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Open-vocabulary semantic segmentation (OVSS) aims to assign

each pixel in an image to a semantic label from arbitrary cat-

egories. Given the inherent challenge of associating visual ele-

ments with unbounded textual concepts, CLIP [1] has been widely

adopted in OVSS for its strong open-vocabulary understanding

capabilities. However, CLIP’s image-level pretraining paradigm,

optimized for global understanding, poses significant challenges

for dense prediction that needs fine-grained spatial understanding.

Current OVSS utilizes CLIP in two distinct ways. Region-based

approaches [2] apply CLIP to classify mask proposals typically

generated by auxiliary models (e.g., Swin Transformer) trained on

limited data, resulting in high computational costs and weak gen-

eralization to novel scenes. Alternative pixel-based frameworks [3]

directly fine-tune CLIP for pixel-wise prediction, incorporating

cost-aggregation modules to mitigate overfitting. Despite these

advances, adaptation strategies that effectively preserve CLIP’s

generalization capability during its transfer to dense prediction

remain underexplored.

To investigate this issue, we analyze the representations of

CLIP in the segmentation context. We observe that both patch

features and class-name text embeddings exhibit poor category

discriminability, with high intra-class variance and low inter-class

separation. Moreover, some patch features are contaminated by

the global category, lacking the local perceptual details essential

for segmentation. These findings raise a core dilemma: CLIP’s

representations require adaptation for segmentation, yet naively

fine-tuning risks degrading its generalization to unseen categories.

Most OVSS methods address this by retaining text embeddings

and fine-tuning only the visual encoder. Others attempt to distill

the knowledge from CLIP. MAFT+ [2] employs multi-scale pool-

ing to extract region-level features for distillation. However, naive

pooling may aggregate contaminated patches, yielding suboptimal

semantic representations.

To address this challenge, we conduct a quantitative study on

the impact of adapting different components of CLIP on its gener-

alization. Specifically, we evaluate three configurations: adapting

only the visual encoder, only the text encoder, and both jointly.

Given that OVSS relies on both patch features and text embed-

dings, we analyze the semantic shift in each modality and its corre-

lation with generalization. To reliably assess patch-level semantic

shift, we partition the patches in CLIP into two groups: (1) a noisy

group comprising globally contaminated patches, and (2) a reli-

able group containing patches capturing accurate local semantics,

termed reference patches. This analysis uncovers a key insight:

maintaining the semantics of reference patches in CLIP shows a

stronger correlation with open-vocabulary generalization perfor-

mance than preserving text embeddings (see Appendix B.1).

Method. Motivated by this finding, we propose reference patch

momentum distillation (RPMD), a novel training framework to

preserve and distill the generalizable knowledge encoded in CLIP’s

reference patch features, as shown in Figure 1. RPMD introduces

a dual-model architecture comprising (1) a target CLIP-V model

adapted for OVSS, and (2) a momentum CLIP-V model, which

provides stable and generalizable reference patch features to guide

the target model through two key modules: selective patch distil-

lation (SPD) and class-prototype alignment (CPA).

Momentum CLIP-V. The limited segmentation capability

of the initial model constrains the number of reliable reference

patches available for distillation. To address this, RPMD main-

tains a momentum CLIP-V EM
v updated via exponential moving

average (EMA) of the target CLIP-V Ev: EM
v = αEM

v +(1−α)Ev ,

with both initialized from the original CLIP-V. As training pro-

ceeds, the momentum CLIP-V benefits from the progressively re-

fined dense predictions of Ev, gradually enriching the reference

patch space. Given that lightly adapted models preserve stronger

generalization than heavily fine-tuned ones, the early-stage refer-

ence patches derived from the EM
v provide generalizable supervi-

sion to guide the ongoing training of the target model.

Text-to-patch pre-alignment. To fully exploit the general-

ization of CLIP, we enrich the initial reference patch space without

altering the visual encoder. We introduce a text-to-patch pre-

alignment (TPA) stage, where the visual encoder remains frozen

and only the text encoder is lightly adapted through a few warm-

up steps. This adaptation enhances the discriminative power of

text embeddings, enabling more reliable reference patch selection

from the frozen CLIP-V. The frozen visual encoder serves as a

stable anchor, guiding the text encoder to align with generalizable

patch semantics. The adapted text encoder then initializes the

textual branch for subsequent joint training.

Selective patch distillation. The SPD module provides
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Figure 1 (Color online) Overview of the RPMD architecture. It introduces a dual-path design, where a momentum CLIP-V model constructs

a generalizable reference patch space using semantically reliable patches. The TPA is employed to enrich the initial reference patch space. The

reference patch semantics are distilled into the target CLIP-V model through two complementary modules: SPD for patch-level alignment and

CPA for prototype-level regularization.

generalizable patch-level guidance by selectively distilling reliable

patch semantics from the momentum model EM
v to the target

model Ev. Specifically, it identifies semantically accurate refer-

ence patches from EM
v and guides Ev to align with these features

at corresponding spatial locations. Let V M = {V M
p ∈ R

D}Lp=1

denote the patch embeddings extracted from EM
v , where L is the

number of patches and D is the feature dimension. For simplicity,

we adopt a hard division strategy to derive the mask of reference

patches Ms ∈ R
L, where the patch is assigned 1 if it captures accu-

rate semantics as the ground-truth label G ∈ R
L, and 0 otherwise.

We summarize the simple process as follows:

Ms = 1{argmax(V MTT) == G}. (1)

The SPD loss is then computed as a masked mean squared error

between the target and momentum patch features:

LSPD =
1

∑L
p=1

Ms,p

∑L

p=1
Ms,p‖Vp − V M

p ‖22. (2)

Class-prototype alignment. The CPA module provides

prototype-level guidance by regularizing patch features to align

with class prototypes derived from the reference patch space. For

each category c in the image, we compute a prototype Vc by aver-

aging the momentum patch embeddings associated with that class.

The reference mask Mc ∈ R
L for category c is defined as

Mc = 1{

(argmax(V MTT) == G) ∧ (G == c)
}

. (3)

The class prototype Vc ∈ R
D is then computed as

Vc =
1

∑

p Mc,p

∑L

p=1
Mc,pV

M
p . (4)

For the target CLIP-V, we gather the set of correctly predicted

patches Q for each category, and encourage their alignment with

the corresponding class prototype VGc
, while pushing them away

from other class prototypes. This is implemented via a contrastive

loss:

LCPA = −
1

|Q|

∑

Vp∈Q

log
exp(sim(Vp,VGc

)/τ)
∑

c∈C
exp(sim(Vp,Vc)/τ)

, (5)

where sim(·, ·) denotes the cosine similarity. τ is the temperature

parameter and C is the set of class labels in the image. The LCPA

not only aligns target patch features with generalizable reference

semantics, but also enhances inter-class feature discriminability.

Overall objective. The model is trained by jointly optimiz-

ing the segmentation loss LSEG, the patch-level SPD loss LSPD

and the prototype-level CPA loss LCPA. The total training loss is

given by

Ltotal = LSEG + λSPD · LSPD + λCPA · LCPA, (6)

where λSPD and λCPA are balancing weights for the distillation

objectives.

Conclusion. We uncover a strong correlation between preserv-

ing reference patch semantics and improved open-vocabulary gen-

eralization. Motivated by this, we propose RPMD, a dual-path

framework that constructs a generalizable reference space and

guides the target model via selective patch distillation and class-

prototype alignment. RPMD effectively retains CLIP’s generaliza-

tion while boosting segmentation performance for the pixel-based

OVSS.
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