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Appendix A Stability Analysis of the PTSS Controller

We introduce the following theorem and lemma for PTSS control.

Theorem A1. System ẋ = f(x, t) achieves PTSS in Tc if:

1. there is a Lyapunov function V (x),

V̇ (x) ⩽ −λ(pV α(x) + gV β(x))k, (A1)

where α, β, p, g, k are positive parameters with kα < 1 and kβ > 1, and λ = λ(p, g, k, α, β, Tc) is a control parameter related

with Tc,

λ(p, g, k, α, β, Tc) =
pk(1− kα) + gk(kβ − 1)

pkgkTc(1− kα)(kβ − 1)
, (A2)

2. the state x is ratio persistent with x/∥x∥ = ζf (x, t)/∥f (x, t)∥ for x ̸= 0 and ζ ∈ {1,−1}.
Proof. Since the derivative of the Lyapunov function satisfies V̇ (x) ⩽ −λ(pV α(x) + gV β(x))k, the following result can

be obtained:

V̇ (x) ⩽ −(pλ
1
k V α(x) + gλ

1
k V β(x))k. (A3)

From [1], the system is fixed-time stable within time T ,

T ⩽
1

λ

(
1

pk(1− kα)
+

1

gk(kβ − 1)

)
= Tc, (A4)

which indicates that the system converges within T ⩽ Tc. Moreover, x is ratio persistent, leading to the time-synchronized

property according to [2]. Thus the system is PTSS as in the Definition.

Lemma A1. System ẋ = f(x, t) is PTSS within Tc if the state x varies in the following manner:

ẋ = −λ

(
p, g, 1,

α+ 1

2
,
β + 1

2
, 2Tc

)(
p sigαn (x) + g sigβn (x)

)
, (A5)

where the parameters are detailed in Theorem A1.

Proof. Consider V (x) = xTx, which has the following time-derivative,

V̇ (x) = xTẋ = −2λ

(
p, g, 1,

α+ 1

2
,
β + 1

2
, 2Tc

)(
p∥x∥α+1 + g∥x∥β+1

)
. (A6)

Let ᾱ = (α+ 1)/2 and β̄ = (β + 1)/2, we have

V̇ (x) = −λ
(
p, g, 1, ᾱ, β̄, 2Tc

) (
pV ᾱ(x) + gV β̄(x)

)
, (A7)

which formulates the same as (A3) and the system achieves fixed-time stability within Tc according to [1].

The equation (A5) leads to

ẋ

∥ẋ∥
= −

p∥x∥α signn (x) + g∥x∥βsignn (x)∥∥p∥x∥αsignn (x) + g∥x∥βsignn (x)
∥∥ = −

signn (x)

∥signn (x) ∥
= −

x

∥x∥
, (A8)

therefore the system is ratio persistent.

The two conditions in Theorem A1 are all satisfied, as a result, PTSS is achieved.
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The Euler-Lagrange system (1) is a second-order system with state vector q. Under the proposed controller (6), the state

vector q is PTSS within the predefined time Tc. The analysis can be conducted in two steps.

First, we will force s to the equilibrium before T̄c < Tc.

Consider the Lyapunov candidate V = sTs, which has a derivative of V̇ = 2sTṡ. Substitute the system dynamics (1)

into (2) yields

ṡ = q̈ + ζ1
d

dt

(
p1sig

α1
n (q) + g1sig

β1
n (q)

)
= M−1(q) (τ(t)− C(q, q̇)q̇ − g(q)) + ζ1θ(q)q̇. (A9)

Substitute the above equation to the V̇ yields

V̇ = −2sTζ2
(
p2sig

α2
n (s) + g2sig

β2
n (s)

)
= −ζ2

(
p2V

α2+1
2 + g2V

β2+1
2

)
, (A10)

therefore the sliding manifold s is PTSS within time T̄c.

Then, after s reaches zero, q̇ follows the manner of (A5) in Lemma. A1 and drives q to PTSS in Tc − T̄c.

Besides,

q̇ = −ζ1
(
p1sig

α1
n (q) + g1sig

β1
n (q)

)
, (A11)

or equally,

q̇i = −ζ1
(
p1∥q∥α1 + g1∥q∥β1

) qi

∥q∥
. (A12)

Let T (q) be the actual settling time of q. For t ⩾ T (q), q = 0, thus q̇ = 0. For t < T (q), qi ̸= 0, thus q̇i ̸= 0.

