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Appendix A Stability Analysis of the PTSS Controller

We introduce the following theorem and lemma for PTSS control.

Theorem Al. System & = f(z,t) achieves PTSS in T¢ if:
1. there is a Lyapunov function V(z),

V(z) < =A@eV©(2) + gV’ ()", (A1)

where a, 8, p, g, k are positive parameters with ka < 1 and k8 > 1, and A = X(p, g, k, o, 8, T¢) is a control parameter related
with T,
PF(L —ka) +g* (kB — 1)
PRGETe(1 — ka)(kB — 1)

2. the state z is ratio persistent with z/||z|| = (f (z,t)/||f (z, )| for z # 0 and ¢ € {1, —1}.
Proof.  Since the derivative of the Lyapunov function satisfies V(z) < —A(pV(z) + gV #(z))*, the following result can
be obtained:

Xp, 9,k o, 8,Te) = (A2)

V(z) < —(pAE VO (x) + gAk VA (2)k. (A3)

From [1], the system is fixed-time stable within time T,

1 1 1
<3 (p’“(l — ka) - g (kS — 1)) — e ()

which indicates that the system converges within 7" < T.. Moreover, x is ratio persistent, leading to the time-synchronized
property according to [2]. Thus the system is PTSS as in the Definition.

Lemma Al. System & = f(z,t) is PTSS within T¢ if the state = varies in the following manner:

1 1
b= (o S A1) (s (@) + gsied (@), (A5)

where the parameters are detailed in Theorem Al.

Proof.  Consider V(z) = 2Tz, which has the following time-derivative,

. , atl B+1
V@) =ati = -2a (o1, S5+, T2 21 ) (el 4 gle] ). (A6)

Let @ = (a4 1)/2 and B = (8 + 1)/2, we have
V(@) = <A (p.g,1,8,8,2Tc) (pV°(2) + 9V (@) (A7)

which formulates the same as (A3) and the system achieves fixed-time stability within T, according to [1].
The equation (A5) leads to

& pllel* sign, () +gllz||Psign, (x) __ sign, (@) @
[l ([pllzl|sign,, () + gll||sign,, ()] lIsign,, () || [l

therefore the system is ratio persistent.
The two conditions in Theorem Al are all satisfied, as a result, PTSS is achieved.

* Corresponding author (email: dongyuli@buaa.edu.cn)
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The Euler-Lagrange system (1) is a second-order system with state vector gq. Under the proposed controller (6), the state
vector g is PTSS within the predefined time T.. The analysis can be conducted in two steps.
First, we will force s to the equilibrium before T, < Te.

T

Consider the Lyapunov candidate V' = s+ s, which has a derivative of V = 2sT5. Substitute the system dynamics (1)

into (2) yields
o d s o N .
$=d+ao (plslgnl (q) + g1sigy? (q)) =M (q) (1(t) = C(q,9)q — 9(q)) + ¢16(q)q- (A9)

Substitute the above equation to the V yields

ot
2

. 1 Botl
V= <2576 (pasied® () + sl () = ~Ga (p2v "5 4 v ), (A10)

therefore the sliding manifold s is PTSS within time 7.
Then, after s reaches zero, ¢ follows the manner of (A5) in Lemma. A1l and drives q to PTSS in T, — T¢.
Besides,

i=—¢ (psien’ (@) + g1sigd (@), (AL1)
or equally,
. i
6 = =G1 (pllal ™ + g1 llal*r) 2 (A12)
lal

Let T'(q) be the actual settling time of ¢q. For t > T'(q), ¢ = 0, thus ¢ = 0. For t < T'(q), ¢; # 0, thus ¢; # 0.
Therefore, every element g;,7 = 1,--- ,n, also converges time-synchronously at ¢t = T'(¢). In other words, the vector
[g,d]T achieves time-synchronized convergence. As a result, system (1) is PTSS within Tt.

Appendix B Proof of Theorem 1 and Stability Analysis of the True-PTSS Controller

Proof.  According to [3], the system converges in Tt on the first condition of Theorem 2, namely z(t) = 0 for ¢t € [T, +00).
Therefore, Theorem 2 holds if we can prove that every element z; of the state x satisfies z;(¢) # 0 for ¢t € [0, T¢).

The ratio persistent property of z indicates that every state element x; converges simultaneously. Mathematically, there
must be a time instant T < T, that z;(t) # 0 for t € [0,T) and x;(t) = 0 for ¢t € [T, 4+00).

