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Appendix A Functionality of Humanoid Hand

To mimic the perception structure of the star-nosed mole’s nose, a humanoid hand that integrates 14 force sensors on

each fingertip and six gas sensors into the palm has been developed in the previous work [1]. Each force sensor has a

footprint of 0.5× 0.5 mm2, which allows for high resolution. Its design considers the sensitive hexagonal silicon membrane

and piezoresistive Wheatstone-bridge to achieve high sensitivity and accuracy. The membrane deforms when the sensors

contact the test object, with the extent of deformation influenced by the stiffness of the object and the applied force. The

deformation can lead to a resistance change in the piezoresistors, further causing a change in the output voltage of the

Wheatstone-bridge. When the same amount of force is applied, the different output voltage of a Wheatstone-bridge reflects

the stiffness and local topology of the test object. The sensitivity of the force sensor is 0.375 mV kPa−1 over a range of

0-400 kPa during a typical object interaction procedure, which enables the tactile sensing array to detect the minimum

height difference of about 0.3 mm.

As for the olfactory perception, six gas sensors (3×3 mm2 for each unit) are functionalized to be highly sensitive to

ethanol, acetone, ammonia, carbon monoxide, hydrogen sulfide, and methane, respectively. The gas molecules can be

absorbed by the gas-sensitive material inside the sensors and change its resistance, thus distinguishing the concentration

and type of the detected gas by measuring the resistance change and analyzing the gas sensing array, similar to the biological

olfactory receptors [2]. Notably, a gas sensor responds not only to one sensitive gas but also to other gases to a certain

extent, which allows the olfactory sensing array to sense various gases depending on the degree of response. In addition, the

sensors can rapidly respond, which can reach the steady phase in about 10 seconds during contact with the measured gas

and return to the initial state within 10 seconds after the gas is cut off. A more detailed introduction about this humanoid

hand can refer to the previously reported work [1].

Appendix B Memristor-based computing platform and the Computing diagram of SNN

The photograph of the customized memristor-based computing platform is shown in Figure B1(c). The platform mainly

consists of a dual-core ARM Cortex-A9 processor equipped on XILINX’s Zynq 7015 and two memristor-based processing

elements (MPEs). The ARM processor schedules all calculations of SNN, such as data preparation, driver circuit configu-

ration, analog-to-digital converters (ADCs) control, digital-to-analog converters (DACs) control, and neuron state updates

(Figure B1(a)). The data preparation includes data quantization, data bit-wise unfolding, data rearrangement, and so on.

The computations of convolutional and fully connected layers are performed in the MPEs, which can realize parallel

matrix-vector multiplication based on a memristor array. As demonstrated in Figure B1(b), the MPEs are integrated in

a 2-transistor-2-memristor (2T2R) structure [3], which has the advantage of reducing IR drop. Each MPE consists of

1152×128 memristors. That is, 576×128 weights can be mapped on the array since a positive and a negative memristor

represent one weight. Each memristor has eight stability levels. Therefore, the precision of the memristive weight is 4 bits.

The driver circuit configuration involves configuring the word line (WL) driver, bit line (BL) driver, and ADC operating

parameters of source line (SL) according to read/write operation, input bit, and selected memristor area. VDD or GND

in the WL driver can be selected by the corresponding programmable multiplexer to open or close a memristor branch.

The 16-bit DACs in the BL and WL drivers are utilized together to program memristors by the write-verify method [4].
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Figure B1 (a) Computing diagram of the SNN deployed on the memristor-based digital-analog hybrid system. (b) Schematic of

the memristor-based processing element. (c) Photograph of the customized integrated printed circuit board system.