Therefore, every element qi, i = 1, · · · , n, also converges time-synchronously at t = T (q). In other words, the vector

[q, q̇]T achieves time-synchronized convergence. As a result, system (1) is PTSS within Tc.

Appendix B Proof of Theorem 1 and Stability Analysis of the True-PTSS Controller

Proof. According to [3], the system converges in Tc on the first condition of Theorem 2, namely x(t) = 0 for t ∈ [Tc,+∞).

Therefore, Theorem 2 holds if we can prove that every element xi of the state x satisfies xi(t) ̸= 0 for t ∈ [0, Tc).

The ratio persistent property of x indicates that every state element xi converges simultaneously. Mathematically, there

must be a time instant T ⩽ Tc that xi(t) ̸= 0 for t ∈ [0, T ) and xi(t) = 0 for t ∈ [T,+∞).

Then, we show that T = Tc. Inspired by [3], define V (t, x) : [0, Tc)× R+ → R+ as

V (t, x) = eW (t,∥x∥) − 1. (B1)

The derivative of V (t, x) is

V̇ (t, x) = eW (t,∥x∥)µ(t)
eW (t,∥x∥) − 1

eW (t,∥x∥) = µ(t)V (t, x), (B2)

which leads to

V (t, x) = e−ρ(t)V (0, x0). (B3)

From (10),

V (t, x) = e−ρ(t)V (0, x0) > 0 for t < Tc. (B4)

Recall the relation between V (t, x) and W (t, ∥x∥), we have

eW (t,∥x∥) > 1 for t < Tc, (B5)

consequently W (t, ∥x∥) ̸= 0 for t < Tc.

According to the property of the class-K function that W (t, ∥x∥) = 0 if and only if ∥x∥ = 0, we can achieve that ∥x∥ ̸= 0

for t < Tc, which indicates that ∥x∥ approaches zero at Tc precisely, thus completing the proof.

The stability analysis of the true-PTSS controller is presented based on the following Lemma.

Lemma B1. System ẋ = f(x, t) is true-PTSS within Tc if the state x varies in the following manner:

ẋ =

−
p
(
1−e−∥x∥α

)
Tc−t

sig1−α
n (x) , if 0 ⩽ t < Tc,

0, otherwise,
(B6)

where 0 < α < 1 and p > 0.
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Proof. Consider V (x) = ∥x∥α, which is a class-K function in terms of ∥x∥. For t ∈ [0, Tc),

V̇ (x) =
d

dt

(
xTx

)α
2

= α
(
xTx

)α
2
−1

xTẋ = α∥x∥α−2xTẋ. (B7)

It follows from (B6) that at t < Tc,

V̇ (x) = −
αp
(
1− e−∥x∥α

)
Tc − t

= −
αp

Tc − t

e∥x∥
α − 1

e∥x∥α
. (B8)

Let µ(t) = − αp
Tc−t

, we have

ρ(t)=−
∫ t

0
µ(s)ds =

∫ t

0

αp

Tc − s
ds =−αp ln(Tc − t), (B9)

which satisfies (10) in Theorem 1. Moreover, from (B8),

V̇ (x) = µ(t)
eV (x) − 1

eV (x)
, (B10)

which satisfies (9) in Theorem 1.

Then, the ratio persistence condition is checked. It is straightforward that for t < Tc,

ẋ

∥ẋ∥
= −

sig1−α
n (x)

∥sig1−α
n (x) ∥

= −
x

∥x∥
. (B11)

Therefore, both conditions of Theorem 1 are satisfied, and the system is true-PTSS.

The Euler-Lagrange system (1) is a second-order system with state vector q. Under the proposed controller (12), the

state vector q is true-PTSS at the predefined time Tc. The analysis can be conducted in two steps.

First, we will show that s can be stabilized within T̄c < Tc. The time derivative of s for t < T̄c in (11) writes

ṡ =q̈ +
1

α1

d

dt

[
µ1(t)

(
1− e−∥q∥α1

)
sig1−α1

n (q)
]

(B12)

=q̈ −
µ1(t)

α1
sig1−α1

n (q)
d

dt
e−∥q∥α1

+
η(q)

α1

[
µ̇1(t)sig

1−α1
n (q) + µ1(t)

d

dt
sig1−α1

n (q)

]
=M−1(q) [τ(t)− C(q, q̇)q̇ − g(q)] + µ1(t) [θ1(q) + θ2(q)q̇] .

