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Abstract This paper studies the multi-agent networked formation control in dynamic industrial environment, in which multiple au-
tomated guided vehicle (AGV) agents are coordinated by a base station (BS) to collectively perform cooperative transportation tasks.
In this system, the limited local sensing capability at each agent and their frequent interactions may cause large synchronization errors
and high closed-loop latency, degrading the networked formation control performance. To address these challenges, we propose a new
communication-sensing enhanced multi-agent formation control strategy based on the idea of integrated sensing, communication, and
control (ISCC). First, we establish an ISCC system design to accurately capture the interdependencies among sensing, communication,
and control in networked formation control. Then, we design a dynamic obstacle avoidance risk map using the conditional value at risk,
which quantifies the collision risks under communication latency, thus helping to reserve sufficient time for smooth obstacle avoidance and
reduce material extrusion risks during emergency braking. Next, we formulate the multi-agent formation control problem as a partially
observable Markov decision process, which is solved via the multi-agent proximal policy optimization (MAPPO) by exploiting the global
ISCC states. Furthermore, to decrease the extra overhead for ISCC states interaction, we design a dynamic communication cycle allo-
cation mechanism via global states, which effectively balances the synchronization precision and communication overhead. In addition,
we employ a heterogeneous framework to mitigate gradient conflicts and boost control efficiency for heterogeneous agents. Simulation
results reveal that our strategy improves the synchronous performance via reducing the error by at least 59.9% compared to baselines,
significantly reducing closed-loop latency and traveling time.
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1 Introduction

With advancements in artificial intelligence and communication technologies, multi-agent systems such as collabo-
rative automated guided vehicles (AGVs) have gained widespread adoption in industrial automation and intelligent
logistics [1-5]. Conventionally, multi-agent systems rely heavily on prearranged indoor simultaneous localization and
mapping (SLAM) maps [4, 6], radio-frequency identification (RFID) tags [7], or other established infrastructures to
facilitate their localization and navigation for supporting various commercial applications. However, such systems
typically adhere to fixed static trajectories, lacking robust sensing capabilities to adapt to dynamic, unforeseen
environments. The limitation is particularly evident in highly dynamic automotive flexible assembly workshops.
Furthermore, existing control systems may have limited communication capabilities as well. When they face strin-
gent geometric formation constraints, they may struggle to achieve high-precision formation synchronization and
fail to ensure smooth, safe transportation of multi-agent fleets [8,9]. Consequently, the development of an efficient,
scalable, and adaptive networked formation control framework has emerged as one of the most pressing challenges
in multi-agent systems for flexible manufacturing.

To achieve collision-free movement and synchronized control, there have been various prior studies in the literature
developing precise sensing and positioning methods, alongside low-latency, scalable communication networks, to
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enhance obstacle avoidance and cooperative control performance. Generally speaking, existing formation control
methods primarily comprise two categories: sensing-based and communication-based approaches.

(i) Sensing-based formation control methods: Existing sensing-based formation control methods can be catego-
rized into displacement-based, distance-based, position-based, and bearing-based approaches, depending on sensing
performance and control law constraints [10-12]. Among them, bearing-based methods benefit from advancements
in computer vision, enabling millimeter or even sub-millimeter level accuracy with low cost visual sensors [13].
These methods facilitate real-time trajectory adjustments by observing neighboring agents, supporting static ob-
stacle avoidance and simple path planning [14], such as agent formation in circular motion [8] or linear motion
between points [15]. However, due to the limited field-of-view, visual sensors suffer from localization offsets, which
sacrifice speed to mitigate collision risks under sensing depth and visibility constraints in practical formation control
applications [16,17]. Furthermore, the lack of an efficient communication-sharing strategy in these methods results
in under-utilized local sensing data, hindering multi-agent coordination and limiting control performance. Conse-
quently, such low-speed, simplistic formation control strategies are ill-suited for high-dynamic environments, such
as narrow corridors and dense AGV material zones, where the limited sensing range and delay exacerbate collision
risks and congestion amid intersecting dynamic and static obstacles.

(i) Communication-based formation control methods: These methods employ inter-agent information sharing
to enable collaborative decision-making, primarily categorized into behavior-based [18], virtual structure [19], and
leader-follower [15] approaches. First, inspired by the stable collective behaviors observed in bird flocks and fish
schools [20], behavior-based methods design multi-agent kinematic models describing distributed formation control
using local interaction information processing. These methods activate distinct decision-making to environmental
conditions to ensure collision-free movement. Next, the virtual structure approach treats all agents as a unified rigid
body controlled via centralized or distributed communication [21]. Furthermore, compared to the above methods,
leader-follower control [15,22] has emerged as the popular strategy, combining centralized and distributed commu-
nication benefits. The leader maintains low-latency communication with the base station (BS) for path navigation,
and the followers coordinate formation maintenance through peer-to-peer communication, substantially reducing
collaborative control complexity. In practice, errors from local sensors accumulate over time, requiring periodic BS
interactions [23,24] to correct pose and trajectory. This process enables the correction of position and trajectory
while mitigating sensor and control-decision errors [25]. However, distributed formation control struggles to access
global environmental information, resulting in poor adaptability to dynamic and complex environments, increased
synchronization errors, and failing to maintain strict geometric formations. Moreover, centralized formation control
is constrained by the BS communication resources and computational capacity, hindering its ability to support
large-scale multi-agent collaboration. As the number of nodes grows and task complexity increases, frequent infor-
mation exchange and calibration substantially elevate communication overhead, increase closed-loop latency and
synchronization errors, and ultimately fail to meet the demands of complex formation tasks requiring ultra-low
latency and high-efficiency cooperation.

