

Predefined-Time-Synchronized Control for Euler-Lagrange Systems

Wanyue Jiang¹, Shuzhi Sam Ge² & Dongyu Li^{3*}

¹*Institute for Future & Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao 266071, China*

²*Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576*

³*School of Cyber Science and Technology, Beihang University, Beijing 100191, China*

Appendix A Stability Analysis of the PTSS Controller

We introduce the following theorem and lemma for PTSS control.

Theorem A1. System $\dot{x} = f(x, t)$ achieves PTSS in T_c if:

1. there is a Lyapunov function $V(x)$,

$$\dot{V}(x) \leq -\lambda(pV^\alpha(x) + gV^\beta(x))^k, \quad (\text{A1})$$

where α, β, p, g, k are positive parameters with $k\alpha < 1$ and $k\beta > 1$, and $\lambda = \lambda(p, g, k, \alpha, \beta, T_c)$ is a control parameter related with T_c ,

$$\lambda(p, g, k, \alpha, \beta, T_c) = \frac{p^k(1 - k\alpha) + g^k(k\beta - 1)}{p^k g^k T_c (1 - k\alpha)(k\beta - 1)}, \quad (\text{A2})$$

2. the state x is ratio persistent with $x/\|x\| = \zeta f(x, t)/\|f(x, t)\|$ for $x \neq 0$ and $\zeta \in \{1, -1\}$.

Proof. Since the derivative of the Lyapunov function satisfies $\dot{V}(x) \leq -\lambda(pV^\alpha(x) + gV^\beta(x))^k$, the following result can be obtained:

$$\dot{V}(x) \leq -(p\lambda^{\frac{1}{k}}V^\alpha(x) + g\lambda^{\frac{1}{k}}V^\beta(x))^k. \quad (\text{A3})$$

From [1], the system is fixed-time stable within time T ,

$$T \leq \frac{1}{\lambda} \left(\frac{1}{p^k(1 - k\alpha)} + \frac{1}{g^k(k\beta - 1)} \right) = T_c, \quad (\text{A4})$$

which indicates that the system converges within $T \leq T_c$. Moreover, x is ratio persistent, leading to the time-synchronized property according to [2]. Thus the system is PTSS as in the Definition.

Lemma A1. System $\dot{x} = f(x, t)$ is PTSS within T_c if the state x varies in the following manner:

$$\dot{x} = -\lambda \left(p, g, 1, \frac{\alpha+1}{2}, \frac{\beta+1}{2}, 2T_c \right) \left(p \text{sig}_n^\alpha(x) + g \text{sig}_n^\beta(x) \right), \quad (\text{A5})$$

where the parameters are detailed in Theorem A1.

Proof. Consider $V(x) = x^T x$, which has the following time-derivative,

$$\dot{V}(x) = x^T \dot{x} = -2\lambda \left(p, g, 1, \frac{\alpha+1}{2}, \frac{\beta+1}{2}, 2T_c \right) \left(p\|x\|^{\alpha+1} + g\|x\|^{\beta+1} \right). \quad (\text{A6})$$

Let $\bar{\alpha} = (\alpha + 1)/2$ and $\bar{\beta} = (\beta + 1)/2$, we have

$$\dot{V}(x) = -\lambda \left(p, g, 1, \bar{\alpha}, \bar{\beta}, 2T_c \right) \left(pV^{\bar{\alpha}}(x) + gV^{\bar{\beta}}(x) \right), \quad (\text{A7})$$

which formulates the same as (A3) and the system achieves fixed-time stability within T_c according to [1].

The equation (A5) leads to

$$\frac{\dot{x}}{\|\dot{x}\|} = -\frac{p\|x\|^\alpha \text{sig}_n(x) + g\|x\|^\beta \text{sig}_n(x)}{\|p\|x\|^\alpha \text{sig}_n(x) + g\|x\|^\beta \text{sig}_n(x)\|} = -\frac{\text{sig}_n(x)}{\|\text{sig}_n(x)\|} = -\frac{x}{\|x\|}, \quad (\text{A8})$$

therefore the system is ratio persistent.

The two conditions in Theorem A1 are all satisfied, as a result, PTSS is achieved.

* Corresponding author (email: dongyuli@buaa.edu.cn)

The Euler-Lagrange system (1) is a second-order system with state vector q . Under the proposed controller (6), the state vector q is PTSS within the predefined time T_c . The analysis can be conducted in two steps.

First, we will force s to the equilibrium before $\bar{T}_c < T_c$.