Then, we show that T = T.. Inspired by [3], define V (¢,z) : [0,Tc) X Ry — R4 as

Vit z) = Wl _ (B1)
The derivative of V (¢, x) is

Wzl 1

Y — W(tlzl) P
V(t7 CC) =e€ ,Lt(t) eW(t»HTH) - /”’(t)v(tvx)v (Bz)
which leads to
V(t,z) = e "DV (0, z0). (B3)
From (10),
V(t,z) =e PMV(0,20) >0 for t < Te. (B4)
Recall the relation between V (¢, z) and W (¢, ||z||), we have
eV®Iz) S 1 for t < T, (B5)

consequently W (¢, ||z||) # 0 for ¢ < Te.

According to the property of the class-K function that W (¢, ||z]|) = 0 if and only if ||z|| = 0, we can achieve that ||z|| # 0
for t < Te, which indicates that ||z| approaches zero at T¢ precisely, thus completing the proof.

The stability analysis of the true-PTSS controller is presented based on the following Lemma.

Lemma B1l. System & = f(z,¢) is true-PTSS within T if the state z varies in the following manner:

p(1—e—llel®) .
0= —%mg}l *(z), UHO0<t<Te, (B6)

0, otherwise,

where 0 < @ < 1 and p > 0.
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Proof.  Consider V(z) = ||z||%*, which is a class-K function in terms of ||z||. For ¢ € [0, T¢),
y d (1 \% T V27l T, -2 T,
Vig)=—(z7z)” =alz &= alz||* "z . (B7)
dt

It follows from (B6) that at ¢ < T,

. ap (1—ell=I® 2l _ 4
V(z) = - ( >:— e (BS)
T.—t T.—t el=l
Let p(t) = —%, we have
t t
p(t):—/ u(s)ds:/ To‘p ds =—apIn(T, —t), (B9)
0 0 c— S

which satisfies (10) in Theorem 1. Moreover, from (B8),

. eViz) _q
V(@) =nl)—po— (B10)
which satisfies (9) in Theorem 1.
Then, the ratio persistence condition is checked. It is straightforward that for ¢t < T,
& siga (@) @ (B11)
ll] lIsign= () | [l

Therefore, both conditions of Theorem 1 are satisfied, and the system is true-PTSS.

The Euler-Lagrange system (1) is a second-order system with state vector q. Under the proposed controller (12), the
state vector ¢ is true-PTSS at the predefined time T.. The analysis can be conducted in two steps.

First, we will show that s can be stabilized within T. < T.. The time derivative of s for t < T in (11) writes

1 d «
=G4 = _ e llall®t ) gipl-an
s=it o [ (1= 1™ ) sigh ™ (g)] (B12)
t d « d
=i gl ) e 11 4 D s (0) 4 0 Ssieh 0 @)
« t aq dt
=M"1(q) [r(t) — C(a,d)d — 9(a)] + n1(t) [61(q) + 62(q)d] -
From (12) and (B12),
pa (1= e lel%)
§= 7Tsig}170‘2 (s). (B13)
Consider a class-K V' = ||s]|*2, which has the following derivative
. d 2
V(z) = pr (sTs) ? = anl|s||*2 725 s, (B14)
From (B13) and (12), we have
P2 (176_%”(12) llsloz—1 &V 1
y — _ ag—2_T s l—ag — —
V= a2 2T gl (5) = a0 e = a0 (B15)
From pgo(t) = —aspa/(Te — t), we have
t —
p2(t) = —/ p2(s)ds = aragpr In(T, — t), (B16)
0

which has the property of (10), leading to the convergence of s within T, according to Theorem 1.
Then, after s reaches zero, ¢ follows the manner of (B6) in Lemma. B1 and drives ¢ to true-PTSS within T,.

Besides,
pr(1—elal™) _
i= - —tsigl M (@), for T <t < T, (BIT)
T

or equally, the i-th state element
p1 (1 - e*l\ql\‘”) llg|lt—e1

Gi = — sign, (¢;), for Te <t < T, (B18)
T. -t

which is non-zero.
Therefore, every element g; also converges time-synchronously at T.. In other words, the vector [g, Q]T achieves time-
synchronized convergence. Thus System (1) is true-PTSS at Te.
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Appendix C Proof of Theorem 2, Convergence Analysis of the Disturbance Observer and
the e-PTSS Controller

Proof.  Consider V(z) = ||z||¢, which is a class-K function in terms of ||z||. When ¢t < T¢,

. V(z) _1
ap e
V=— , C1
T.+ AT —t V(@) (€1

which is derived similar to (B10).