Positive (R+, 0.1 V) or negative (R−, -0.1 V) pulses are selected as the read voltage for calculation according to the

input bit (only -1, 0, or 1) during the computing phase. As shown in the inset of (b), the conductance of g+ and g−

can represent the positive weight and negative weight, respectively. If the input bit is 1, R+ and R− will be applied

to g+ and g− via BL+ and BL−, respectively, then Icell = Ipos + Ineg , where Ipos = Vreadg
+ and Ineg = −Vreadg

−,

i.e., Icell = Vread(g
+ − g−) = VreadWcell. If the input bit is -1, R− and R+ will be applied to BL+ and BL−, then

Icell = −VreadWcell. A weight can be mapped as (g+ − g−), which can be positive, negative, or zero and is proportional

to the cell current. Eventually, the current of SLj can be expressed as

ISLj
= Vread

∑
i

xiWcell(i, j)

= XWcell(:, j),

(B1)

where xi is the i-th element of X, serving as an input bit; Wcell(:, j) represents the mapped weights on SLj . Likewise,

the equation exists for other specified SLs. The 4-bit LPAR-ADCs [3] are used to convert the computing result carried on

the currents of SLs into digital. Therefore, vector (only -1, 0, or 1) matrix multiplication operations can be computed in

parallel on the MPEs with one step. The neuron state updates refer to the membrane potential update and spike firing

control.

Appendix C Data preprocessing

To implement object recognition with the humanoid hand, a customized data set aiming at rescue task is built [1], which

contains 100,000 samples covering five categories, i.e., human arm (main target), mouse (tactile interference), towel (olfactory

interference), orange (soft object), and stone (rigid object). To facilitate the calculation and recognition on the MPE, the

collected recordings need to be preprocessing. Figure C1 illustrates the data preprocessing at each stage when the humanoid

hand grabs a human arm.

Firstly, a max-min normalization is applied to the force sensor recordings to mitigate data variability.

Un =
Ut − Umin

Umax − Umin
, (C1)

where Umax and Umin are the maximum and minimum output voltages of the force sensor, respectively; Un is the normalized

voltage of Ut. Since the measured resistances of the gas sensor array are positive values, a max-based normalization method

is employed to process olfactory recordings for each gas sensor.

Rn =
Rt

Rmax
, (C2)

where Rmax represents the max resistance of the gas sensor, and Rn is the normalized resistance of Rt.

Next, a random sampling recombination strategy is employed, which is conducive to containing more grasp gestures.

Namely, each sample mapping is composed of N (here, N = 10) sampling points that are randomly resampled from the

recording sequence when the sensors contact a detected object. Therefore, the size of the tactile sample mapping is 5 × 14

× 10 since there are 5 force arrays in total, and each force array consists of 14 sensors. The size of the olfactory sample

mapping is 6 × 10 because six gas sensors are mounted.

Finally, the sample mappings are processed with a 4-bit quantization method to balance accuracy and efficiency. The

formula is as follows.

xq
i = Round(

xi · C
S

). (C3)

Here, xq
i is the quantization value of xi, and xi is the i-th value in the sample mapping X. S represents the maximum

value of the absolute value of all elements in X. C = 2N−1 − 1, where N = 4 means that 4-bit quantization is performed.

Round(·) means round the value to the nearest integer.
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Figure C1 Data processing framework and samples at each stage. (a) Photograph of the humanoid hand grabbing a human

arm. The gas and force sensors gather the odor and tactile information of the arm simultaneously. (b) Normalized odor and tactile

sensor recordings. (c) Mappings of the olfactory and tactile samples. (d) 4-bit quantization of the sample mappings in (c).

Appendix D Integrate-and-fire neuron

The type of neurons used in this work is the Integrate-and-Fire (IF) model. Compared with the other models, it significantly

simplifies the description of ion channel and membrane potential dynamics but preserves the key dynamic description of

neurons. This math-ematically simpler model is conducive to reducing on-chip computing costs and being applied in

resource-constrained scenarios. The IF neuron can be characterized with an iterative formula.