Consider the Lyapunov candidate $V = s^T s$, which has a derivative of $\dot{V} = 2s^T \dot{s}$. Substitute the system dynamics (1) into (2) yields

$$\dot{s} = \ddot{q} + \zeta_1 \frac{d}{dt} \left(p_1 \text{sig}_n^{\alpha_1}(q) + g_1 \text{sig}_n^{\beta_1}(q) \right) = M^{-1}(q) (\tau(t) - C(q, \dot{q})\dot{q} - g(q)) + \zeta_1 \theta(q)\dot{q}. \quad (\text{A9})$$

Substitute the above equation to the \dot{V} yields

$$\dot{V} = -2s^T \zeta_2 \left(p_2 \text{sig}_n^{\alpha_2}(s) + g_2 \text{sig}_n^{\beta_2}(s) \right) = -\zeta_2 \left(p_2 V^{\frac{\alpha_2+1}{2}} + g_2 V^{\frac{\beta_2+1}{2}} \right), \quad (\text{A10})$$

therefore the sliding manifold s is PTSS within time \bar{T}_c .

Then, after s reaches zero, \dot{q} follows the manner of (A5) in Lemma A1 and drives q to PTSS in $T_c - \bar{T}_c$.

Besides,

$$\dot{q} = -\zeta_1 \left(p_1 \text{sig}_n^{\alpha_1}(q) + g_1 \text{sig}_n^{\beta_1}(q) \right), \quad (\text{A11})$$

or equally,

$$\dot{q}_i = -\zeta_1 \left(p_1 \|q\|^{\alpha_1} + g_1 \|q\|^{\beta_1} \right) \frac{q_i}{\|q\|}. \quad (\text{A12})$$

Let $T(q)$ be the actual settling time of q . For $t \geq T(q)$, $q = 0$, thus $\dot{q} = 0$. For $t < T(q)$, $q_i \neq 0$, thus $\dot{q}_i \neq 0$.

Therefore, every element $q_i, i = 1, \dots, n$, also converges time-synchronously at $t = T(q)$. In other words, the vector $[q, \dot{q}]^T$ achieves time-synchronized convergence. As a result, system (1) is PTSS within T_c .

Appendix B Proof of Theorem 1 and Stability Analysis of the True-PTSS Controller

Proof. According to [3], the system converges in T_c on the first condition of Theorem 2, namely $x(t) = 0$ for $t \in [T_c, +\infty)$. Therefore, Theorem 2 holds if we can prove that every element x_i of the state x satisfies $x_i(t) \neq 0$ for $t \in [0, T_c)$.

The ratio persistent property of x indicates that every state element x_i converges simultaneously. Mathematically, there must be a time instant $T \leq T_c$ that $x_i(t) \neq 0$ for $t \in [0, T)$ and $x_i(t) = 0$ for $t \in [T, +\infty)$.

Then, we show that $T = T_c$. Inspired by [3], define $V(t, x) : [0, T_c] \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ as

$$V(t, x) = e^{W(t, \|x\|)} - 1. \quad (\text{B1})$$

The derivative of $V(t, x)$ is

$$\dot{V}(t, x) = e^{W(t, \|x\|)} \mu(t) \frac{e^{W(t, \|x\|)} - 1}{e^{W(t, \|x\|)}} = \mu(t) V(t, x), \quad (\text{B2})$$

which leads to

$$V(t, x) = e^{-\rho(t)} V(0, x_0). \quad (\text{B3})$$

From (10),

$$V(t, x) = e^{-\rho(t)} V(0, x_0) > 0 \text{ for } t < T_c. \quad (\text{B4})$$

Recall the relation between $V(t, x)$ and $W(t, \|x\|)$, we have

$$e^{W(t, \|x\|)} > 1 \text{ for } t < T_c, \quad (\text{B5})$$

consequently $W(t, \|x\|) \neq 0$ for $t < T_c$.

According to the property of the class-K function that $W(t, \|x\|) = 0$ if and only if $\|x\| = 0$, we can achieve that $\|x\| \neq 0$ for $t < T_c$, which indicates that $\|x\|$ approaches zero at T_c precisely, thus completing the proof.

The stability analysis of the true-PTSS controller is presented based on the following Lemma.

Lemma B1. System $\dot{x} = f(x, t)$ is true-PTSS within T_c if the state x varies in the following manner:

$$\dot{x} = \begin{cases} -\frac{p(1-e^{-\|x\|^{\alpha}})}{T_c-t} \text{sig}_n^{1-\alpha}(x), & \text{if } 0 \leq t < T_c, \\ 0, & \text{otherwise,} \end{cases} \quad (\text{B6})$$

where $0 < \alpha < 1$ and $p > 0$.