Furthermore, the above kinematic model-based methods rely on predefined rules for decision-making, limiting
their adaptability in complex and unknown environments [26-28]. With advances in machine learning [29,30], recent
research has shifted away from kinematic model-based methods to learning-based formation control [31]. Deep
reinforcement learning (DRL) techniques, such as multi-agent deep deterministic policy gradient (MADDPG) [32]
and multi-agent proximal policy optimization (MAPPO) [33] have been actively applied to formation control in
dynamic environment. Unlike traditional methods, these learning-based approaches enable multi-agent systems
to autonomously learn optimal strategies from unknown environments without relying on pre-programmed rules,
demonstrating superior performance in dynamic, uncertain, and highly nonlinear scenarios.

Despite these advancements, the above existing methods still have not overcome the limitations of independent
redundant designs in sensing, communication, and control. First, due to limited communication resources and
under-utilization of sensor data, these multi-agent systems frequently compute the optimal control strategy using
low-dimensional local sensing information, such as the relative position and velocity [15,34], leading to suboptimal
cooperative control performance. Next, the independent design paradigm hinders the optimal multi-dimensional
resource allocation for sensing, control, and communication, making it difficult to properly balance between the
global sensing error accumulation versus the communication overhead. Consequently, systems often compromise
trajectory smoothness to enhance maneuverability, resulting in incoherent emergency accelerations or decelerations
during navigation that amplify synchronization errors [34,35]. These issues will lead to material squeezing, causing
material deformation or dropping damage [36]. Moreover, existing research lacks systematic investigation into the
coupling relationships among sensing, communication, and control modules in multi-agent high-precision formation
control. As the optimization constraints and the number of controllable agents increase, it is difficult for the
system to effectively coordinate their multi-module interactions and dynamically adapt to the needs of complex
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tasks. Meanwhile, the complexity of formation control may grow sharply, rendering the discovery of viable solutions
exceptionally challenging. In this case, it is a difficult task to satisfy basic requirements like ensuring safe obstacle
avoidance and formation synchronization in static obstacle environments, and it is becoming even more challenging
to achieve high mobility and strict geometric formation synchronization in dynamic and complex environments. As
such, prior studies on formation control in a structured known static obstacle environment were not applicable for
unforeseen complex and dynamic environments for flexible manufacturing workshop.

To address the above problems, we propose a novel ISCC multi-agent formation control strategy that enables
agents to autonomously learn optimal control and communication policies in complex, dynamic environments. Dis-
tinct from existing learning-based formation control approaches that treat communication and control optimization
as independent or weakly coupled processes, our model establishes a unified closed-loop optimization architecture
that explicitly models the bidirectional coupling among sensing, communication, and control. This unified design
enhances decision relevance and adaptivity under partial observability, allowing agents to jointly optimize commu-
nication cycles and control actions based on global ISCC state information. Simulation results demonstrate that
the proposed strategy achieves strict geometric synchronization and smooth trajectories while balancing communi-
cation overhead, sensing precision, and formation stability, thereby providing a scalable and efficient paradigm for
intelligent industrial collaboration control. The main contributions of this paper are summarized as follows.

e ISCC system-based multi-agent formation control process: To accurately characterize the interactions
among sensing, communication, and control in a highly dynamic and complex environment, we propose a novel
ISCC multi-agent formation control system model for cooperative transportation in the automotive assembly work-
shop. By analyzing the relationships among communication closed-loop interaction cycles, synchronization errors,
and control traveling time in the closed-loop formation control process, the proposed system effectively reduces
redundant resource consumption from conventional decoupled designs and achieves balanced trajectory smoothness
and maneuverability in multi-agent formation control.

e Smooth formation synchronization with conditional value at risk (CVaR) map: To evaluate the
impact of dynamic environmental uncertainties on formation control, we develop a dynamic obstacle risk map for
communication-sensing enhanced control using the CVaR model. By integrating multi-source sensing data, control
pose information, and communication cycle time, we incorporate stricter tail expectations to constrain extreme
risks such as congestion and collisions. During closed-loop formation control, the potential severity of congestion-
induced collisions between AGVs and dynamic obstacles is quantitatively evaluated. This allows the formation to
adjust its velocity smoothly, reducing the risk of material extrusion caused by emergency braking, and accordingly
maintaining precise and synchronized motion without sacrificing speed.

e Efficient MAPPO formation control via adaptive interaction cycle adjustment: We formulate a
multi-agent formation control problem, which aims to achieve efficient and safe movement of agent formations in
complex, dynamic environments by optimizing coordination under partial observability. To handle this challenging
problem, we propose a multi-agent formation control algorithm, named ISCC-based MAPPO (ISCC-MAPPO). In
ISCC-MAPPO, leaders and followers as heterogeneous agents can be trained to handle optimal control and com-
munication decisions in continuous and discrete action spaces simultaneously. During training, to reduce the extra
communication overhead brought by ISCC global information, we propose a dynamic communication cycle allo-
cation mechanism based on networked control states, guaranteeing high-precision formation synchronization while
reducing communication overhead and latency. Additionally, to promote efficient cooperation among heterogeneous
agents, we propose a heterogeneous actor-critic framework for leader and follower agents, improving the performance
and applicability of the ISCC-MAPPO algorithm. Simulations show that our algorithm has better performance
than baselines in terms of closed-loop latency and controllable agent scale.

The remainder of this paper is organized as follows. Section 2 introduces the system model and problem formu-
lation. In Section 3, we introduce the proposed optimization method. In Section 4, the simulation results are given
and discussed. Finally, in Section 5, we discuss the significance of research results and summarize the study.

