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Settling time is one of the most concerning topics in control tech-

nology [1]. Despite the settling time of the overall system, the

individual settling time of each state element is likewise critical

to the overall system performance. In some applications, multiple

state elements of a system (or multiple states of cooperative sys-

tems) are demanded to work together in the perspective of time

and reach some desired value simultaneously. Furthermore, special

tasks may have a narrow time window, such that the settling time

of both the overall system and each state element should converge

in a small time period.

To this end, we proposed predefined-time-synchronized control,

in which both the predefined convergence [2] of the system and the

time-synchronized arrival [3] of each state element are considered.

The definition of predefined-time-synchronized stability is pro-

posed with three categories according to specific convergence re-

quirements, and the corresponding Lyapunov conditions and con-

troller designs are presented. True-predefined-time-synchronized

stability is achieved, where every state element converges precisely

at the given time. Moreover, the disturbance rejection problem is

considered; thus the robustness of the system can be guaranteed.

Problem formulation. Consider an Euler-Lagrange system in

the disturbed form [4],

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ(t) + d(t), (1)

where q ∈ R
n is the state vector, τ(t) is the control input, and d(t)

is the time-varying low-frequency disturbance. System matrices

M(q), C(q, q̇), and g(q) represent the inertia matrix, the centrifu-

gal and Coriolis forces, and the gravitational force, respectively.

The system matrices are continuous in terms of both state x and

time t.

Definition 1. Given a predefined time constant Tc, system

ẋ = f(x, t) is said to be the following:

• predefined-time-synchronized stable (PTSS) if the settling

time T satisfies T 6 Tc and every non-zero element of the state x

reaches the equilibrium simultaneously at T ;

• true-predefined-time-synchronized stable (true-PTSS) if ev-

ery non-zero element of the state x reaches the origin simultane-

ously at T = Tc;

• ε-predefined-time-synchronized stable (ε-PTSS) if the ini-

tially non-zero state element xi, i = 1, · · ·n satisfies xi > 0 for t <

Tc and ‖x‖ 6 ε for t > Tc, where ε is a small positive constant.

Assumption 1. The initial value and the first-order deriva-

tive of the disturbance d(t) are both bounded. Mathematically,

‖d(0)‖ 6 σ and ‖ḋ(t)‖ 6 δ.

PTSS control. The PTSS controller for system (1) is designed

with d(t) = 0. Define a reference sliding-mode surface s,

s = q̇ + ζ1
(

p1sig
α1
n (q) + g1sig

β1
n (q)

)

, (2)

where ζ1 and sign(x) have the following formulations:

ζ1 = λ (p1, g1, 1, (α1 + 1)/2, (β1 + 1)/2, 2Tc) , (3)

λ(p, g, k, α, β, Tc) =
pk(1− kα) + gk(kβ − 1)

pkgkTc(1 − kα)(kβ − 1)
, (4)

signn (x)
∆
=

x

‖x‖
, sigαn (x)

∆
= ‖x‖αsignn (x) . (5)

The control input τ is designed to drive s to zero,

τ(t) =−M(q)
[

ζ2
(

p2sig
α2
n (s) + g2sig

β2
n (s)

)

+ ζ1θ(q)q̇
]

+ C(q, q̇)q̇ + g(q), (6)

where s is presented in (2). ζ2 and θ(q) : R
n → R

n × R
n are

formulated as

ζ2 =λ
(

p2, g2, 1, (α2 + 1)/2, (β2 + 1)/2, 2T̄c

)

, (7)

θ(q) =p1(α1−1)‖q‖α1−3q1q
T
1 + p1‖q‖

α1−1In

+ g1‖q‖
β1−1In + g1(β1 − 1)‖q‖β1−3q1q

T
1 , (8)

where T̄c < Tc is a time constant and In is the identity matrix.

The stability analysis can be found in Appendix A.

True-PTSS control. The Lyapunov condition for true-PTSS

control is presented. Then the true-PTSS controller for system

(1) is designed with d(t) = 0.

Theorem 1. System ẋ = f(x, t) is true-PTSS with predefined

settling time Tc if the following satisfies.

(1) There exist a continuous function µ(t) : [0, Tc) → R and a

class K-function W (t, ‖x‖) : [0, Tc) × R+ → R+ with respect to
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‖x‖, such that ∀x ∈ R
n and ∀t ∈ [0, Tc),

Ẇ (t, ‖x‖) = µ(t)
(

eW (t,‖x‖) − 1
)

/eW (t,‖x‖), (9)

and the function ρ(t) = −
∫ t

0
µ(s)ds satisfies

lim
t→T

−
c

ρ(t) = +∞ and ρ(t)|t<Tc
< +∞. (10)

(2) x is ratio persistent with x/‖x‖ = ζf (x, t)/‖f (x, t)‖ for

x 6= 0 and ζ ∈ {1,−1}.