Proof. Consider $V(x) = \|x\|^\alpha$, which is a class-K function in terms of $\|x\|$. For $t \in [0, T_c]$,

$$\dot{V}(x) = \frac{d}{dt} (x^T x)^{\frac{\alpha}{2}} = \alpha (x^T x)^{\frac{\alpha}{2}-1} x^T \dot{x} = \alpha \|x\|^{\alpha-2} x^T \dot{x}. \quad (\text{B7})$$

It follows from (B6) that at $t < T_c$,

$$\dot{V}(x) = -\frac{\alpha p \left(1 - e^{-\|x\|^\alpha}\right)}{T_c - t} = -\frac{\alpha p}{T_c - t} \frac{e^{\|x\|^\alpha} - 1}{e^{\|x\|^\alpha}}. \quad (\text{B8})$$

Let $\mu(t) = -\frac{\alpha p}{T_c - t}$, we have

$$\rho(t) = -\int_0^t \mu(s) ds = \int_0^t \frac{\alpha p}{T_c - s} ds = -\alpha p \ln(T_c - t), \quad (\text{B9})$$

which satisfies (10) in Theorem 1. Moreover, from (B8),

$$\dot{V}(x) = \mu(t) \frac{e^{V(x)} - 1}{e^{V(x)}}, \quad (\text{B10})$$

which satisfies (9) in Theorem 1.

Then, the ratio persistence condition is checked. It is straightforward that for $t < T_c$,

$$\frac{\dot{x}}{\|\dot{x}\|} = -\frac{\text{sig}_n^{1-\alpha}(x)}{\|\text{sig}_n^{1-\alpha}(x)\|} = -\frac{x}{\|x\|}. \quad (\text{B11})$$

Therefore, both conditions of Theorem 1 are satisfied, and the system is true-PTSS.

The Euler-Lagrange system (1) is a second-order system with state vector q . Under the proposed controller (12), the state vector q is true-PTSS at the predefined time T_c . The analysis can be conducted in two steps.

First, we will show that s can be stabilized within $\bar{T}_c < T_c$. The time derivative of s for $t < \bar{T}_c$ in (11) writes

$$\begin{aligned} \dot{s} &= \ddot{q} + \frac{1}{\alpha_1} \frac{d}{dt} \left[\mu_1(t) \left(1 - e^{-\|q\|^{\alpha_1}}\right) \text{sig}_n^{1-\alpha_1}(q) \right] \\ &= \ddot{q} - \frac{\mu_1(t)}{\alpha_1} \text{sig}_n^{1-\alpha_1}(q) \frac{d}{dt} e^{-\|q\|^{\alpha_1}} + \frac{\eta(q)}{\alpha_1} \left[\dot{\mu}_1(t) \text{sig}_n^{1-\alpha_1}(q) + \mu_1(t) \frac{d}{dt} \text{sig}_n^{1-\alpha_1}(q) \right] \\ &= M^{-1}(q) [\tau(t) - C(q, \dot{q}) \dot{q} - g(q)] + \mu_1(t) [\theta_1(q) + \theta_2(q) \dot{q}]. \end{aligned} \quad (\text{B12})$$

From (12) and (B12),

$$\dot{s} = -\frac{p_2 \left(1 - e^{-\|s\|^{\alpha_2}}\right)}{\bar{T}_c - t} \text{sig}_n^{1-\alpha_2}(s). \quad (\text{B13})$$

Consider a class-K $V = \|s\|^{\alpha_2}$, which has the following derivative

$$\dot{V}(x) = \frac{d}{dt} (s^T s)^{\frac{\alpha_2}{2}} = \alpha_2 \|s\|^{\alpha_2-2} s^T \dot{s}. \quad (\text{B14})$$

From (B13) and (12), we have

$$\dot{V} = -\alpha_2 \|s\|^{\alpha_2-2} s^T \frac{p_2 \left(1 - e^{-\|s\|^{\alpha_2}}\right)}{\bar{T}_c - t} \text{sig}_n^{1-\alpha_2}(s) = \mu_2(t) \frac{e^{\|s\|^{\alpha_2}-1}}{e^{\|s\|^{\alpha_2}}} = \mu_2(t) \frac{e^V - 1}{e^V}. \quad (\text{B15})$$

From $\mu_2(t) = -\alpha_2 p_2 / (\bar{T}_c - t)$, we have

$$\rho_2(t) = -\int_0^t \mu_2(s) ds = \alpha_1 \alpha_2 p_1 \ln(\bar{T}_c - t), \quad (\text{B16})$$

which has the property of (10), leading to the convergence of s within \bar{T}_c according to Theorem 1.

