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Settling time is one of the most concerning topics in control tech-
nology [1]. Despite the settling time of the overall system, the
individual settling time of each state element is likewise critical
to the overall system performance. In some applications, multiple
state elements of a system (or multiple states of cooperative sys-
tems) are demanded to work together in the perspective of time
and reach some desired value simultaneously. Furthermore, special
tasks may have a narrow time window, such that the settling time
of both the overall system and each state element should converge
in a small time period.

To this end, we proposed predefined-time-synchronized control,
in which both the predefined convergence [2] of the system and the
time-synchronized arrival [3] of each state element are considered.
The definition of predefined-time-synchronized stability is pro-
posed with three categories according to specific convergence re-
quirements, and the corresponding Lyapunov conditions and con-
troller designs are presented. True-predefined-time-synchronized
stability is achieved, where every state element converges precisely
at the given time. Moreover, the disturbance rejection problem is
considered; thus the robustness of the system can be guaranteed.

Problem formulation. Consider an Euler-Lagrange system in
the disturbed form [4],

M(q)i + C(q,4)d + g(q) = 7(t) + d(t), (1
where g € R™ is the state vector, 7(t) is the control input, and d(t)
is the time-varying low-frequency disturbance. System matrices
M(q),C(q,q), and g(q) represent the inertia matrix, the centrifu-
gal and Coriolis forces, and the gravitational force, respectively.
The system matrices are continuous in terms of both state x and
time t.

Definition 1. Given a predefined time constant T., system
& = f(z,t) is said to be the following:

e predefined-time-synchronized stable (PTSS) if the settling
time T satisfies T' < T and every non-zero element of the state =
reaches the equilibrium simultaneously at T

e true-predefined-time-synchronized stable (true-PTSS) if ev-
ery non-zero element of the state x reaches the origin simultane-
ously at T = T¢;
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e c-predefined-time-synchronized stable (e-PTSS) if the ini-
tially non-zero state element x;,7 = 1,---n satisfies z; > 0 for ¢t <
Te and ||z|| < e for t > T, where € is a small positive constant.

Assumption 1. The initial value and the first-order deriva-
tive of the disturbance d(t) are both bounded. Mathematically,
[d(O)[| < o and [|d(®)]| < 6.

PTSS control. The PTSS controller for system (1) is designed
with d(t) = 0. Define a reference sliding-mode surface s,

s =+ (pisigd? (a) + grsigl (a)) )
where (1 and sig, () have the following formulations:
G =A(p1,91,1, (a1 +1)/2,(B1 + 1)/2,2T¢), (3)

PF(1 — ko) +g* (kB — 1)
PEGRT(1 — ko) (kB — 1)

xT . A .
——, sig® (z) = ||=||“signn (z). (5)

lll

The control input 7 is designed to drive s to zero,
7(t) = — M(q) [Cz (pzsig§2 (s) + gosigh? (S)) + ClG(q)d]

+Ca,9)q +9(a), (6)
C2 and 6(q) : R® — R™ x R™ are

A(p7g7k7a7ﬁ7TC) =

signn (z) 2

where s is presented in (2).
formulated as

C2 =X (p2,92,1, (a2 +1)/2, (B2 + 1) /2, 2T¢) , (1)
0(q) =p1(c1 —1)lall**Pqrai + pllal|** " In
+ g1llglP17™ I + g1(B1 — Dllall® “2qraf, (8)

where T. < T. is a time constant and I, is the identity matrix.
The stability analysis can be found in Appendix A.

True-PTSS control. The Lyapunov condition for true-PTSS
control is presented. Then the true-PTSS controller for system
(1) is designed with d(t) = 0.

Theorem 1. System @ = f(z,t) is true-PTSS with predefined
settling time T if the following satisfies.

