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Few-shot class-incremental action recognition [1] (FSCAR) on

skeletal data aims to enable models to continually recognize

new actions from only a few samples while retaining knowl-

edge of previously learned ones. Unlike static image classifica-

tion, skeleton-based FSCAR must handle dynamic spatiotempo-

ral structures, where human joints exhibit fine-grained and stage-

dependent topology variations over time. Although skeleton data

offer compact and background-robust representations, these topo-

logical variations present two major challenges. First, neglecting

stage-specific skeletal structures limits the model’s ability to per-

sistently capture evolving human motion patterns. Second, in-

consistent graph topologies across stages blur class boundaries be-

tween base and incremental actions, exacerbating few-shot classi-

fication errors.

Effective FSCAR therefore requires preserving and adapting

stage-specific skeletal topologies to maintain continuity of motion

understanding, while simultaneously mitigating cross-stage struc-

tural inconsistency. Motivated by these observations, our work in-

troduces an FSCAR framework (AS-CAR) that enables continual

knowledge evolution and robust class separation under few-shot

incremental settings. AS-CAR incorporates two key components.

First, an adaptive topology evolution module learns stage-specific

skeletal graph structures, enabling the model to adaptively pre-

serve and extend motion representations across incremental stages.

Second, a semantic structure transfer mechanism constructs class-

anchor graphs by transferring semantic topology from pretrained

language models, refining decision boundaries via optimal trans-

port to alleviate few-shot overfitting. Together, these components

enable AS-CAR to achieve robust continual learning and effec-

tive cross-stage knowledge transfer under few-shot conditions. The

conceptual framework of AS-CAR is illustrated in Figure 1.

Problem definition. FSCAR aims to continually learn new ac-

tion categories from a few examples while retaining performance

on previously learned ones [2]. The task follows a multi-stage

protocol. (1) Base session (D0): the model is trained on abun-

dant data with base classes C0 to learn general action repre-

sentations. (2) Incremental sessions (Dt, t = 1, . . . , T ): at each

stage t, the model receives N novel classes in a k-shot setting:

Dt =
{
(xi, yi, li)

}kN

i=1
, xi ∈ X t, yi ∈ Yt, li ∈ Ct, where xi is a

skeletal video sequence, yi is the class label, and li is its descriptor

(e.g., class name).

Backbone layer. Given a skeletal video sample x ∈ R
F×V×S ,

where F is the number of frames, V the number of joints, and

S the number of spatial coordinate channels, we construct a dy-

namic human skeleton graph G = (V , E), with V denoting the set

of joints (nodes) and E the set of inter-joint connections (edges).

Spatiotemporal features are extracted through an L-layer graph

convolutional network [3] (GCN). The propagation of hidden fea-

tures from layer l to layer l+1, denoted by H(l) → H(l+1), is

defined as

H(l+1) =
S∑

s=1

σ
(
A

(l+1)
s H(l)M

(l+1)
s

)
, (1)

where A
(l+1)
s ∈ R

V ×V represents the adaptive graph-topology ma-

trix for channel s, M
(l+1)
s ∈ R

S(l)
×S(l+1)

is a learnable projection

matrix, and σ(·) denotes the ReLU activation function. Finally,

this GCN is coupled with a temporal convolutional module to cap-

ture motion dynamics and joint dependencies across time.

Progressive momentum adaptation (PMA). To ensure stable

adaptation under few-shot incremental learning, we propose the

PMA strategy for the visual encoder Fθ(·), which is composed of

L hierarchical layers
{
F1

θ
(·),F2

θ
(·), . . . ,FL

θ
(·)

}
. After completing

the base session training, the shallow layers
{
F1

θ
(·), . . . ,Fm

θ
(·)

}

are frozen to preserve the general motion semantics captured dur-

ing base learning, as these layers primarily encode task-agnostic

representations. During subsequent incremental sessions, only the

deeper layers
{
Fm+1

θ
(·), . . . ,FL

θ
(·)

}
are updated to enable effi-

cient adaptation to new action classes while preventing interfer-

ence with previously learned knowledge. However, due to the lim-

ited number of samples per class in each incremental session, direct

fine-tuning of the unfrozen layers can easily lead to overfitting.