Then, after s reaches zero, \dot{q} follows the manner of (B6) in Lemma B1 and drives q to true-PTSS within \bar{T}_c .

Besides,

$$\dot{q} = -\frac{p_1 \left(1 - e^{-\|q\|^{\alpha_1}}\right)}{\bar{T}_c - t} \text{sig}_n^{1-\alpha_1}(q), \text{ for } \bar{T}_c \leq t < T_c, \quad (\text{B17})$$

or equally, the i -th state element

$$\dot{q}_i = -\frac{p_1 \left(1 - e^{-\|q\|^{\alpha_1}}\right) \|q\|^{1-\alpha_1}}{\bar{T}_c - t} \text{sign}_n(q_i), \text{ for } \bar{T}_c \leq t < T_c, \quad (\text{B18})$$

which is non-zero.

Therefore, every element q_i also converges time-synchronously at T_c . In other words, the vector $[q, \dot{q}]^T$ achieves time-synchronized convergence. Thus System (1) is true-PTSS at T_c .

Appendix C Proof of Theorem 2, Convergence Analysis of the Disturbance Observer and the ε -PTSS Controller

Proof. Consider $V(x) = \|x\|^\alpha$, which is a class-K function in terms of $\|x\|$. When $t < T_c$,

$$\dot{V} = -\frac{\alpha p}{T_c + \Delta T - t} \frac{e^{V(x)} - 1}{e^{V(x)}}, \quad (C1)$$

which is derived similar to (B10).

Let $U(t) = e^{V(x(t))} - 1$, we have $\dot{U}(t) = -\frac{\alpha p}{T_c + \Delta T - t} U(t)$, thus

$$U(T_c) = \exp\left(-\int_0^{T_c} \frac{\alpha p}{T_c + \Delta T - t} dt\right) U(0) = e^{-\alpha p \ln \Delta T} U(0) = \Delta T^{-\alpha p} U(0). \quad (C2)$$

Invoking the construction of ΔT and V to the above equation yields

$$V(x(T_c)) = \ln(U(T_c) + 1) = \varepsilon^\alpha. \quad (C3)$$

Recall that $V(x) = \|x\|^\alpha$, we have $\|x(T_c)\| = \varepsilon$.

The structure of \dot{x} in (13) is similar to (B6), we can also achieve the ratio persistent property of x .

From to the analysis above, $\dot{V} \leq 0$ for $t < T_c$, which indicates that $\|x\|$ is monotonously decreasing for $t < T_c$. Since $\|x(T_c)\| = \varepsilon$, we have $\|x\| \geq \varepsilon$ for $t < T_c$. According to the ratio persistent property of x , $x_i/x_j = \text{constant}$ for any i, j and $x_j(0) \neq 0$. Therefore, every initially non-zero state element x_i satisfies $x_i \neq 0$ for $t < T_c$, which is consistent with the first requirement in the ε -PTSS Definition.

When $t \geq T_c$,

$$\dot{V}(t) = -\frac{\alpha p}{\Delta T} \frac{e^{V(x)} - 1}{e^{V(x)}} \leq 0, \quad (C4)$$

which indicates that $\|x\|$ will not increase and stays in the region $\|x\| \leq \varepsilon$. This is consistent with the second requirement of the ε -PTSS Definition, thus completing the proof.

Then, the convergence analysis of the disturbance observer is conducted. Define the observation error of the first/second-order state as $\tilde{z}_0 = z_0 - \dot{q}$ and $\tilde{z}_1 = z_1 - M^{-1}(q)d(t)$, respectively. We introduce the following lemma.

Lemma C1. Considering the system (1) and the disturbance observer (15)-(16), under Assumption 1, \tilde{z}_0 and \tilde{z}_1 converge to zero within the following time-bound

$$T_{ob} \leq \gamma_{ob} + \frac{\sigma + M\gamma_{ob}}{(1 - Mh/k_{z1})m} + \frac{\sigma}{m}, \quad (C5)$$

where h, M, m and γ_{ob} have the forms

$$\begin{aligned} h &= \frac{1}{k_{z1}} + \left(\frac{2e}{mk_{z1}}\right)^{\frac{1}{3}}, & \gamma_{ob} &= \gamma\left(2k_{z1}, 2k_{z2}, \frac{3}{4}, \frac{1+\nu}{2}, 1\right), \\ M &= k_{z3} + \delta, & m &= k_{z3} - \delta, \end{aligned} \quad (C6)$$

and the following inequalities hold:

$$k_{z3} > \delta, k_{z1} > Mh. \quad (C7)$$

Proof. From (15)-(16), the error dynamics is further derived

$$\begin{aligned} \dot{\tilde{z}}_0 &= -k_{z1}\text{sig}_c^{\frac{1}{2}}(\tilde{z}_0) - k_{z2}\text{sig}_c^\nu(\tilde{z}_0) + \tilde{z}_1, \\ \dot{\tilde{z}}_1 &= -k_{z3}\text{sign}_c(\tilde{z}_0) - \dot{d}(t). \end{aligned} \quad (C8)$$