From (12) and (B12),

ṡ = −
p2
(
1− e−∥s∥α2

)
T̄c − t

sig1−α2
n (s) . (B13)

Consider a class-K V = ∥s∥α2 , which has the following derivative

V̇ (x) =
d

dt

(
sTs

)α2
2

= α2∥s∥α2−2sTṡ. (B14)

From (B13) and (12), we have

V̇ = −α2∥s∥α2−2sT
p2
(
1− e−∥s∥α2

)
T̄c − t

sig1−α2
n (s) = µ2(t)

e∥s∥
α2−1

e∥s∥
α2

= µ2(t)
eV − 1

eV
. (B15)

From µ2(t) = −α2p2/(T̄c − t), we have

ρ2(t) = −
∫ t

0
µ2(s)ds = α1α2p1 ln(T̄c − t), (B16)

which has the property of (10), leading to the convergence of s within T̄c according to Theorem 1.

Then, after s reaches zero, q̇ follows the manner of (B6) in Lemma. B1 and drives q to true-PTSS within T̄c.

Besides,

q̇ = −
p1
(
1− e−∥q∥α1

)
Tc − t

sig1−α1
n (q) , for T̄c ⩽ t < Tc, (B17)

or equally, the i-th state element

q̇i = −
p1
(
1− e−∥q∥α1

)
∥q∥1−α1

Tc − t
signn (qi) , for T̄c ⩽ t < Tc, (B18)

which is non-zero.

Therefore, every element qi also converges time-synchronously at Tc. In other words, the vector [q, q̇]T achieves time-

synchronized convergence. Thus System (1) is true-PTSS at Tc.
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Appendix C Proof of Theorem 2, Convergence Analysis of the Disturbance Observer and
the ε-PTSS Controller

Proof. Consider V (x) = ∥x∥α, which is a class-K function in terms of ∥x∥. When t < Tc,

V̇ = −
αp

Tc +∆T − t

eV (x) − 1

eV (x)
, (C1)

which is derived similar to (B10).

Let U(t) = eV (x(t)) − 1, we have U̇(t) = − αp
Tc+∆T−t

U(t), thus

U(Tc) = exp

(
−
∫ Tc

0

αp

Tc +∆T − t
dt

)
U(0) = e−αpln∆TU(0) = ∆T−αpU(0). (C2)

Invoking the construction of ∆T and V to the above equation yields

V (x(Tc)) = ln (U(Tc) + 1) = εα. (C3)

Recall that V (x) = ∥x∥α, we have ∥x(Tc)∥ = ε.

The structure of ẋ in (13) is similar to (B6), we can also achieve the ratio persistent property of x.

From to the analysis above, V̇ ⩽ 0 for t < Tc, which indicates that ∥x∥ is monotonously decreasing for t < Tc. Since

∥x(Tc)∥ = ε, we have ∥x∥ ⩾ ε for t < Tc. According to the ratio persistent property of x, xi/xj = constant for any i, j and

xj(0) ̸= 0. Therefore, every initially non-zero state element xi satisfies xi ̸= 0 for t < Tc, which is consistent with the first

requirement in the ε-PTSS Definition.

When t ⩾ Tc,

V̇ (t) = −
αp

∆T

eV (x) − 1

eV (x)
⩽ 0, (C4)

which indicates that ∥x∥ will not increase and stays in the region ∥x∥ ⩽ ε. This is consistent with the second requirement

of the ε-PTSS Definition, thus completing the proof.

Then, the convergence analysis of the disturbance observer is conducted. Define the observation error of the first/second-

order state as z̃0 = z0 − q̇ and z̃1 = z1 −M−1(q)d(t), respectively. We introduce the following lemma.