Hn

t = Vn
t−1 +X(t),

Sn
t = Hea(Hn

t − Vth),

Vn
t = VresetS

n
t +Hn

t ⊙ (1− Sn
t ),

(D1)

where n and t mean the layer and time step, respectively; Hn
t represents the membrane potential produced by the previous

temporal potential Vn
t−1 and the current spatial input X(t); Sn

t is the output spike tensor governed by Hea(·) that satisfies
Hea(x) = 1 when x ⩾ 0, otherwise Hea(x) = 0; ⊙ denotes the element-wise multiplication. In this work, Vreset and Vth

take 0 and 1, respectively.

Appendix E Training of the SNN

In this work, an arc tangent function is utilized to approximate the spiking activation function and generate surrogate

gradients [5]. To match the memristive weight precision, 4-bit quantization-aware training is performed. First, perform

fake quantization on the SNN using the following formula.

W q
i,n = Round(

Wi,nC

S
) ·

S

C
, (E1)

where Wi,n denotes the i-th weights in the n-th layer; C = 2N−1 − 1 and S = max(abs(Wn)), which are similar to Eq.

(C3); N is 4 for specifying the signed quantization bits. Note that the derivative of the above formula is 0 everywhere. This

work uses straight through estimator [6] to solve the problem of untrainability.

Then, add a certain intensity of random noise to the updated weights during training to improve the adaptation of the

trained SNN to the variability of the on-chip memristor [7]. In this work, the noise is generated by the following equation.

noise = s(max(W)−min(W))N(0, 1), (E2)

where N(0, 1) represents a normal distribution with a mean of 0 and a variance of 1, which has the same shape as W; s is

a coefficient related to the weight mapping offset and takes 0.08 in this work, which means that the weight offset caused by

variability is basically within 1.28 when the weight has 16 levels (4-bit). The 4-bit quantization-aware training of the SNN

is described as in Algorithm E1.
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Algorithm E1 4-bit quantization-aware training

1: Inputs: Training set (X1, Y1), test set (X2, Y2), SNN net
2: Outputs: Optimized SNN net∗ with 4-bit quantization
3: N = 4, C = 2N−1 − 1, s = 0.8, best acc = 0
4: for epoch = 1, 2, ..., Nepoch do
5: Phase 1: Quantize the samples and SNN and add noise to the SNN (Line 6-10)
6: W, b← Obtain weights and biases of the net
7: Sx, Sw, Sb ← max(abs(X1)), max(abs(W)), max(abs(b))
8: X1, W, b← Round(X1C

Sx
) · Sx

C , Round(WC
Sw

) · Sw

C , Round(bCSb
) · Sb

C
9: Generate noisew and noiseb for W and b with E2

10: W, b←W+ noisew, b + noiseb
11: Phase 2: Calculate SNN error and backpropagate it (Line 12-18)
12: out spikes = 0
13: for t = 1, 2, ..., Tstep do
14: out spikes← out spikes+ net(X1)
15: end for
16: out spikes← out spikes/Tstep

17: loss = loss function(out spikes, Y1)
18: Backpropagate loss in the net with surrogate gradient and straight through estimator method
19: Phase 3: Test the net and save it when it reaches its optimal performance (Line 20-30)

20: Perform Phase 1 on the test set and the net.
21: out spikes = 0
22: for t = 1, 2, ..., Tstep do
23: out spikes← out spikes+ net(X2)
24: end for
25: out spikes← out spikes/Tstep

26: test acc = accuracy function(out spikes, Y2)
27: if test acc > best acc then
28: best acc = test acc
29: net∗ ← net
30: end if
31: end for
32: return net∗

The total 100,000 samples are divided into training and test sets according to 3:1. Considering the trade-off of accuracy

and latency, the rate coding with 4 time steps (Tstep = 4) is employed in this work. Adam is used to optimize the model

with the mean squared error loss over 30 epochs. The SNN is built and trained based on SpikingJelly [8]. The training

curves are shown in Figure E1. The model achieves the best performance at epoch 12, where the test accuracy is about

99.84%. As a comparison, the best test accuracy when using only tactile or olfactory information is 98.7% and 91.74%,

respectively. Both are lower than that when tactile and olfactory information are used simultaneously. This means that

integrating multi-modal information is conducive to recognition.