(1) There exist a continuous function u(t) : [0,7c) — R and a
class K-function W (¢, ||z]|) : [0,7c) x R+ — Ry with respect to
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|||, such that Yz € R™ and V¢t € [0, T¢),

Wt flal) = u(t) (M I2D — 1) yeWtliel), o (9)
and the function p(t) = — fg wu(s)ds satisfies
limtﬁT; p(t) =400 and p(t)|i<r, < +00. (10)

(2) x is ratio persistent with x/||z|| = {f (z,¢)/||f (z,t)| for
z#0and ¢ € {1,-1}.

Let the sliding-mode surface be

p1 1,6*”‘1\\&1 1 .
o= %mg}l Y (qg), f0<t<Ty, (11)

0, otherwise,

where p; >0 and 0 < a1 < 1.

The controller is designed as
M(a)pa [1— e 1917 |sigh™®2 (s) /(e — ) + g(a),
C(q,d)¢ + g(q), otherwise,

where 0 < g < 1,p2 >0, Te < Te, p1(t) = —a1p1/(Te —t), 01(q)
and 02(q) are formulated as

61(q) =n(@)sign ** (¢) /(Te — 1),
02(a) =n(a) (llall =* I — aallgl| = ~2qq™ ) + 191" g¢7,

n(q) =1 — e~ lall™*
The proof and stability analysis can be found in Appendix B.

() =

e-PTSS control. We introduce the theorem for e-PTSS.

Theorem 2. System & = f(xz,t) is e-PTSS within T if the state
x varies in the following manner:
p(lfe*HIHo‘

. 17(1 .
. — —s—F—sig (), ift<T,,
i = p(?,téfmuta) n c (12)
—Tsigffa (z), otherwise,

where p > 0 and 0 < a < 1. Let x(0) be the initial state at ¢ = 0.
AT is calculated as

1
et 1 ap
sre () »

When d(t) in (1) exists, the disturbance should be estimated
before the predefined time T.. A disturbance observer is designed,
which converges to the true value before T¢.

20 =— kz1sigc% (20) — kzosigg (20) + 21
+ M~ q) (r(t) — C(g, D) — 9(2)) , (14)
%1 = — kzssigne (20), (15)

where v > 1 is a constant parameter, k,; > 0 with ¢ = 1,2,3 and
20 and z1 are the estimated values of ¢ and M ~1(q)d(t).

The e-PTSS controller is designed on the basis of Theorem 2.
A sliding-mode controller is constructed,
Y G PR T .
i+ —par— sign (g, ift<T,

5= 13
o (1me—lal®ry
where p; > 0 and 0 < a1 < 1. And AT can be calculated as in

(13).

(16)
q), otherwise,

The e-PTSS controller is designed as
7(t) =—M(q) [03(q) + 04(9)d]+C(q,9)d + g(q) — M(q)z1

— A-M(q) (pasign? (s) + gasigh? (s)) , (17)
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Figure 1 (Color online) Simulation results of PTSS (a), true-

PTSS (b), e-PTSS (c¢), and the estimation error of e-PTSS (d).

where A\e = A (p2, 92,1, (a2 +1)/2, (B2 +1)/2,2Tc), aa > 1, B2 <
1, p2, and g2 are positive parameters, and 63(q) and 64(q) are
formulated as

05(q) =msigy ' (),
6a(a) =n2 (llall = In—culal| = 2qq™ ) +maare™ 11" g7,

—anpy (1 —e 1Y) /(T —AT—1)?, if t < Te,

m = o

—a1pr (1 —e N9} /AT otherwise,

aipy (1 —e Mal®Y) /(T = AT — ¢, if t < T,
n2 = a

apr (1 —e 14l"Y) /AT, otherwise.

The proof of Theorem 2, convergence analysis of the disturbance
observer and the e-PTSS controller can be found in Appendix C.

Numerical simulations. We use the satellite in the local-
vertical-local-horizontal rotating frame for controller verification
[5]. Figure 1 illustrates the simulation results, where T. = 40 s
is set for true-PTSS and e-PTSS control. The predefined-time-
synchronized property can be clearly found in these plots. Please
refer to Appendix D for more details.
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