To mitigate this, PMA introduces an exponential moving aver-

age (EMA) update mechanism to gradually refine the trainable

parameters, formulated as

θt = β θt−1 + (1 − β) θ̂t, (2)

where θ̂t represents the parameters that have been updated
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Figure 1 (Color online) Conceptual framework of the proposed AS-CAR method for FSCAR.

through gradient optimization for the current task t, and β ∈ [0, 1]

is the momentum coefficient controlling temporal smoothness.

Adaptive topology evolution (ATE). In a continual skeleton-

based action recognition framework, the evolution of graph topol-

ogy in each session is essential for maintaining the continuity of

human motion representations. To address the heterogeneous na-

ture of skeletal data at the incremental stage t, we introduce the

ATE module that enables the model to capture session-specific

inductive biases embedded in the skeletal topology, thereby rein-

forcing persistent understanding of human motion patterns. For

each incremental session t, a learnable modulation matrix U t, hav-

ing the same shape as the base adjacency matrix A, is learned to

represent the session-specific skeletal graph. The modulation is

then integrated into the original graph convolution propagation as

follows:

H(l+1) =
S∑

s=1

σ
(
(A

(l+1)
s + µU

t,(l+1)
s )H(l)M

(l+1)
s

)
, (3)

where U
t,(l+1)
s denotes the topology modulation matrix for chan-

nel s at layer l+1 in session t, and µ = 0.4 controls the strength

of topology adaptation. Throughout the continual learning pro-

cess, the composite topologies A+ µU t from all previous sessions

1, . . . , t−1 are kept frozen, while only the current session’s U t is

updated.

Semantic structure transfer (SST). In FSCAR, unclear bound-

aries between base and incremental classes often lead to over-

fitting. To address this, we propose a semantic structure trans-

fer strategy that introduces semantic relations from a pretrained

language model into the visual feature space [4]. For each ac-

tion class, we prompt a large language model to generate de-

tailed motion descriptions A = {C̃1, C̃2, . . . , C̃C}, which are en-

coded by a frozen text encoder T ϕ(·) to obtain textual proto-

types P text = T ϕ(A) ∈ R
C×dt . Corresponding visual prototypes

P vis ∈ R
C×dv are derived from the visual backbone. More details

of the prompt process can be found in Appendix C.

We align the pairwise relational graphs of P text and P vis using

the entropy-regularized Gromov-Wasserstein [5] (EGW) distance

to preserve cross-modal structural consistency. Let D1 and D2 be

the pairwise distance matrices in text and visual spaces, respec-

tively. The EGW loss is defined as

LGW = min
T∈Π(p,q)

∑

i,j,k,l

(
D1[i, k]−D2[j, l]

)2
Ti,j Tk,l − ǫH(T )

= min
T∈Π(p,q)

∑

i,j

Ti,j Mi,j − ǫH(T ), (4)

where Π(p, q) is the set of couplings with marginals p = q = 1
C
1C,

H(T ) = −
∑

i, jTi,j logTi,j denotes the entropy term, M =

(D1 ⊙ D1) p1⊤ + 1
(
(D2 ⊙ D2) q

)⊤
− 2D1TD⊤

2 , and ǫ controls

regularization strength. This formulation enables differentiable

alignment between textual and visual structures, effectively trans-

ferring semantic topology across modalities.

Experiments. We conducted experiments on three benchmark

datasets, namely, NTU-60, NTU-120, and PKU-MMD I. The pro-

posed method was evaluated against several recently proposed

methods. The results showed that AS-CAR achieves state-of-

the-art performance in FSCAR. We verified the effectiveness of

AS-CAR in handling gradually changing scenarios and its robust

anti-forgetting capability regarding source knowledge. Moreover,

we conducted ablation studies and hyperparameter analyses to

validate the key components of AS-CAR. Visualization studies

provide deep insights into AS-CAR. Details of the experimental

settings and a comprehensive analysis of the results can be found

in Appendixes C–E.

Conclusion. In this study, we tackle the challenges of dynamic

topology evolution and semantic drift in few-shot class-incremental

skeletal action recognition through the proposed framework. An

adaptive topology evolution module dynamically modulates the

GCN structure to capture stage-specific motion patterns, while a

semantic structure transfer strategy leverages pretrained seman-

tic topology to refine class boundaries. Future work will focus on

improving scalability and exploring how to fully leverage the rich

knowledge from the base stage to guide learning in the incremental

stage.
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