Lemma C1. Considering the system (1) and the disturbance observer (15)-(16), under Assumption 1, z̃0 and z̃1 converge

to zero within the following time-bound

Tob⩽γob+
σ +Mγob

(1−Mh/kz1)m
+

σ

m
, (C5)

where h, M , m and γob have the forms

h =
1

kz1
+

(
2e

mkz1

) 1
3

, γob = γ

(
2kz1, 2kz2,

3

4
,
1 + ν

2
, 1

)
,

M = kz3 + δ, m = kz3 − δ, (C6)

and the following inequalities hold:

kz3 > δ, kz1 > Mh. (C7)

Proof. From (15)-(16), the error dynamics is further derived

˙̃z0 =− kz1sig
1
2
c (z̃0)− kz2sig

ν
c (z̃0) + z̃1,

˙̃z1 =− kz3signc (z̃0)− ḋ(t). (C8)

The bound in (C5) is calculated by considering the following three situations:

Case 1: For every element i, i = 1, · · · , n, signc(z̃1,i(0)) = 0 or signc(z̃1,i(0)) = −signc(z̃0,i(0)).

Let’s construct the Lyapunov function Vob = z̃T0 z̃0 with the following derivative

V̇ob = −2kz1z̃
T
0 sig

1
2
c (z̃0)− 2kz2z̃

T
0 sigνc (z̃0) + 2z̃T0 z̃1.

In this case, each element signc(z̃1,i) has either the opposite sign with respect to signc(z̃0,i) or the zero value, which

leads to z̃T0 z̃1 ⩽ 0. Define Vob,i = z̃20,i for i = 1, · · · , i, where z̃0,i is the i-th element of z̃0. Therefore we have

V̇ob,i ⩽ −2kz1z̃0,isig
1
2
c (z̃0,i)− 2kz2z̃0,isig

ν
c (z̃0,i) = −2kz1V

3
4

ob,i − 2k2V
1+ν
2

ob,i .

From the above equation, z̃0,i is fixed-time stable. The settling time of z̃0 can be calculated as

Tob1 ⩽ γob = γ

(
2kz1, 2kz2,

3

4
,
1 + ν

2
, 1

)
, (C9)
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where the formulation of γ can be found in the following equation, γ(p, g, α, β, k) is defined as

γ(p, g, α, β, k) =
B
(
ωα, ωβ

)
pk−ωαgωβ (β − α)

, (C10)

where α, β, p, g, k are positive parameters with kα < 1 and kβ > 1, ωα = 1−kα
β−α

, ωβ = kβ−1
β−α

. The detailed construction of

the Beta function B can be found in [4].

In the case of ∥z̃0 (0)∥ → +∞, we have Tob1 = γob.

When t = Tob1,

|z̃1,i(Tob1)| ⩽ σ +MTob1.

Considering t > Tob1, z̃1,i(Tob1) starts at (0, σ+MTob1) for i = 1, · · · , i. Following Theorem 4.5 in [5] and the derivations

in [6], with the condition of Mh/kz1 < 1, the settling time of z̃1,i(Tob1) satisfies

Tob2 ⩽
σ+MTob1

(1−Mh/kz1)m
. (C11)

Therefore the settling time of the disturbance observer satisfies

T
(1)
ob ⩽ Tob1 + Tob2 ⩽ γob +

σ +Mγob

(1−Mh/kz1)m
.

Case 2: There exist an element i, such that signc(z̃1,i(0)) = signc(z̃0,i(0)).

We consider the case that there exists a dimension that signc(z̃1(0)) and signc(z̃0(0)) have the same sign, and z̃0,i cannot

reach zero before signc(z̃1,i) = −signc(z̃0,i). Thus z̃1,i converges before z̃0,i. From (C8), we can derive that z̃1,i arrives at

the origin within

T
(2)
ob ⩽

σ

m
.

When t ⩾ Tob0, we have signc
(
z̃1
(
T

(2)
ob

))
= 0 or for i = 1, · · · , n, signc

(
z̃1,i

(
T

(2)
ob

))
= −signc

(
z̃0,i

(
T

(2)
ob

))
, which

has been discussed in Case 1.

Case 3: There exist an element i, such that signc(z̃1,i(0)) ̸= 0 and z̃0,i(0) = 0.

We have sig
1
2
c (z̃0,i) = sigνc (z̃0,i) = 0, thus ˙̃z0,i = z̃1,i ̸= 0. In other words, z̃0,i(0) = 0 is a short enough transient process

and it becomes Case 1 or Case 2 within T
(3)
ob → 0.