Let the sliding-mode surface be

s =







q̇ +
p1

(

1−e−‖q‖α1
)

Tc−t
sig1−α1

n (q) , if 0 6 t < Tc,

0, otherwise,
(11)

where p1 > 0 and 0 < α1 < 1.

The controller is designed as

τ(t) =















M(q)p2
[

1− e−‖s‖α2

]

sig1−α2
n (s) /(T̄c − t) + g(q),

−M(q)µ1(t)[θ1(q)+θ2(q)q̇]+C(q, q̇)q̇, if t ∈ [0, T̄c),

C(q, q̇)q̇ + g(q), otherwise,

where 0 < α2 < 1, p2 > 0, T̄c < Tc, µ1(t) = −α1p1/(Tc − t), θ1(q)

and θ2(q) are formulated as

θ1(q) =η(q)sig1−α1
n (q) /(Tc − t),

θ2(q) =η(q)
(

‖q‖−α1In − α1‖q‖
−α1−2qqT

)

+ e−‖q‖α1

qqT,

η(q) =1− e−‖q‖α1

.

The proof and stability analysis can be found in Appendix B.

ε-PTSS control. We introduce the theorem for ε-PTSS.

Theorem 2. System ẋ = f(x, t) is ε-PTSS within Tc if the state

x varies in the following manner:

ẋ =











−
p
(

1−e−‖x‖α
)

Tc+∆T−t
sig1−α

n (x) , if t < Tc,

−
p
(

1−e−‖x‖α
)

∆T
sig1−α

n (x) , otherwise,

(12)

where p > 0 and 0 < α < 1. Let x(0) be the initial state at t = 0.

∆T is calculated as

∆T =

(

eε
α

− 1

e‖x(0)‖
α

− 1

)− 1

αp

. (13)

When d(t) in (1) exists, the disturbance should be estimated

before the predefined time Tc. A disturbance observer is designed,

which converges to the true value before Tc.

ż0 =− kz1sig
1

2
c (z̃0)− kz2sig

ν
c (z̃0) + z1

+M−1(q) (τ(t) − C(q, q̇)q̇ − g(q)) , (14)

ż1 =− kz3signc (z̃0) , (15)

where ν > 1 is a constant parameter, kzi > 0 with i = 1, 2, 3 and

z0 and z1 are the estimated values of q̇ and M−1(q)d(t).

The ε-PTSS controller is designed on the basis of Theorem 2.

A sliding-mode controller is constructed,

s =











q̇ +
p1

(

1−e−‖q‖α1
)

Tc+∆T−t
sig1−α1

n (q) , if t < Tc,

q̇ +
p1

(

1−e−‖q‖α1
)

∆T
sig1−α1

n (q) , otherwise,

(16)

where p1 > 0 and 0 < α1 < 1. And ∆T can be calculated as in

(13).

The ε-PTSS controller is designed as

τ(t) =−M(q) [θ3(q) + θ4(q)q̇]+C(q, q̇)q̇ + g(q)−M(q)z1

− λεM(q)
(

p2sig
α2
n (s) + g2sig

β2
n (s)

)

, (17)

Figure 1 (Color online) Simulation results of PTSS (a), true-

PTSS (b), ε-PTSS (c), and the estimation error of ε-PTSS (d).

where λε = λ (p2, g2, 1, (α2 + 1)/2, (β2 + 1)/2, 2Tc), α2 > 1, β2 <

1, p2, and g2 are positive parameters, and θ3(q) and θ4(q) are

formulated as

θ3(q) =η1sig
1−α1
n (q) ,

θ4(q) =η2
(

‖q‖−α1In−α1‖q‖
−α1−2qqT

)

+η2α1e
−‖q‖α1

qqT,

η1 =







−α1p1
(

1− e−‖q‖α1

)

/ (Tc−∆T−t)2 , if t < Tc,

−α1p1
(

1− e−‖q‖α1

)

/∆T 2, otherwise,

η2 =







α1p1
(

1− e−‖q‖α1

)

/ (Tc −∆T − t) , if t < Tc,

α1p1
(

1− e−‖q‖α1

)

/∆T, otherwise.

The proof of Theorem 2, convergence analysis of the disturbance

observer and the ε-PTSS controller can be found in Appendix C.

Numerical simulations. We use the satellite in the local-

vertical-local-horizontal rotating frame for controller verification

[5]. Figure 1 illustrates the simulation results, where Tc = 40 s

is set for true-PTSS and ε-PTSS control. The predefined-time-

synchronized property can be clearly found in these plots. Please

refer to Appendix D for more details.
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