2 System model

In this work, we consider a multi-agent formation control system based on ISCC, by particularly focusing on the
cooperative transportation scenario. Firstly, we present an ISCC system model for multi-agent closed-loop formation
control as shown in Figure 1, which consists of N AGVs, sensors, a BS, and an edge server. Each AGV formation
consists of a leader agent and three follower agents, which collectively perform the cooperative transportation task of
automobile bodies. The set of AGVs is defined as N' = {AGV;, AGVs, ..., AGV,,, ..., AGVx }. The formation adopts a
hierarchical communication structure, comprising a leader layer and a follower layer. The leader layer, consisting of
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Figure 1 (Color online) ISCC system model for multi-agent closed-loop formation control in the automotive manufacturing assembly workshops.

leader entities, uploads their locally sensed motion states and control requests to the BS, receives trajectory control
instructions and global state information fused from workshop sensors, and performs path navigation and obstacle
avoidance. Then, the follower layer, comprising follower entities, uploads their locally sensed motion states and
control requests, receives global state information and leader pose information, and performs trajectory correction
and formation synchronization. To facilitate global state information fusion, depth camera sensors are deployed
in the workshop, transmitting environment SLAM data to the BS via optical fiber. The BS utilizes 5G ultra-
reliable low-latency communication (URLLC) protocol to communicate with AGVs and other intelligent machines,
receiving sensing and task data from AGVs through the uplink and transmitting control instructions and global
state information through the downlink. An edge server, deployed on the BS side, features a built-in programmable
logic controller (PLC) and accesses the 5G user plane function (UPF), enabling routing and forwarding of 5G core
network user plane data packets. The PLC exchanges key formation control information with AGVs, including
real-time sensing motion states, control instructions, communication cycle, and other ISCC global information.
Additionally, the edge server trains deep reinforcement learning models, calculates and updates the reference path
of AGVs in real time, and makes control decisions.

To accurately characterize the interactions among sensing, communication, and control in a highly dynamic
and complex environment, the closed-loop formation control process for multi-agent operates as follows. During
formation movement, at slot ¢, the leader agent AGV,, receives control decisions and ISCC global state information

ogn) from the BS via the downlink, which consists of the AGVs pose p™), velocity v(™ | formation parameters wa

the upper bound of the closed-loop interaction cycle ng), and global risk map data CVaR,. Subsequently, it
performs trajectory calibration and local obstacle avoidance, executing cooperative transportation tasks along the
planned path. In the subsequent slot ng), the leader agent utilizes local observation information from its onboard

sensor and the actor network calculates control decisions, optimizes its trajectory locally, ensuring safe and stable

advancement. At slot t—l—Tg;), the leader agent transmits its current local observation data to the BS via the uplink.

The edge server, located on the BS side, fuses and processes multi-source sensor data and communication network
information to generate updated ISCC global information, which is then transmitted to the leader agent via the
downlink. The leader agent then initiates a new round of trajectory calibration and collaborative transportation
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tasks, thus forming a closed-loop control process. The follower agent in the formation is analogous to that of the
leader agent, involving the receipt of ISCC global information via the downlink and the performance of trajectory
calibration. Additionally, each follower agent also considers local trajectory optimization to maintain a precise
formation shape. In the following, we introduce the sensing, communication, and formation control model.

2.1 Sensing model

Firstly, in multi-agent formation control, the BS receives sensor data from multiple sensors and local observation
data from each agent at regular intervals of ng). Multi-source sensing data are then provided to the edge server and
AGVs as part of the global state information. The global high-precision sensing information enables the reduction
of sensing errors accumulated by AGVs based on local observation data. It is assumed that during each closed-
loop interaction, M visual SLAM sensors observe the current motion state X,, of AGV,,, with the original dataset
perceived by the sensors denoted as {51, Sa, ..., Spr}. After processing by the edge server, the state observation values
are represented as {X}I, X2, ...,Xﬁ‘[}, where X! can be modeled by X! = X,, + N/ (1 < i < M), representing
the observe data of the n-th agent sensed by the i-th sensor. N, is the Gaussian white noise of observation value,
N, ~N (O, 02). The state observation value sensed by the AGV itself is represented as X9. The estimated value
of X,, is expressed as

1 M
X, = X! 1

where the mean square error of X,, is given by

2

An_]E{(Xn—Xn)2}_MU+1. 2)

It is evident from (2) that increasing the number of sensor samples M can significantly enhance the estimation
accuracy of the target value X,,.

Then, during the periodic interval when the agent exchanges sensor data with the BS, the agent typically esti-
mates its own motion state using its onboard pose sensor and accordingly makes decisions. Take the two-wheeled
differential AGV model illustrated in Figure 2 as an example. The pose of the AGV in the two-dimensional global
coordinate system is represented by p = (z,y, ¢), where ¢ denotes the direction of movement. Furthermore, the

velocity vector of the agent is defined as u = [U,w]T, comprising linear velocity v and angular velocity w. The
kinematic model of the AGV is expressed as

4(n) cosp(™ 0 (n)

pM = | g | = IMu™ = | ging™ o lv(")] , (3)
. w
pe 0 1

where the matrix J(") denotes the transposed matrix. Additionally, the odometer pose sensor embedded in AGV,,
measures the cumulative number of pulses from the driving motor via the encoder, enabling the estimation of v(™)
and w™ for AGV,,. The relationship is expressed as

P ) n
A I e W(L) 4

m) | — | 2 (n) |- (4)
w JA R “R

A;p(n) — zﬂr(n)Nl(,n)

L Z(n) ’ (5)
A{E(n) _ 27'[7"(n)N1(?’")

R Z(n) I

where (") denotes the radius of the tire of AGV,,, and Lgl ) represents the wheelbase of the AGV,, chassis. The

(Ln) and wgl), respectively. Furthermore, Ax(Ln)

angular velocities of the left and right tires of AGV,, are defined as w
and Axgg) represent the distances traveled by the left and right wheels of AGV,, within the sampling time step TS(").
The number of pulse signals output by the left and right wheels of AGV,, within Ts(n) are defined as NV én) and N }(%"),

respectively, where N é") =N én) + N and NI(%") =N }(%") + N{™. Here, N é") and N }(%n) are the estimated values
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Figure 2 (Color online) Two-wheel differential AGV motion model.

of the pulse count, and N,(In) denotes the Gaussian white noise, Nfln) ~ N(0,02). Additionally, Z () represents the
number of lines of the encoder in the pose sensor.