Appendix F Deployment of the SNN

The weights of each layer of the trained SNN are first converted to signed 4-bit integers using Eq. (C3). Next, the quantized

weights are programmed as the conductance of the memristors through a write-verify method [4]. Figure F1(a) illustrates

the process of the convolutional kernels mapping to the memristor array. Each channel of kernel i and each weight in each

channel are mapped to the SLi column in turn. All kernels of the convolutional layer are mapped sequentially in rows.

To average the weight mapping offset [4], the kernels is repeated K times along the columns. The weights in the fully

connected layer with ON output neurons and IN input neurons are mapped to the area with ON rows and IN cols. As

shown in Figure F1(a) right, the quantized feature map needs to be rearranged in accordance with the mapping weights

for parallel computation. Specifically, the input of the TConv1 and OConv1 should be unfolded into its absolute value 1 or

-1 according to its sign, then the unfolded 1 or -1 is randomly filled in a sequence with length 2N−1 − 1 to avoid possible

current overload caused by applying all 1 or -1 to the BLs. Finally, the multiplication of the input vector X (signed N bits)

and the weight W (represented by the memristors) can be obtained by accumulating the results read out by the ADCs of

SLs over 2N−1 − 1 times.

The mapped area and mapping offset are shown in Figure F1(b). The mapped areas of the convolutional layers are

represented by [KN , C ×WN ×K], where KN , C, WN , and K denote the kernel number, kernel channels, weight number
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Figure E1 Training and test curves over 30 epochs. The best performance is achieved at epoch 12, where the training and test

accuracy are 100% and 99.84%, respectively.

per channel, and repeated number, respectively. The mapped areas of the fully connected layers are defined by [ON , IN×K],

where ON and IN mean the number of output neurons and the number of input neurons, respectively. K is the number

of repeats. The mapping offset histogram of all weights is shown in Figure F1(c). The offset is within [-1, 0, 1] with a

probability of about 99%.

Appendix G Layer-by-layer fitting and IF neuron remodeling

Since the calculation results of the MPE are converted from the currents of SLs via the LPAR-ADCs and the resolution

of the ADC is related to the integration time [3], there is an unavoidable gap between the standard results (computed by

CPU) and the converted results. This gap will directly affect the activation of the next IF neurons. Here, we assume that

there is a linear relationship between the two results and adopt a layer-by-layer fitting strategy to minimize the gap.

First, N (50) samples are randomly selected from each category to serve as the network input. Next, the calculations for

TConv1 and OConv1 are performed on a computer, and the same operations are conducted on the MPE using different ADC

integration times. Then, we fit the linear relationship and calculate the correlation between the above two results under

different integration times. The integration time can be configured as tn times the sampling clocks, where tn = 1, 2, · · · , 10,
and one sampling clock is 100 ns. Afterwards, the tn and fitting coefficients that maximize the correlation and uniformize

the result distribution are selected to map the converted result as an approximation of the standard result (fitting result)

via the following formula.

V̂cpu = aVmem + b, (G1)

where a and b are the fitting coefficients, Vmem and V̂cpu are the result computed by the MPE and fitting result, respectively.

Finally, the fitting result is input to the next layer to continue fitting.

Figure G1 illustrates an example of how to select the number of sampling clocks and the fitting coefficients. As tn = 1, the

correlation 0.9208 is relatively minimal among the three, and only nine discrete levels are used due to the small integration

time. While tn = 10, there are too many results falling in the smallest level, which means that the converted results are

generally smaller. Based on the correlation and uniformity of the converted results, tn = 5 and the fitting coefficients

a = 1.5980, b = −0.2593 are selected.

Table G1 lists the number of sampling clocks (tn), the results correlation (cor), and the fitting coefficients of each layer

in the SNN.

