))− ν3L(ϕ̃(t) +ψ(t)),

ψ̇(t) = −Lϕ̃(t),

ϕ̃(t) = ϕ(t)−
∑

j∈Ni
δij(ϵ) +

∑
j∈Ni

δji (ϵ),

h(t) = Γ(r(t) +
w(t)

ϖ
),

(D3)

where δij and δji are sequences of random numbers transmitted to the i-th node by the j-th node and to the j-th node by

the i-th node, respectively, with the j-th node being a neighbor of the i-th one. Evidently, for encrypted model (D3), the

interaction information among nodes obtained by the attack model (D2) becomes ϕ̃(t). At this point, as shown in Fig.

2(c), the attack model (D2) is no longer able to accurately estimate the output of the encrypted model (D3). Overall, the

above discussions have verified that the proposed privacy protection mechanism is not limited to a single attack model,

and it has certain scalability. It is worth noting that model (D3) can also be referred to as a distributed privacy-preserving

k-WTA network. However, it still faces the problem of the lagging errors. Therefore, in terms of performance, it is inferior

to the proposed DPP-kWTA network (Eq. (8) in the paper). Furthermore, in addition to the k-WTA networks, in other

scenarios [19] where the accurate dynamic average consensus needs to be used and the privacy protection is required, the

proposed method may also have certain reference value.

However, it is worth noting that when referring to the encryption mechanism based on random number switching, it still

have some limitations. For example, in order to ensure that privacy is protected without affecting the outcome of the average

consensus, it relies on the symmetry of the Laplacian matrix and the random number sequence initialized for each network

node. Therefore, its application is limited to static undirected graphs. However, considering the variability and complexity

of the task environment, in many cases, it is necessary to design and explore dynamic privacy-preserving consensus filters

based on directed topologies or time-varying topologies. Besides, since this privacy protection mechanism mainly considers

the attack method where an attacker infers the state information of nodes by eavesdropping on the interaction information

among nodes, when facing possible direct attacks on the nodes, this method is no longer applicable.
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