From (5), we derive the expressions for w(Ln) and wg%n) as w(Ln) = (27rN£n)) / (TS(H)Z(")) and wg) = (QWN}(%H)) /

(Ts(n)Z (")), respectively. Substituting them into (4), the estimated angular velocity is expressed as

) (N _ )
oy 2 (N - N) .
w =

Lz

where A¢(™ = w™ T By substituting (4) and (6) into (3), the motion trajectory of AGV,, based on its local
sensor observation is estimated as

pl"” (t+1) = p" (1) + T - piv (1), (7)
ﬂ'r(")(COS(b(")(t))(NYL)-{-NI({L))
™ (t+1) 2™ (t) oz
" " n 2707 (sin ¢ (1)) (NI =N G
Y (1 +1) | = |y @) | £ | 2 Tywzm))ﬁggi )| (8)
e (4 1) o™ (1) 27 (N - NG
iz LY

2.2 Communication model

In our study, we assume that the current AGVs are ready to transmit their control request packets and that the
user arrival rate follows a Poisson distribution. In the initial transmission process, each control decision packet
transmission occupies B Hz of bandwidth in the frequency domain. The probability of a single intelligent machine
successfully transmitting a data packet in L repeated transmissions is given by

L

Pn(nRet =L)= Z (?)plret(l_pret)Ll =1- (1_p’r‘et)L7 9)

=1

where p,¢; is the probability of successful transmission after uplink unauthorized access without collision, which
is expressed as prer = (1 —1/ NO)(N -1, Here, Ny denotes the number of available preamble sequence codes at
the BS, and N%" represents the number of business requests from all intelligent machines to the BS per unit time.
Additionally, the average number of retransmissions for a single user is given by E(npget) = Zimt:l NRet * Pn(NRet).

In networked formation control, the closed-loop interaction process between an AGV and the BS involves three

components: the uplink sensing data transmission delay T[(Jn) (t), the BS internal data processing delay ngs) (t), and
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the downlink feedback control delay Tgl) (t). The closed-loop communication latency is thus expressed as

T () = TSV (8) + TG (1) + TSV (1)
= E(nge) - (TG0 (8) + TS (0) + (TS (1) + TSV (1) + (TS2(t) + To())

(n) (n) ar (n) (n) (n)
=E(nget) - (LU U + d—) + ( N + Dy (t)éMEC> + <DD ®) + d—) )

RO e wli — NT) I RO e

where T[(]g (t) represents the transmission delay for AGV,, to send data to the BS at slot ¢, which is equivalent to the
transmission time of each bit stream data. Additionally, T,(J%) (t) denotes the broadcast delay of the channel between
AGV,, and the BS at slot ¢, and D[(J" ) (t) and D(D") (t) denote the uplink and downlink business data sent by AGV,
to BS and by BS to AGV,,, respectively. Furthermore, Té") (t) is the queue time when the uplink business data of

AGV,, arrives at BS, while Tén) (t) is the processing time of AGV,, business data by BS. The parameters u, dppc,
and [ represent the number of AGVs supported by the BS per unit time, the number of CPU cycles required for
the edge server to process 1 bit of data, and the local computing resource of the edge server, respectively. Moreover,
RM(t) is the data transmission rate between the BS and AGV,,, d™ is the Euclidean distance between AGV,, and
the BS, and c is the speed of electromagnetic wave propagation.

According to the finite blocklength theory, the short packet transmission rate R(™) (in bits per second) in an
intelligent machine network can be approximated as

(n)
R™ = B [1ogy(1 + SNE™) — || L g-1() ), (11)
td(n)B

where SNR(™ denotes the signal-to-noise ratio of AGV,,, and t4(™ represents the transmission duration of short
packets. Additionally, B is the channel bandwidth, ¢ is the decoding error rate of short packets, V(™ is the channel
dispersion, and Q~!(-) is the inverse function of the Gaussian Q-function, where Q(z) = [~ (1/v/27) exp(—t2/2)dt.
Building upon this, we further account for the control decision lag caused by closed-loop communication latency.
Accordingly, the discrete-time motion state of an agent considering communication latency is expressed as

p™(t+1) = p™(t) + TS (1) - I(t) - u™(2), (12)
cosB,(t) —sinf,(t) 0

J(t) = | sinfn(t) cosbp(t) 0], (13)
0 0 1

where p(™ denotes the pose information of AGV,,, J (t) is the rotation matrix that maps the AGVs’ local velocity
) T
commands to the global coordinate system. The control decision is defined as u(™ (t) = [g'c(") ) g™ (t) o™ (1) }

2.3 Formation control model

As illustrated in Figure 3, networked formation control typically employs the leader-follower control method to
achieve collaboration among multiple agents. Initially, an arbitrary agent in each formation is designated as the
leader, which guides the remaining followers to safely reach their destination. During the journey, the follower agents
obtain the leaders’ pose information from the BS or their own sensors and calculate the ideal relative distance and
relative angle based on the initial formation information. It ensures that all followers form a strict geometric
pattern with the leader, which is determined by parameters such as relative distance and relative angle. Geometric
formations vary widely, encompassing distinct patterns such as columnar and diamond arrangements. In this study,
we consider the diamond formation as an example, and the expected formation parameter matrix at slot ¢ is defined
as

- ~p ol o f
i/ (1) = H{,Hz,...,Han.

In (14), the expected queue parameter of AGV,, in the formation is defined as H/, which is expressed as I:I,Ji =

n’

P i fzi")} . Specifically, h{" represents the ID number of the agent AGV,, in the formation, A" represents

(14)
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Figure 3 (Color online) Networked multi-agent formation control model.