Let U(t) = ¢V (@®) — 1, we have U(t) = —%U(t)7 thus
T, ap
U(T.) = - —— 4t ) U(0) = e~ *PmATY(0) = AT~*PU(0). 2
@) =ep (- [ L —at)U0) = ) ) (©2)

Invoking the construction of AT and V to the above equation yields
V(z(T:)) =In (U(Te) + 1) = . (C3)

Recall that V(z) = ||z||%, we have ||z(T¢)|| = e.

The structure of & in (13) is similar to (B6), we can also achieve the ratio persistent property of x.

From to the analysis above, V < 0 for ¢ < T, which indicates that ||z|| is monotonously decreasing for ¢ < T.. Since
|lz(Te)|| = €, we have ||z|| > € for ¢t < T.. According to the ratio persistent property of x, x;/x; = constant for any ¢, j and
x;(0) # 0. Therefore, every initially non-zero state element x; satisfies x; # 0 for ¢ < T, which is consistent with the first
requirement in the e-PTSS Definition.

When t > Tg, .
. ap V(@) —1
V)=~ 7 —v@ <0

which indicates that ||z|| will not increase and stays in the region ||z|| < e. This is consistent with the second requirement
of the e-PTSS Definition, thus completing the proof.

Then, the convergence analysis of the disturbance observer is conducted. Define the observation error of the first/second-
order state as Zo = 2o — ¢ and 21 = 21 — M ~1(q)d(t), respectively. We introduce the following lemma.
Lemma C1. Considering the system (1) and the disturbance observer (15)-(16), under Assumption 1, Zp and Z; converge
to zero within the following time-bound

(C4)

o+ Mvop

o
T < _gr e L 7 C5
ob 'Yob"‘(l_Mh/kZl)m m ( )
where h, M, m and ., have the forms
1 2 \3 3 14
e v
h= , =~ 2kz1,2kz2, -, —,1 ),
For (mkzl> Tob 7( b= T )
M = k.3 +9, m = kz3 — 9, (06)
and the following inequalities hold:
kz3 > 6,kz1 > Mh. (C7)
Proof.  From (15)-(16), the error dynamics is further derived
. 1
Zo = — kz15ig8 (Z0) — ke2sigy (Z0) + 21,
51 = — k,3signc (20) — d(t) (CS)

The bound in (C5) is calculated by considering the following three situations:
Case 1: For every element 4, i = 1,--- ,n, signc(21,;(0)) = 0 or signc(%1,;(0)) = —signc(Zo,:(0)).
Let’s construct the Lyapunov function V,;, = Zg Zo with the following derivative

. 1
Vop = —2k,128sig2 (30) — 2ka0Za sig? (20) + 258 21.

In this case, each element signc(21,;) has either the opposite sign with respect to signe(Zo ;) or the zero value, which

leads to 22{21 < 0. Define Vi, ; = 28 ; fori=1,--- 4, where Zg ; is the i-th element of Zp. Therefore we have
. I S L. ~ 3 14y
Vob,i < —2kz120,:8188 (Z0,i) — 2k.2Z0,i818% (20,i) = 72kleo‘é’i - 2k2V0bi. .

From the above equation, Zo,; is fixed-time stable. The settling time of Zg can be calculated as

3 1+4+v
Tob1 < Yob =7 (2k217 2kz2, 17 Tv 1) s (09)
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where the formulation of v can be found in the following equation, v(p, g, «, 8, k) is defined as

B (wa, wp)
ph=wag?s (6 —a)’
where «, 3, p, g, k are positive parameters with ka < 1 and k8 > 1, wq = %, wg = % The detailed construction of

the Beta function B can be found in [4].
In the case of |20 (0)|| — +oo, we have Top1 = Yob-

v, g, B, k) = (C10)

When t = Tobl’
121,i(Top1)| < o+ MTop1.
Considering t > Top1, 21,i(Top1) starts at (0,04+MTyp1) for i =1,--- 4. Following Theorem 4.5 in [5] and the derivations
in [6], with the condition of Mh/k.1 < 1, the settling time of Z1 ;(T,p1) satisfies

o+MTyp1

(1= Mh/k1)m’ (GLL)

Top2 <

Therefore the settling time of the disturbance observer satisfies

o+ M'Yob

™D <« 4T, < g7 PVb
ob S dob1 obz\’Yob-&-(l_Mh/kZl)m

Case 2: There exist an element 4, such that signc(Z1,;(0)) = signc(2o,:(0)).