Table G1 Correlation and fitting parameters of each layer

Layers cor tn a b

TConv1 0.8591 2 0.5567 0.6374

OConv1 0.9854 6 0.1526 -0.0537

TConv2 0.9577 5 1.5980 -0.2593

OConv2 0.9785 3 1.4092 -0.2157

FC1 0.9122 6 1.9167 -1.1182

FC2 0.8633 1 6.4949 -0.9937

Analyzing the IF neuron model (Eq. D1), it is feasible to integrate the fitting coefficients into the model to avoid fitting

calculations during inference. Before the neurons fire spikes, Hn
t can be rewritten as

Hn
t = Vn

0 +

t∑
τ=1

X(τ), (G2)
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area and offset. (c) Weight mapping offset histogram of all weights.

where Vn
0 is the initial membrane potential. Then, the Sn

t can be expressed as

Sn
t = Hea(

t∑
τ=1

X(τ)− (Vth −Vn
0 )). (G3)

Considering X(τ) = aXmem(τ) + b, Sn
t can be further expressed as

Sn
t =Hea(

t∑
τ=1

(aXmem(τ) + b)− (Vth −Vn
0 ))

≡Hea(

t∑
τ=1

Xmem(τ)−
1

a
[(Vth −Vn

0 )− b]).

(G4)

Therefore, fitting calculations can be avoided by reconfiguring the firing thresholds of neurons in each layer. Considering

that Vn
0 = 0 and Vth = 1 in this work, the firing thresholds of neurons in each layer can be recalculated via (1 − b)/a by

refer to the fitting coefficients listed in Table G1.

Algorithm G1 illustrates the method to remodel the IF neuron with fitting coefficients.
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Figure G1 Scatter plot and fitted linear relationship between standard results and the results calculated by the MPE at different

integration times. cor represents the correlation between the calculated results and the CPU-based results.

Algorithm G1 Remodeling IF neurons with fitting coefficients

1: Inputs: Fitting sample D, SNN net
2: Outputs: Remodeled SNN netm deployed on the memristor-based computing platform
3: for l = 1, 2, ..., L do
4: sub netl ← Obtain the subnetwork of the net preceding the l-th layer neuron
5: neuronl

m, sub netlm ← Obtain the IF neurons in the l-th layer from the netm and the subnetwork
preceding it

6: X, Xm,← sub netl(D), sub netlm(D)
7: Fit the linear relationship between X and Xm
8: a, b ← Select the fitting coefficients that maximize the correlation and uniformize the result

distribution
9: V l

0 , V l
th ← Obtain the initial membrane potential and the firing threshold from the neuroni

m

10: V l
th ← 1

a [(V
l
th − V l

0 )− b]
11: end for
12: return netm

Appendix H Performance analysis

Generally, a larger time step will result in higher recognition accuracy due to higher information encoding accuracy, but

the latency and computational cost will also be greater.

The computing latency is the sum of all layer computing latencies, while the computing latency of one layer is related to

the unfolded bit of the input feature map. More unfolded bits require more array operations. The time to perform an array

operation in the MPE mainly comprises the current sampling time and the ADC quantization output time, which can be

estimated as (0.1tn + 0.01) µs, where tn is the number of the ADC sampling clocks, 0.1 is the time of one sampling clock,

and 0.01 is the ADC quantization output time. Assuming Ts is the time step, the time to complete a sample inference is

T = Ts

N∑
i=1

(0.1tn(i) + 0.01)Nc(i), (H1)

where tn(i) denotes the number of sampling clocks of the ADC used for i-th layer, which is listed in Table G1. Nc(i) is the

number of array operations of the i-th layer in a time step inference. There are 7 array operations required for TConv1 and

OConv1 since their input data is unfolded into 7 input sequences, while other layers only need 1 array operation based on

spike tensors.

Therefore, the estimated computing latency for 4 time steps is 29.12 µs. As a comparison, Figure H1(a)-H1(c) shows the

recognition confusion matrix, recognition accuracy, and computing latency for time steps 2, 6, and 8.

On-chip power consumption is estimated by measuring the voltage and average current of the external power supply

connected to the MPE during calculations. Table H1 presents the power consumption for each module within the MPE.