)

the ID number of the leader agent in the formation where AGV,, is located, ;Lgn represents the ideal geometric

center distance L(™ between AGV,, and the leader, and fzi") represents the ideal angle 1/;(") from the positive z-axis
to the geometric center connecting AGV,, and the leader. The expected pose information p™ (¢) of the agent
AGV,, at slot t is given by

i.glo) (t) TLe (t) + f/(n) cos 1&(") (t)
13(77/) (t) = ?J;Zlo) (t) = YLe (t) + j’/(n) Sln1/A)(”) (t) , (15)
D™ (1) S (1)

where 21 () and yr. (t) denote the pose information of the leader at slot ¢, respectively.
2.4 Problem formulation

Due to the limited communication resources and sensing range, in order to ensure sufficient braking reaction time
for obstacle avoidance and formation maintenance, the AGV formation control system may need to compromise
the movement performance, via reducing the driving speed and increasing the braking acceleration. Although such
approaches mitigate the communication delay effects, they cannot meet the high maneuverability requirements
of large-scale AGV systems in complex dynamic environments and may cause serious pose deviation issues due
to sensor errors and autonomous navigation. Therefore, it is necessary to further analyze the formation control
constraints due to error accumulation.

Considering the accumulation of sensing errors in local pose information over time, the cumulative position error
during periods of autonomous driving without BS control information is calculated using (8) as

™ (1)
e (1) = | 4" (1) | = [ 1) = p (1) (16)
0

Additionally, based on the definition in (8), the formation parameter matrix H/ (¢) of the actual formation is
calculated as HY () = [H{ , Hg yees Hﬂ4 , where H/ represents the queue parameter of AGV,, in the formation,

Xn

and can be represented as Hf = [hgn) hén) hén) hfln)].
The formation synchronization error between two relative formation patterns FH (t) and HY (t) is defined as the
square of the Euclidean norm of the actual formation and the expected formation, given by

e (t) = |8 () -1 ). (17)

In summary, in order to achieve stable formation control, both the position error e](gn) (t) and the synchronization

error e, (t) must converge within a safe threshold. Furthermore, considering that the agent moves in a 2D plane
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with obstacles, other intelligent bodies can be treated as dynamic obstacles with uncertainty. To ensure formation

safety and avoidance driving, the following control constraint conditions must be satisfied:
p™ (t) — p( H/lhn)
o )] = n (18)
p™ (1) — pi" (1) > ",

where p(”,) (t) denotes the pose information of the agent AGV,,, which belongs to the neighbor set of AGV,,.

pf,") (t) represents the position information of obstacles surrounding AGV,,. The safe braking distance of AGV,, is
given by A = (V2,0 + 2€max - S™) / (w0 * 2amax), where S is the inner radius of the ground projection contour
of AGV,,, wy is the warning distance factor based on the collision probability threshold, and vyax and amax are the
maximum driving speed and acceleration of AGV,,, respectively.

In the complex environment of industrial multi-agent formation control, it is imperative not only to meet the
control requirements mentioned above but also to ensure rapid and safe driving while maintaining the integrity
and consistency of the formation. Towards this end, our objective is to minimize the formation’s travel time,
subject to constraints on sensing error, communication quality, and control synchronization error, by optimizing
the cooperative control strategy to safely and efficiently accomplish the transportation task. The optimization
problem is defined as

niitn Lye ( &) s (mg) - AT)

s.t. Cl : (nRet) < nlgeﬁ

Oy ‘p(") —p (¢ H eth VneN,
Cs: AW <Ay, Vn e N, (19)
Cy: \p<"><t>—p< ><>H > Y,
p™ (¢) — p&" H > h{" Vn e N,
Cs: B (1) - B/ ()] <<t vne .

where Tc(ffz denotes the formations travel time, 7y represents the control strategy, and s*) (+) is the number of time
steps required for the k-th formation to reach its destination from current position under 7. The joint action space
Ay comprises the agents’ control decisions, including linear and angular velocities, along with communication cycle
decisions. s(*) (mg) = dgézn / (v(’“)AT), where v(*) is the current speed of the leader agent in formation, and AT is
the controllers sampling step length. The constraints C;—Cs are imposed to ensure the safe and efficient operation
of the formation. Specifically, C; limits the average number of retransmissions per agent to prevent indefinite
retransmission attempts, which could occupy excessive resources and cause congestion, thereby preventing other
users from communicating normally. Constraint Cs restricts the pose error of agents to ensure that they can
quickly respond to the BS’s control requests and correct their trajectories to avoid obstacles. Constraint C'5 limits
the sensing error of the agent’s motion state to achieve high-precision positioning and control decisions, ensuring
the stability and safety for the multi-agent formation control system. Constraint Cy ensures a safe distance between
agents and dynamic obstacles, allowing agents to emergency brake within a safe distance to avoid collisions. Finally,
constraint C restricts the synchronization error of agents to ensure that they move in strict accordance with the
geometric formation.

3 Multi-agent formation control using MAPPO with ISCC-based global information
sharing

In this section, we model the formation control problem as a POMDP for communication-sensing enhanced control,
addressing formation control under various sensing, communication, and control constraints. Specifically, we propose
the dynamic obstacle avoidance risk map using the CVaR model, and the dynamic communication cycle allocation
mechanism based on networked control states. Additionally, we present a multi-agent formation control algorithm,
named ISCC-based MAPPO (ISCC-MAPPO).

3.1 Dynamic obstacle avoidance risk map based on CVaR

In complex and dynamic environments with dense obstacles, AGVs are prone to low-probability but high-loss
congestion collisions with dynamic and static obstacles, resulting in material damage and drops. Traditional methods
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often sacrifice movement performance by using low-speed driving to replace a more sufficient reaction distance.
However, they still make decisions based on the safe distance from obstacles within the local sensing range, inevitably
leading to emergency braking decisions, which may result in severe speed fluctuations, increase synchronization
errors, and cause material damage. To address this issue, it is essential to consider both a comprehensive sensing
range to warn and avoid collisions and the smoothness of variable speed to ensure strict synchronization and material
safety of the formation. Therefore, we propose a quantitative evaluation of the impact of dynamic environmental
uncertainty on multi-agent obstacle avoidance and formation synchronization, using a network delay impact model
and a dynamic obstacle avoidance risk map based on the CVaR model.