From T
(1)
ob , T

(2)
ob and T

(3)
ob , the settling time

Tob ⩽ γob +
σ

m
+

σ +Mγob

(1−Mh/kz1)m
, (C12)

which completes the proof.

The above lemma estimates the disturbance before Tob. Since Tob is a function of the parameters kz1, kz2, and kz3, the

disturbance can be estimated accurately by designing the parameters such that Tob < Tc.

Finally, the stability analysis of the ε-PTSS controller is conducted.

According to Theorem 2, the state vector q of system (1) is ε-PTSS at Tc if s = 0. We will show that s can be stabilized

within Tc.

Similar to (B12), ṡ of (16) writes

ṡ=M−1(q) [τ(t)−C(q,q̇)q̇−g(q) + d(t)]+θ3(q)+θ4(q)q̇. (C13)

Note that z1 is designed to satisfy z̃1 = z1 − M−1(q)d(t) = 0 for t ∈ [Tob, Tc], d(t) is accurately estimated before Tc.

Substitute τ(t) of (19) into (C13) yields

ṡ = −λεM(q)
(
p2sig

α2
n (s) + g2sig

β2
n (s)

)
, (C14)

where every element of s is monotonously moving towards zero.

Let’s calculate the supremum of ∥q∥ before s = 0. For any state element qi, In the case of sign (q̇i) = −sign (qi) or

sign (q̇i) = 0, |qi| will not increase. In the other case, either qi = 0 or q̇i, qi, and si have the same sign. From (14),

|q̇i| ⩽ |si|. Since |si| is monotonously decreasing, |q̇i| < |si(0)|. Thus we have

|qi| < |qi(0)|+ |si(0)|Tc (C15)

for t < Tc. Define q̄i = |qi(0)| + |si(0)|Tc and q̄ = [q̄1, · · · , q̄n]T, we can achieve that ∥q∥ < ∥q̄∥ for t < Tc. Then, ∆T is

calculated as

∆T =

(
eε

α1 − 1

e∥q̄∥
α1 − 1

)− 1
α1p1

. (C16)

Consider the Lyapunov function V = sTs. From (C13), V̇ has the following derivative

V̇ = −λε

(
2p2V

α2+1
2 + 2g2V

β2+1
2

)
, (C17)

s converges within Tc. Moreover, q̇ is non-zero at t < Tc as in the true-PTSS case. System (1) is ε-PTSS at Tc.



Sci China Inf Sci 6

Appendix D Simulation Details

We use the satellite in the local-vertical-local-horizontal rotating frame for controller verification [7]. The dynamics described

in (1) have the following formulations,

M = mI3, C = m


0 −2ω0 2

2ω0 0 0

0 0 0

 , g = m


−ω2

0q1 +
µe(R0+q1)

R3 )− µe

R2
0

−ω2
0q2 + µeq2

R3

µeq3
R3

 , (D1)

where q = [q1, q2, q3]T is the relative coordinate, ω0 =
√

µ3/R3
0 is the orbital angular velocity, R0 is the orbit radius, and

R is the distance between the geocenter and the satellite. The control input τ is a three-dimensional force vector.

The control parameters used for the PTSS controller are demonstrated in Table. D1.

Table D1 Control parameters for PTSS

Parameters Values Parameters Values Parameters Values Parameters Values

p1 0.1 p2 0.1 α1 0.6 α2 0.6

g1 0.1 g2 0.1 β1 1.08 β2 1.08

Tc 200s ρ 0.5

The system states under the PTSS controller are illustrated in the Letter. The initial state vector is q0 = [5,−15, 25]Tm

in the simulation. The settling time is smaller than Tc, and the state elements under the proposed controllers converge time-

synchronously, thus the goal of predefined-time-synchronized convergence is achieved. The time-synchronization property

can be observed more clearly in the sub-figure, which is zoomed by 10−3. The actual settling time is t = 30.8s for the PTSS

controller.

The control parameters for true-PTSS are presented in Table. D2 and the initial state vector is q0 = [5,−15, 25]T m.

The system states under the true-PTSS controller are plotted in Fig. 1 (top right) of the Letter, where the settling time

of the state elements q1, q2, and q3 are all 40s as predefined. We zoom the states near the origin by 10−3 in the sub-figure.