The bound in (C5) is calculated by considering the following three situations:

Case 1: For every element i , $i = 1, \dots, n$, $\text{sign}_c(\tilde{z}_{1,i}(0)) = 0$ or $\text{sign}_c(\tilde{z}_{1,i}(0)) = -\text{sign}_c(\tilde{z}_{0,i}(0))$.

Let's construct the Lyapunov function $V_{ob} = \tilde{z}_0^T \tilde{z}_0$ with the following derivative

$$\dot{V}_{ob} = -2k_{z1}\tilde{z}_0^T \text{sig}_c^{\frac{1}{2}}(\tilde{z}_0) - 2k_{z2}\tilde{z}_0^T \text{sig}_c^\nu(\tilde{z}_0) + 2\tilde{z}_0^T \tilde{z}_1.$$

In this case, each element $\text{sign}_c(\tilde{z}_{1,i})$ has either the opposite sign with respect to $\text{sign}_c(\tilde{z}_{0,i})$ or the zero value, which leads to $\tilde{z}_0^T \tilde{z}_1 \leq 0$. Define $V_{ob,i} = \tilde{z}_{0,i}^2$ for $i = 1, \dots, i$, where $\tilde{z}_{0,i}$ is the i -th element of \tilde{z}_0 . Therefore we have

$$\dot{V}_{ob,i} \leq -2k_{z1}\tilde{z}_{0,i}\text{sig}_c^{\frac{1}{2}}(\tilde{z}_{0,i}) - 2k_{z2}\tilde{z}_{0,i}\text{sig}_c^\nu(\tilde{z}_{0,i}) = -2k_{z1}V_{ob,i}^{\frac{3}{4}} - 2k_2V_{ob,i}^{\frac{1+\nu}{2}}.$$

From the above equation, $\tilde{z}_{0,i}$ is fixed-time stable. The settling time of \tilde{z}_0 can be calculated as

$$T_{ob1} \leq \gamma_{ob} = \gamma\left(2k_{z1}, 2k_{z2}, \frac{3}{4}, \frac{1+\nu}{2}, 1\right), \quad (C9)$$

where the formulation of γ can be found in the following equation, $\gamma(p, g, \alpha, \beta, k)$ is defined as

$$\gamma(p, g, \alpha, \beta, k) = \frac{B(\omega_\alpha, \omega_\beta)}{p^{k-\omega_\alpha} g^{\omega_\beta} (\beta - \alpha)}, \quad (\text{C10})$$

where α, β, p, g, k are positive parameters with $k\alpha < 1$ and $k\beta > 1$, $\omega_\alpha = \frac{1-k\alpha}{\beta-\alpha}$, $\omega_\beta = \frac{k\beta-1}{\beta-\alpha}$. The detailed construction of the Beta function B can be found in [4].

In the case of $\|\tilde{z}_0(0)\| \rightarrow +\infty$, we have $T_{ob1} = \gamma_{ob}$.

When $t = T_{ob1}$,

$$|\tilde{z}_{1,i}(T_{ob1})| \leq \sigma + MT_{ob1}.$$

Considering $t > T_{ob1}$, $\tilde{z}_{1,i}(T_{ob1})$ starts at $(0, \sigma + MT_{ob1})$ for $i = 1, \dots, i$. Following Theorem 4.5 in [5] and the derivations in [6], with the condition of $Mh/k_{z1} < 1$, the settling time of $\tilde{z}_{1,i}(T_{ob1})$ satisfies

$$T_{ob2} \leq \frac{\sigma + MT_{ob1}}{(1 - Mh/k_{z1})m}. \quad (\text{C11})$$

Therefore the settling time of the disturbance observer satisfies

$$T_{ob}^{(1)} \leq T_{ob1} + T_{ob2} \leq \gamma_{ob} + \frac{\sigma + M\gamma_{ob}}{(1 - Mh/k_{z1})m}.$$

Case 2: There exist an element i , such that $\text{sign}_c(\tilde{z}_{1,i}(0)) = \text{sign}_c(\tilde{z}_{0,i}(0))$.