Specifically, the CVaR model [37] provides a new perspective for dynamic obstacle avoidance by quantifying
extreme risks through tail risk measurement and forward-looking decision-making. By evaluating the potential
collision loss intensity of obstacle interaction in the worst-case scenario, CVaR predicts and quantifies the motion
conflict loss degree of the AGV formation in the high-confidence interval of the risk map. It upgrades traditional ob-
stacle avoidance based on relative distance probability avoidance to risk value control under the collision probability
distribution. The dynamic obstacle avoidance risk map based on CVaR not only depicts environmental uncertainty
in probability risk assessment but also strengthens local path planning for low-probability high-risk events, through
the a-quantile tail risk focusing mechanism. This enables the output of smooth variable speed strategies within the
safe threshold of the action space while maintaining the precision of formation synchronization.

In actual industrial environments, multiple AGVs travel in sequence along ring-shaped production lines, and
neighboring AGVs can be regarded as dynamic obstacles with uncertainty. Since AGVs and other dynamic obstacles
start braking and slowing down only after receiving braking instructions or global state information, it is necessary
to calculate the movement distance during the communication delay. Assuming the worst-case scenario, the dynamic
obstacle and AGV decelerate simultaneously at the maximum speed and just collide when they stop braking. The
relative speed and safety braking distance are derived as

o) =/ (0m)? 4 () = 20m) cos () — ¢), (20)

/ )2 0l (o)’ "
a0 )7 M[Wﬁ( )]_ul“w( )] , (21)

"’ QCLSSQX sin (™) 2@5,711;3( sin gb(”,)

where Tc denotes the average network closed-loop latency of the agents in the formation. Since static obstacles
are typically fixed in position, it is assumed that the AGV has planned a collision-free path using its own sensors.
When the current relative distance d((;Z: ) is no greater than dg;m ), ie., ng? ) < dg;m ), the congestion and collision
will occur. To model the randomness of relative velocity, a random variable Z = dE;m) — dEZ: ) is defined. The
congestion and collision probability is then equivalent to the probability that Z < 0, i.e.,
) _p(gm) o )

Pc:ll =P (dcur < drb (22)

=P(Z=>=0).

To ensure that the tail risk of the collision probability does not exceed the safety threshold e€.,, the target

function CVaR based on the congestion and collision probability risk value is designed, CVaR,, (Pc(:l)l) < €cp,
where a € (0,1) is the confidence level. For counsistency across experiments, the confidence level was empirically
fixed at @ = 0.9, enabling fair performance comparison under the same risk threshold and achieving a balanced
trade-off between safety (collision avoidance) and control efficiency. Using the CVaR optimization framework, the
potential congestion collision risk of the AGV formation and dynamic obstacles under the influence of network delay
is quantified as a risk value CVaR,,.

CVaR, =E[PT|P") > VaR,]
1

- P (PO ap,
I —a Jpt >var,

(23)

where f (PC(;Z) is the probability density function of the collision probability, and VaR,, represents the maximum

probability of collision between the AGV and the obstacle at a certain confidence level.
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Finally, a two-dimensional dynamic risk map of the environment is constructed using real-time sensor and com-
munication network feature information, where each grid area is assigned a risk value. The grid size is adaptively
adjusted based on the actual response time and speed smoothing requirements. By integrating sensing data with
dynamic pose information, network latency, and other parameters, the AGV receives real-time global dynamic map
feedback, enabling it to respond promptly to environmental changes. In addition, our future work will explore an
adaptive confidence level « that dynamically varies with obstacle density and environmental uncertainty to enhance
real-time risk perception and control flexibility in complex formation scenarios.

3.2 Dynamic communication cycle allocation mechanism based on networked control status

The AGV can sense environmental data through local sensors, which contains sensing and synchronization errors
that accumulate temporally. To mitigate this error accumulation, the AGV must interact with the BS at a fixed
interaction cycle to calibrate the information and eliminate errors. However, decreasing the cycle of AGV interaction
with the BS global state information, while reducing the accumulation of sensing and synchronization errors, also
introduces additional communication overhead, and increases the closed-loop communication delay. To balance
the global information communication interaction cycle versus the accumulation of sensing and synchronization
errors, a dynamic communication cycle allocation mechanism for networked control status is proposed. The action
space dynamically outputs a suitable communication interaction cycle based on ISCC state observation values, such
as motion state and collision risk value of the driving area. The communication interaction cycle of multi-agent
formation can be analyzed in two primary cases.

Case 1: When the formation operates in an area with a low CVaR risk value, such as a non-assembly area or a
low AGV density area, the control system is relatively stable and less prone to interference. Under traditional fixed
interaction cycle mechanisms, the BS receives redundant perception data from stable state AGVs and transmits sim-
ilar control instructions at a high frequency, resulting in a waste of network resources and excessive communication
overhead. To address the above problem, the upper bound of the closed-loop interaction cycle is used as state space
data to jointly train control and communication strategies in the critic network. In particular, the model learns to
compute the optimal interaction cycle that ensures efficient and stable formation control. This enables adaptive
extension of the interaction cycle under stability constraints, thereby reducing the frequency of each agent’s access
to the BS and minimizing communication overhead. As a result, the number of AGVs controllable by the BS is
increased, ultimately enhancing overall production efficiency.