The results indicate that every state element converges precisely at the predefined time by using the proposed true-PTSS

controller. From Fig. D1(a),q̇i, i = 1, 2, 3, also reach the origin at t = Tc = 40s. Thus q(t) = q̇(t) → 0 for t → Tc and remain

zero for t ⩾ Tc. The true-predefined-time-synchronized convergence is achieved by the proposed controller.

Similar results can be found in the plots of s in Fig. D1(b). The predefined settling time of s is T̄c(s0) = 32s. In the

zoomed sub-figure, both s1 and s2 reach the origin at t = 32s and then stay at zero. At t < 32s, s2(t) and s1(t) keeps

a persistent ratio of s2(t)/s1(t) = 3 in the whole process, which equals q2(t)/q1(t). The persistent ratios indicate that

different elements of the state vector converge at the same speed, which results in their simultaneous arrival. Similarly,

s2(t)/s3(t) = q2(t)/q3(t) = −0.6 and s3(t)/s1(t) = q3(t)/q1(t) = 5 at t < 32s.

The control inputs are plotted in Fig. D1(c), where τ = [τ1, τ2, τ3] varies slowly according to the predefined time.

Table D2 Control parameters of true-PTSS

Parameters Values Parameters Values Parameters Values Parameters Values

p1 3 p2 3 α1 0.04 α2 0.04

Tc 40s T̄c 32s

(a) The state derivatives (b) The sliding mode variables (c) The control inputs

Figure D1 The state derivatives, the sliding mode variables, and the control inputs under the true-PTSS controller.

The disturbance and control parameters for the ε-PTSS controller are listed in Tab. D3.

The system state q, state derivative q̇, and sliding-mode surface s under ε-PTSS controller are illustrated in Fig. D2 (a).

In the simulation, the desired settling time is Tc = 40s and the steady state error is allowed to be ε = 0.01. The extra time

is calculated as ∆T ≈ 1s. From the figures, the state ∥q∥ < ε in Tc, and q̇ is also stabilized to a small neighborhood of the

equilibrium. The sliding-mode surface s reaches the origin at t = 4.6s, which is earlier than the predefined time. Besides,

the time-synchronous property is well kept for q, q̇ and s.
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Table D3 Control parameters for ε-PTSS

Parameters Values Parameters Values Parameters Values Parameters Values

p 3 α 0.04 Tc 40s d2(t) 3sin(0.01πt)

p2 0.1 α2 0.6 d1(t) 2 d3(t) 4sin(0.005πt + π/3)

kz1 2 kz2 2 kz3 2 ν 1.2

g2 0.1 β2 1.08

(a) The system state q, state derivative q̇, and sliding-

mode surface s

(b) The control input τ and disturbance es-

timation error z1

Figure D2 Control Performance under ε-PTSS controller.

The control input τ(t) and the estimation error of the disturbance z̃1 is illustrated in Fig. D2 (b). In this case, the

control inputs do not stay at the origin when t > Tc, instead, τ(t) varies to compensate for the disturbance.

From the figures, ε-PTSS is achieved for the system with disturbance.

References

1 Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic
Control, 2012, 57: 2106–2110

2 Li D, Ge S S, Lee T H. Simultaneous arrival to origin convergence: Sliding-mode control through the norm-normalized sign
function. IEEE Transactions on Automatic Control, 2021, 67: 1966–1972

3 Zhou B. Finite-time stability analysis and stabilization by bounded linear time-varying feedback. Automatica, 2020, 121:
109191

4 Bateman H. Higher Transcendental Functions [Volumes I-III], volume 1. McGraw-Hill Book Company1953, 1953
5 Shtessel Y, Edwards C, Fridman L, et al. Sliding mode control and observation. Springer2014, 2014
6 Utkin V. On convergence time and disturbance rejection of super-twisting control. IEEE Transactions on Automatic Control,

2013, 58
7 Li D, Zhang W, He W, et al. Two-layer distributed formation-containment control of multiple euler–lagrange systems by output

feedback. IEEE Transactions on Cybernetics, 2018, 49: 675–687


	Stability Analysis of the PTSS Controller
	Proof of Theorem 1 and Stability Analysis of the True-PTSS Controller
	Proof of Theorem 2, Convergence Analysis of the Disturbance Observer and the -PTSS Controller
	Simulation Details