We consider the case that there exists a dimension that $\text{sign}_c(\tilde{z}_1(0))$ and $\text{sign}_c(\tilde{z}_0(0))$ have the same sign, and $\tilde{z}_{0,i}$ cannot reach zero before $\text{sign}_c(\tilde{z}_{1,i}) = -\text{sign}_c(\tilde{z}_{0,i})$. Thus $\tilde{z}_{1,i}$ converges before $\tilde{z}_{0,i}$. From (C8), we can derive that $\tilde{z}_{1,i}$ arrives at the origin within

$$T_{ob}^{(2)} \leq \frac{\sigma}{m}.$$

When $t \geq T_{ob0}$, we have $\text{sign}_c(\tilde{z}_1(T_{ob}^{(2)})) = 0$ or for $i = 1, \dots, n$, $\text{sign}_c(\tilde{z}_{1,i}(T_{ob}^{(2)})) = -\text{sign}_c(\tilde{z}_{0,i}(T_{ob}^{(2)}))$, which has been discussed in Case 1.

Case 3: There exist an element i , such that $\text{sign}_c(\tilde{z}_{1,i}(0)) \neq 0$ and $\tilde{z}_{0,i}(0) = 0$.

We have $\text{sig}_c^{\frac{1}{2}}(\tilde{z}_{0,i}) = \text{sig}_c^{\nu}(\tilde{z}_{0,i}) = 0$, thus $\dot{\tilde{z}}_{0,i} = \tilde{z}_{1,i} \neq 0$. In other words, $\tilde{z}_{0,i}(0) = 0$ is a short enough transient process and it becomes Case 1 or Case 2 within $T_{ob}^{(3)} \rightarrow 0$.

From $T_{ob}^{(1)}$, $T_{ob}^{(2)}$ and $T_{ob}^{(3)}$, the settling time

$$T_{ob} \leq \gamma_{ob} + \frac{\sigma}{m} + \frac{\sigma + M\gamma_{ob}}{(1 - Mh/k_{z1})m}, \quad (\text{C12})$$

which completes the proof.

The above lemma estimates the disturbance before T_{ob} . Since T_{ob} is a function of the parameters k_{z1}, k_{z2} , and k_{z3} , the disturbance can be estimated accurately by designing the parameters such that $T_{ob} < T_c$.

Finally, the stability analysis of the ε -PTSS controller is conducted.

According to Theorem 2, the state vector q of system (1) is ε -PTSS at T_c if $s = 0$. We will show that s can be stabilized within T_c .

Similar to (B12), \dot{s} of (16) writes

$$\dot{s} = M^{-1}(q) [\tau(t) - C(q, \dot{q})\dot{q} - g(q) + d(t)] + \theta_3(q) + \theta_4(q)\dot{q}. \quad (\text{C13})$$

Note that z_1 is designed to satisfy $\tilde{z}_1 = z_1 - M^{-1}(q)d(t) = 0$ for $t \in [T_{ob}, T_c]$, $d(t)$ is accurately estimated before T_c . Substitute $\tau(t)$ of (19) into (C13) yields

$$\dot{s} = -\lambda_\varepsilon M(q) (p_2 \text{sig}_n^{\alpha_2}(s) + g_2 \text{sig}_n^{\beta_2}(s)), \quad (\text{C14})$$

where every element of s is monotonously moving towards zero.

Let's calculate the supremum of $\|q\|$ before $s = 0$. For any state element q_i , In the case of $\text{sign}(\dot{q}_i) = -\text{sign}(q_i)$ or $\text{sign}(\dot{q}_i) = 0$, $|q_i|$ will not increase. In the other case, either $q_i = 0$ or \dot{q}_i, q_i , and s_i have the same sign. From (14), $|\dot{q}_i| \leq |s_i|$. Since $|s_i|$ is monotonously decreasing, $|\dot{q}_i| < |s_i(0)|$. Thus we have

$$|q_i| < |q_i(0)| + |s_i(0)|T_c \quad (\text{C15})$$

for $t < T_c$. Define $\bar{q}_i = |q_i(0)| + |s_i(0)|T_c$ and $\bar{q} = [\bar{q}_1, \dots, \bar{q}_n]^T$, we can achieve that $\|q\| < \|\bar{q}\|$ for $t < T_c$. Then, ΔT is calculated as

$$\Delta T = \left(\frac{e^{\varepsilon^{\alpha_1}} - 1}{e^{\|\bar{q}\|^{\alpha_1}} - 1} \right)^{-\frac{1}{\alpha_1 p_1}}. \quad (\text{C16})$$

Consider the Lyapunov function $V = s^T s$. From (C13), \dot{V} has the following derivative

$$\dot{V} = -\lambda_\varepsilon \left(2p_2 V^{\frac{\alpha_2+1}{2}} + 2g_2 V^{\frac{\beta_2+1}{2}} \right), \quad (\text{C17})$$

s converges within T_c . Moreover, \dot{q} is non-zero at $t < T_c$ as in the true-PTSS case. System (1) is ε -PTSS at T_c .