Specifically, the motion process of multi-agent driving in sequence along a ring-shaped production line is approx-
imated using a leader-follower tracking trajectory. Based on the stability analysis of the multi-agent control system
in our previous work [38], each agent can derive the upper bound of the closed-loop interaction cycle ng) (o,E”))

under control system stability conditions by utilizing the received state observation date o,g"). According to [35],
the upper bound of the closed-loop interaction cycle is given by

7 ( (n)) < L+ (Tcy0)2[vl(hg ))] _2V1(hg )) TcyC"‘m//(hg ))Tcyc
Ct =

0y , (24)
2177 (™Y’
78 (o) = 78 (") — mod (78 () Tue). ©5)

where V' (+) is the optimal velocity function and V(Az) = (vmax/2) - [fanh(Az — hy) + tanh(hs)]. The modulo

function mod (-) is used to calculate the remainder between ng) (ogn)) and T¢y., ensuring that the actual AGV

communication cycle ng) is an integer multiple of the typical business cycle, thereby maintaining the communi-
cation clock synchronization. Consequently, the AGV dynamically adjusts its closed-loop interaction cycle, which
reduces unnecessary interactions between AGVs in empty areas and BSs, optimizes network resource utilization,
and minimizes average closed-loop latency.

When the closed-loop communication latency is significantly smaller than the closed-loop interaction cycle, the
control commands are not updated within the current cycle. Consequently, the agent continues to execute the
previous control decision, and its motion state is updated as

P (t +1) = p™ () + TS () - I(t) - u™(2). (26)

Case 2: When multiple agents are formed in areas with high CVaR risk values, such as assembly areas and high-
density AGV areas, the control system trajectory is highly susceptible to environmental changes. As the AGV relies
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on its local physical movement information, it is prone to rapid accumulation of pose errors and synchronization
errors. Then, AGVs heavily depend on the BSs transmitted dynamic obstacle avoidance risk map, high-precision
pose information, and low-latency control decisions. The global information enables AGVs to mitigate potential
congestion collision risks, calibrate trajectory and pose information, and maintain formation shape synchronization.
Consequently, the AGV training outcome is that the closed-loop control cycle approximates the control business

cycle time, prioritizing strict formation shape and safe formation control, ng) (ogn)) ~ Teye-

When the control delay is approximately equal to the closed-loop interaction cycle, the control command can
be updated within each cycle, and the agents’ motion state follows the same form as in (12). Additionally, since
AGVs cannot receive global information from the BS within the closed-loop interaction cycle, the interaction cycle
reward function in the local actor-critic network of the AGV remains unchanged. Consequently, the interaction
cycle calculated locally within the cycle interval is approximately a constant value.

In summary, the proposed communication mechanism leverages global state information from ISCC to dynami-
cally adjust AGV communication cycles. We filter redundant or low-value control instructions, reduce AGV access
frequency to the BS, and mitigate network congestion and closed-loop latency caused by excessive access. Addi-
tionally, stable low-latency communication minimizes suboptimal decisions from delayed global state data, improves
estimation accuracy, and enhances critic networks’ value function evaluation, leading to more efficient policy conver-
gence. The following simulation results show that this mechanism achieves stronger generalization capabilities. The
dynamic communication cycle transmission scheme also supports training and execution across diverse intelligent
machine scenarios, making the policy more adaptable to complex and dynamic environments.

3.3 ISCC-based MAPPO formation control strategy

Solving problem (19) poses a challenge due to the involvement of discrete and continuous decision variables. To ad-
dress the non-convex mixed-integer nonlinear optimization problem, we formulate the multi-agent formation control
problem as a partially observable Markov decision process under sensing, communication, and control constraints.
We propose an MAPPO formation control strategy based on ISCC global information, which leverages communica-
tion and sensing system information, such as risk maps and interaction cycles, as ISCC state observation values to
enhance the training efficiency of multi-agent formation control. Next, by learning optimal communication policies
in complex dynamic environments, the agents dynamically adjust their communication cycles to ensure synchroniza-
tion precision while minimizing communication overhead due to additional ISCC global state. In ISCC-MAPPO,
we exploit high-dimensional state information from the ISCC system and differential collaborative learning among
heterogeneous leader agents and follower agents. Specially, to achieve cooperation between heterogeneous agents,
we introduce the centralized training and decentralized execution (CTDE) framework for training. Meanwhile,
unlike common shared networks, in the CTDE framework, we decouple the actor-critic network into two inde-
pendent agent networks to separately compute decisions for leader and follower agents, avoiding gradient conflicts
and improving training efficiency. Several rewards such as obstacle avoidance, formation control, navigation and
interaction overhead are adopted to handle continuous and discrete action spaces, and improve the performance of
the ISCC-MAPPO algorithm as well.

POMDP can be represented as (N, S, A, P,r, O, Z), where N denotes the number of agents, S represents the global
state, A is the action chosen by each agent, P is the state transition function, r is the global joint reward function,
O is the local observation of the environment obtained by each agent, and Z is the observation function. Each AGV
agent has a limited view of its surroundings and must sense enough environmental information to update owner
credibility about the current state, thereby informing its decision-making process for subsequent action selection.
As illustrated in Figure 4, cooperative transportation in industrial environments is primarily achieved through the
collaboration of two types of agents: leader agents and follower agents. Although these agents share the same
state and action spaces, their reward mechanisms differ, necessitating the design of distinct actor networks to learn
their respective policies. This approach avoids conflicts between gradient directions, accelerates convergence, and
enhances the algorithms’ dynamic adaptability and generalization capabilities. Notably, the critic network can be
shared among agents, enabling each of them to learn the most suitable strategy for its role.

(1) State space: The state space is a fundamental component of multi-agent formation control systems, as it
accurately describes the local state of AGVs and reflects their real-time environmental and self-state information
in complex environments. The state space of an agent should encompass various key local information, including
the AGVs pose p(™, velocity v(™), formation parameters H/, the upper bound of the closed-loop interaction cycle

ng), and global risk map data CVaR,. The ISCC observation state OE") of agent n is expressed as

o) = {p™, o W), TG, CVaR. } (27)
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Figure 4 (Color online) MAPPO control strategy based on ISCC global information in flexible manufacturing workshop.