We consider the case that there exists a dimension that sign¢(Z1(0)) and sign¢(20(0)) have the same sign, and Zy ; cannot
reach zero before signc(Z1,;) = —signc(Zo ;). Thus 21 ; converges before Zy ;. From (C8), we can derive that Z; ; arrives at
the origin within

Ty <o
m

‘When t > T,p9, we have signc (21 (Té?)) =0or fori=1,---,n, signc (21,1‘ (Té?)) = —signc (50,1‘ <T£§>>>, which
has been discussed in Case 1.

Case 3: There exist an element 4, such that signc(21,;(0)) # 0 and Z,;(0) = 0.

1 .
We have sigé (Z0,;) = sig¥ (20,;) = 0, thus Zg ; = Z1,; # 0. In other words, Z,;(0) = 0 is a short enough transient process
and it becomes Case 1 or Case 2 within ng) — 0.
From Té;), T‘S? and T the settling time

ob
O’+M'70b

(= Mh/ker)m’ (G12)

Tob < Yob + 1 +
m

which completes the proof.

The above lemma estimates the disturbance before T,;. Since T,y is a function of the parameters k.1, k.2, and k.3, the
disturbance can be estimated accurately by designing the parameters such that T, < Te.

Finally, the stability analysis of the e-PTSS controller is conducted.

According to Theorem 2, the state vector g of system (1) is e-PTSS at T¢ if s = 0. We will show that s can be stabilized
within T¢.

Similar to (B12), $ of (16) writes

s=M""(q) [r(t)—C(aq,d)d—g(q) + d(t)]+65(q) +04(q)d. (C13)

Note that z; is designed to satisfy 21 = 21 — M ~1(q)d(t) = 0 for t € [Top, Te], d(t) is accurately estimated before T..
Substitute 7(t) of (19) into (C13) yields

5= =AM (q) (pasigd? (s) + gasigl? (s)) , (C14)
where every element of s is monotonously moving towards zero.
Let’s calculate the supremum of ||g|| before s = 0. For any state element g;, In the case of sign (¢;) = —sign(g;) or

sign(¢;) = 0, |g;| will not increase. In the other case, either ¢; = 0 or ¢;,q;, and s; have the same sign. From (14),
|gi| < |si]. Since |s;| is monotonously decreasing, |¢;| < |s;(0)|. Thus we have

las] < 1gi(0)] + |s:(0)| T (C15)
for t < Te. Define §; = |g;(0)| + |5:(0)|T: and § = [1,--- ,@n]T, we can achieve that ||q|| < ||g|| for ¢ < T.. Then, AT is
calculated as )
el —1 \ 1t
oo () <
Consider the Lyapunov function V' = sTs. From (C13), V has the following derivative

. ag+1 Bot1

V==X (2p2V 2 4292V 72 ) , (C17)

s converges within T.. Moreover, ¢ is non-zero at t < T¢ as in the true-PTSS case. System (1) is e-PTSS at Te.
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Appendix D Simulation Details

We use the satellite in the local-vertical-local-horizontal rotating frame for controller verification [7]. The dynamics described
in (1) have the following formulations,

0 —2wp 2 —wfa + ) — s
Mszg,CZm Zwo 0 0] ,g9=m 70‘-’3(124’ Mle%gQ ) (Dl)
0 0 0 Heq3
R3

where ¢ = [q1,q2,¢3]T is the relative coordinate, wo = ‘//Lg/RS is the orbital angular velocity, Rg is the orbit radius, and

R is the distance between the geocenter and the satellite. The control input 7 is a three-dimensional force vector.
The control parameters used for the PTSS controller are demonstrated in Table. D1.

Table D1 Control parameters for PTSS

Parameters ~ Values Parameters  Values Parameters  Values Parameters ~ Values
P1 0.1 P2 0.1 aq 0.6 [e 0.6
g1 0.1 g2 0.1 B1 1.08 B2 1.08
Te 200s p 0.5

The system states under the PTSS controller are illustrated in the Letter. The initial state vector is go = [5, —15, 25]Trn
in the simulation. The settling time is smaller than T, and the state elements under the proposed controllers converge time-
synchronously, thus the goal of predefined-time-synchronized convergence is achieved. The time-synchronization property
can be observed more clearly in the sub-figure, which is zoomed by 1073. The actual settling time is ¢ = 30.8s for the PTSS
controller.