Appendix D Simulation Details

We use the satellite in the local-vertical-local-horizontal rotating frame for controller verification [7]. The dynamics described in (1) have the following formulations,

$$M = mI_3, C = m \begin{bmatrix} 0 & -2\omega_0 & 2 \\ 2\omega_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, g = m \begin{bmatrix} -\omega_0^2 q_1 + \frac{\mu_e(R_0+q_1)}{R^3} - \frac{\mu_e}{R_0^2} \\ -\omega_0^2 q_2 + \frac{\mu_e q_2}{R^3} \\ \frac{\mu_e q_3}{R^3} \end{bmatrix}, \quad (D1)$$

where $q = [q_1, q_2, q_3]^T$ is the relative coordinate, $\omega_0 = \sqrt{\mu_3/R_0^3}$ is the orbital angular velocity, R_0 is the orbit radius, and R is the distance between the geocenter and the satellite. The control input τ is a three-dimensional force vector.

The control parameters used for the PTSS controller are demonstrated in Table. D1.

Table D1 Control parameters for PTSS

Parameters	Values	Parameters	Values	Parameters	Values	Parameters	Values
p_1	0.1	p_2	0.1	α_1	0.6	α_2	0.6
g_1	0.1	g_2	0.1	β_1	1.08	β_2	1.08
T_c	200s	ρ	0.5				

The system states under the PTSS controller are illustrated in the Letter. The initial state vector is $q_0 = [5, -15, 25]^T$ m in the simulation. The settling time is smaller than T_c , and the state elements under the proposed controllers converge time-synchronously, thus the goal of predefined-time-synchronized convergence is achieved. The time-synchronization property can be observed more clearly in the sub-figure, which is zoomed by 10^{-3} . The actual settling time is $t = 30.8$ s for the PTSS controller.

The control parameters for true-PTSS are presented in Table. D2 and the initial state vector is $q_0 = [5, -15, 25]^T$ m.

The system states under the true-PTSS controller are plotted in Fig. 1 (top right) of the Letter, where the settling time of the state elements q_1 , q_2 , and q_3 are all 40s as predefined. We zoom the states near the origin by 10^{-3} in the sub-figure. The results indicate that every state element converges precisely at the predefined time by using the proposed true-PTSS controller. From Fig. D1(a), $\dot{q}_i, i = 1, 2, 3$, also reach the origin at $t = T_c = 40$ s. Thus $q(t) = \dot{q}(t) \rightarrow 0$ for $t \rightarrow T_c$ and remain zero for $t \geq T_c$. The true-predefined-time-synchronized convergence is achieved by the proposed controller.

Similar results can be found in the plots of s in Fig. D1(b). The predefined settling time of s is $\bar{T}_c(s_0) = 32$ s. In the zoomed sub-figure, both s_1 and s_2 reach the origin at $t = 32$ s and then stay at zero. At $t < 32$ s, $s_2(t)$ and $s_1(t)$ keeps a persistent ratio of $s_2(t)/s_1(t) = 3$ in the whole process, which equals $q_2(t)/q_1(t)$. The persistent ratios indicate that different elements of the state vector converge at the same speed, which results in their simultaneous arrival. Similarly, $s_2(t)/s_3(t) = q_2(t)/q_3(t) = -0.6$ and $s_3(t)/s_1(t) = q_3(t)/q_1(t) = 5$ at $t < 32$ s.

The control inputs are plotted in Fig. D1(c), where $\tau = [\tau_1, \tau_2, \tau_3]$ varies slowly according to the predefined time.

Table D2 Control parameters of true-PTSS

Parameters	Values	Parameters	Values	Parameters	Values	Parameters	Values
p_1	3	p_2	3	α_1	0.04	α_2	0.04
T_c	40s	\bar{T}_c	32s				