The energy consumed for inferring one sample with 4 time steps is calculated to be 0.72 µJ. Note that the weights of the

SNN are repeated along the SLs and the time step is 4. The actual amount of operations performed in the MPE is about

3.84 M for completing inference. The energy efficiency is about 5.34 TOPS/W when the SNN running on MPE.

As a comparison, we estimate the energy consumption and computational latency of a typical digital accelerator-based

(HNPU-based) system to complete the inference of one sample. The typical computing power, energy efficiency, energy

consumption of memory operation, and memory bandwidth of the HNPU-based system are 3.07 TOPS, 2.64 TOPS/W,

55 pJ/bit, and 19.2 GB/s respectively [9]. During the inference process, energy consumption and computing latency are

mainly contributed by calculation operations and memory-fetching operations. The energy consumption of the calculation
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(a) 2 time steps, ACC = 81.73%,

T = 14.52 µs.
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(b) 6 time steps, ACC = 98.77%,

T = 43.68 µs.
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(c) 8 time steps, ACC = 99.08%,

T = 58.24 µs.

Figure H1 Recognition confusion matrix when the time step takes 2, 6, and 8. ACC means recognition accuracy.

operations is the total number of operations divided by the energy efficiency, and the latency is estimated by the total

number of operations divided by the computing power. The energy consumption of the memory fetching is obtained by

multiplying the data size by the energy consumption per bit, and the latency is evaluated by dividing the data size by the

memory bandwidth. The number of operations and the transferred data size for one inference in the HNPU-based system

are 851.54 K and 231.94 Kbit (4 bits per weight), respectively. Hence, the estimated energy consumption and the computing

latency of the HNPU-based system for one inference are 13.08 µJ, and 1.79 µs, respectively. The energy consumption in

the MPE is reduced by 94.50%, and the MPE is also more energy efficient.

Table H1 Power consumption of the modules within MPE

Module Driver Buffer Array Sample& Hold& ADC Total

Power (mW) 8.31 2.32 0.51 13.55 24.69

Appendix I Comparison with other works

Table I1 gives a comparison between this work and related works. In recent years, many works [4] have focused on the

energy-efficient computing and hardware deployment of traditional ANNs based on memristors. Traditional ANNs can

integrate spatial information well, but are not good at processing multi-modal and spatiotemporal data. To effectively

process such data, sophisticated structures are usually introduced in the networks [11]. However, this also increases the

difficulty of deployment on memristor-based computing platforms. SNNs are considered more energy-efficient and can

integrate multi-modal information from both temporal and spatial dimensions. However, there is little work on their on-chip

deployment and verification, and most of the studies on memristive SNNs are implemented via software simulation [12,13].

Since the membrane potential of spiking neurons changes nonlinearly when they are activated and emit spikes, SNNs are

sensitive to computational errors. Therefore, it remains to be revealed to deploy the SNNs on memristor-based computing

platforms. This work proposes effective SNN on-chip deployment methods drawing inspiration from traditional ANN on-

chip deployment, especially correcting the results of each layer through layer-by-layer fitting and incorporating the fitting

coefficients into the neuron model to avoid additional computational overhead. In addition, we find that SNNs are more

suitable for the customized memristor-based computing platform than traditional ANNs because the outputs (only 0 or 1)

of SNNs can be fed into the next memristor array directly without additional processing. The proposed tactile-olfactory

fusion perception system based on memristive SNN achieves higher recognition accuracy with lower energy consumption

than the previous works [11].

Table I1 Comparison with related works

Refs.
Network

model
Muti-modal

Spatiotemporal

fusion

IMC with

spikes

Memristive on-chip

verification

[4] Traditional ANNs ✗ ✗ ✓ ✓

[11] Bioinspired ANN ✓ ✗ ✗ ✗

[12] SNN ✗ ✓ ✓ ✗

[13] SNN ✓ ✓ ✗ ✗

This work SNN ✓ ✓ ✓ ✓
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