The control parameters for true-PTSS are presented in Table. D2 and the initial state vector is go = [5, —15,25]T m.

The system states under the true-PTSS controller are plotted in Fig. 1 (top right) of the Letter, where the settling time
of the state elements g1, g2, and g3 are all 40s as predefined. We zoom the states near the origin by 10~3 in the sub-figure.
The results indicate that every state element converges precisely at the predefined time by using the proposed true-PTSS
controller. From Fig. D1(a),q;,% = 1,2, 3, also reach the origin at ¢t = T, = 40s. Thus ¢(t) = ¢(t) — 0 for ¢t — T, and remain
zero for t > T.. The true-predefined-time-synchronized convergence is achieved by the proposed controller.

Similar results can be found in the plots of s in Fig. D1(b). The predefined settling time of s is Tc(sp) = 32s. In the
zoomed sub-figure, both s; and sz reach the origin at ¢t = 32s and then stay at zero. At ¢ < 32s, s2(¢t) and s1(t) keeps
a persistent ratio of s2(t)/s1(¢) = 3 in the whole process, which equals g2(t)/q1(t). The persistent ratios indicate that
different elements of the state vector converge at the same speed, which results in their simultaneous arrival. Similarly,
s2(t)/s3(t) = q2(t)/q3(t) = —0.6 and s3(t)/s1(t) = g3(t)/q1(t) =5 at t < 32s.

The control inputs are plotted in Fig. D1(c), where 7 = [11, T2, 73] varies slowly according to the predefined time.

Table D2 Control parameters of true-PTSS

Parameters Values Parameters  Values Parameters ~ Values Parameters Values
P1 3 P2 3 ay 0.04 asz 0.04
T. 40s T. 32s
z 2 . s
£ t =T(go) = 40s @ 4710 .
=05 _q:J 15 2
2 ds Y
5 g ] :
g 0 g 4 . —
= . 3 os 20 30 w0 |
o (a0t g
> 0.5 =
£ o
o z -
“ s |r =T(s9) = 325 5 " ™
30 40 50 53 T3

10 20 30 40 50 : o 10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s) Time (s)

(a) The state derivatives (b) The sliding mode variables (¢) The control inputs

Figure D1 The state derivatives, the sliding mode variables, and the control inputs under the true-PTSS controller.

The disturbance and control parameters for the e-PTSS controller are listed in Tab. D3.

The system state g, state derivative ¢, and sliding-mode surface s under e-PTSS controller are illustrated in Fig. D2 (a).
In the simulation, the desired settling time is T, = 40s and the steady state error is allowed to be € = 0.01. The extra time
is calculated as AT = 1s. From the figures, the state ||¢|| < € in T¢, and ¢ is also stabilized to a small neighborhood of the
equilibrium. The sliding-mode surface s reaches the origin at ¢ = 4.6s, which is earlier than the predefined time. Besides,
the time-synchronous property is well kept for ¢, ¢ and s.
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Table D3 Control parameters for e-PTSS

Parameters  Values | Parameters  Values Parameters  Values | Parameters Values
2 3 o 0.04 Te 40s da(t) 3sin(0.017t)
D2 0.1 (e 0.6 dy(t) 2 ds(t) 4sin(0.0057t 4 7 /3)
a1 2 Kao 2 Kos 2 v 1.2
g2 0.1 B2 1.08

N
S

0.1 —
N 2
Of-=---3 =
1 £ o . .
* 0.1 g T
5 10 3
oF> 3
/V 720 T3
s s s ] =
1 ‘ 1 2 3 8
0 10 20 30 40 50 40!
= 0 10 20 30 40 50
2
g1
o]
2 L
3
= E=gnl 21,1
> 3
0 g 2 212
-’ L Z 3 213
004g 40 7 = -
1.5 4
0 10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)
(a) The system state g, state derivative ¢, and sliding- (b) The control input 7 and disturbance es-
mode surface s timation error z;

Figure D2 Control Performance under e-PTSS controller.

The control input 7(¢) and the estimation error of the disturbance Z; is illustrated in Fig. D2 (b). In this case, the
control inputs do not stay at the origin when ¢ > T¢, instead, 7(¢) varies to compensate for the disturbance.
From the figures, e-PTSS is achieved for the system with disturbance.
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