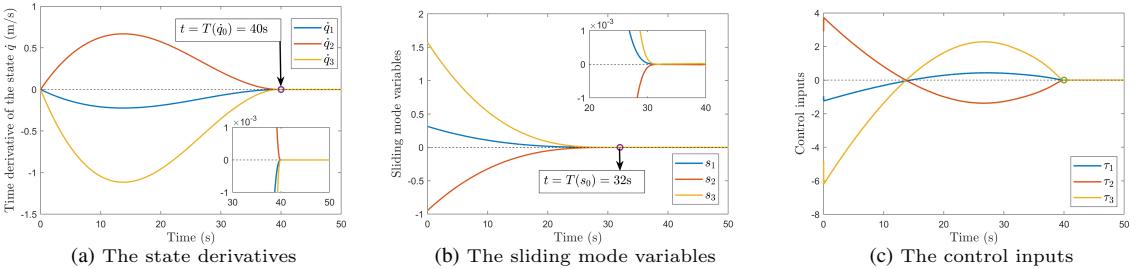


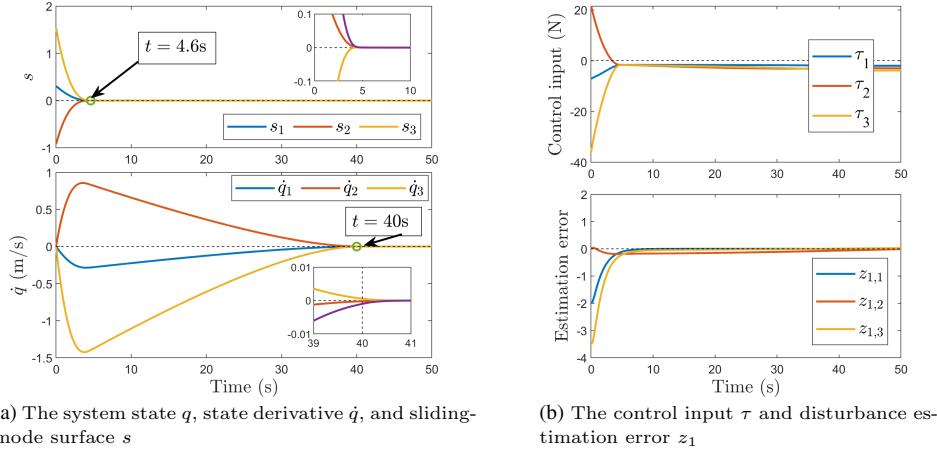
Figure D1 The state derivatives, the sliding mode variables, and the control inputs under the true-PTSS controller.

The disturbance and control parameters for the ε -PTSS controller are listed in Tab. D3.

The system state q , state derivative \dot{q} , and sliding-mode surface s under ε -PTSS controller are illustrated in Fig. D2 (a). In the simulation, the desired settling time is $T_c = 40$ s and the steady state error is allowed to be $\varepsilon = 0.01$. The extra time is calculated as $\Delta T \approx 1$ s. From the figures, the state $\|q\| < \varepsilon$ in T_c , and \dot{q} is also stabilized to a small neighborhood of the equilibrium. The sliding-mode surface s reaches the origin at $t = 4.6$ s, which is earlier than the predefined time. Besides, the time-synchronous property is well kept for q , \dot{q} and s .

Table D3 Control parameters for ε -PTSS

Parameters	Values	Parameters	Values	Parameters	Values	Parameters	Values
p	3	α	0.04	T_c	40s	$d_2(t)$	$3\sin(0.01\pi t)$
p_2	0.1	α_2	0.6	$d_1(t)$	2	$d_3(t)$	$4\sin(0.005\pi t + \pi/3)$
k_{z1}	2	k_{z2}	2	k_{z3}	2	ν	1.2
g_2	0.1	β_2	1.08				

**Figure D2** Control Performance under ε -PTSS controller.

The control input $\tau(t)$ and the estimation error of the disturbance \tilde{z}_1 is illustrated in Fig. D2 (b). In this case, the control inputs do not stay at the origin when $t > T_c$, instead, $\tau(t)$ varies to compensate for the disturbance.

From the figures, ε -PTSS is achieved for the system with disturbance.

References

- Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. *IEEE Transactions on Automatic Control*, 2012, 57: 2106–2110
- Li D, Ge S S, Lee T H. Simultaneous arrival to origin convergence: Sliding-mode control through the norm-normalized sign function. *IEEE Transactions on Automatic Control*, 2021, 67: 1966–1972
- Zhou B. Finite-time stability analysis and stabilization by bounded linear time-varying feedback. *Automatica*, 2020, 121: 109191
- Bateman H. Higher Transcendental Functions [Volumes I-III], volume 1. McGraw-Hill Book Company 1953, 1953
- Shtessel Y, Edwards C, Fridman L, et al. Sliding mode control and observation. Springer 2014, 2014
- Utkin V. On convergence time and disturbance rejection of super-twisting control. *IEEE Transactions on Automatic Control*, 2013, 58
- Li D, Zhang W, He W, et al. Two-layer distributed formation-containment control of multiple euler-lagrange systems by output feedback. *IEEE Transactions on Cybernetics*, 2018, 49: 675–687