Additionally, the global information S; is defined as S; = {ogl), P, ..., OE")}

(2) Action space: The design of the action space should enable AGVs to learn and optimize their behavior
strategies in dynamic network topologies and industrial environments. In complex environments with narrow
corridors, dense material areas, and dynamic and static obstacles, AGVs must constantly adjust their motion state
to minimize travel time while adhering to sensing, communication, and control constraints. Therefore, the action
space should be designed to account for various situations that AGVs may encounter during task execution, allowing
the agent to flexibly respond to environmental changes. The action space a; of the multi-AGV system comprises
continuous values, velocity vectors, and discrete values, as well as closed-loop interaction cycles, which are expressed
as

ol = {u<">,ng;>} . (28)

By adjusting these parameters, multi-agent can achieve various behavior choices, including acceleration, decel-
eration, steering, and adjusting the communication interaction cycle, to adapt to dynamic network topology and

@),

industrial environments. The joint action space is defined as A; = {agl

(8) Reward function: To mitigate gradient conflicts among heterogeneous agents during ISCC-MAPPO training,
we decouple the actor-critic framework into distinct agent networks, each learning collaborative transportation poli-
cies. Meanwhile, as AGV systems in flexible manufacturing workshops should balance requirements including safe
obstacle avoidance, smooth movement, and precise synchronization, we implement differentiated reward functions.
Specifically, the leaders reward consists of obstacle avoidance reward, navigation reward, and interaction reward,
aimed at guiding it to the target point while avoiding obstacles and optimizing interaction costs. The follower re-
ward comprises obstacle avoidance reward, formation reward, and interaction reward, with the goal of maintaining
formation with the leader while avoiding obstacles and optimizing interaction costs.

(a) CVaR-based obstacle avoidance: In complex environments with narrow corridors, messy material areas, and
dynamic and static obstacles, high-delay closed-loop control commands and untimely obstacle avoidance braking
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can increase the risk of collision. To mitigate this, an obstacle avoidance penalty is set based on the risk value
CVaR,, (P( )) . Specifically, when the risk value falls below the safety threshold, a larger negative reward is imposed

coll
to incentivize the AGV to maintain a safe distance from dynamic obstacles, select low-risk areas for path planning,
and prevent reduced transportation efficiency resulting from collisions or congestion. This reward function design
improves the overall average driving speed and reduces driving time while maintaining driving safety. The obstacle
avoidance reward function is

ccuv
(n)
CVaRq (P +ecw (n)
Acvar * € ( COH) : ’ CVaRq (Pcoll) Eevs
Tobs = 1— fev (29)

()
CVaR P .
—Aevar * € afio ( w”), otherwise,

pm

where A.var is the obstacle avoidance sensitivity coefficient, and CVaR, ( P,

) represents the conditional risk value

under the confidence level «, reflecting the expected probability of collision in the worst-case scenario.

(b) Smooth formation synchronization: Unlike other multi-agent formation control systems with dynamic chang-
ing formations, the formation of AGV teams in flexible workshops requires a static and strict geometric formation,
where AGVs must maintain high-precision synchronized motion with other AGVs in the team to avoid material
damage. Therefore, the formation control reward prioritizes minimizing the synchronization error. When the
synchronization error is lower than a threshold, the positive incentive of the reward function increases. If the syn-
chronization error exceeds the maximum position deviation threshold allowed by the team, a penalty is imposed.
The formation control reward is

f f A~
Wior(1— w HHf (1)~ H/ (t)H < eth
Por Sror e h (30)
HY (t)-H ()| —<lh :
—Wor | 1 — Py = ], otherwise,

where wy,, is the formation control sensitivity coefficient, representing the degree of influence of the formation
control reward on the immediate reward, and £ is the synchronization error threshold. The formation control
reward is only applied to follower agents.

(¢) Efficient navigation: Due to high communication delays and limited local observation, the current speed of
AGVs in the workshop is greatly restricted, increasing travel time. Therefore, when designing the reward function,
under the condition of ensuring synchronization error and obstacle avoidance risk, AGVs are encouraged to increase
their speed to reduce travel time and improve control efficiency. The navigation reward function is expressed as

Tnav = Wnav?™ + 3Wnay (dgn) ") ) 7 (31)

where wyq, is the navigation sensitivity coefficient, representing the degree of influence of navigation reward on
immediate reward. dgn) and dgﬁ)l denote the total distance traveled by the formation toward the destination at the
current and previous moments, respectively. Furthermore, when the AGV is the leader, it needs to consider the
formation error to adjust its own speed.

(d) ISCC-based communication cycle adjustment: While ensuring that the pose error and synchronization error
are lower than the constrained threshold, AGVs traveling in low-risk areas are encouraged to adjust the closed-loop
interaction cycle. Therefore, AGV will reduce the number of interactions with the BS, decrease the probability of
data retransmission and communication latency, and reduce communication overhead. Meanwhile, it balances and
improves the communication quality and environmental response velocity of AGVs traveling in high-risk areas. The
interaction reward function is expressed as

th
) \ Eepa €s X Ecg

(1-cvara (P))

T for ((AJco’m %) ’ (")
t

T(n))(lcVaR (P3))

—Tfor (wcom ﬁT

(32)

Tcom =

, otherwise,

where weom represents the interaction coefficient, which quantifies the impact of the reward of each closed-loop
interaction cycle on the immediate reward.
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Then, the combined reward function for multiple agents can be defined as

oos or comaVAGV otlower
rt:{”J”f r fol (33)

Tobs T Tnav T Tcom, vAG’\/leader-

Building on the reward function, we propose an ISCC-MAPPO formation control using ISCC global information,
comprising two phases: training and execution in Figure 4.

During the training phase, each agent uploads its local observation aﬁ") to the BS via the uplink and receives

the ISCC global information observation O,En) from the BS via the downlink. Utilizing this information, the internal
actor network generates the action a,g") within the continuous action space. The edge server constructs a global
shared observation S; based on the received ISCC global information observations from all agents and feeds it back
to the critic network, which estimates the value function of the agent under the current state, v,g"). The agent then
stores the experience [St, or, At, 7+, Vi, St41,0:41] in its experience buffer and updates the loss function parameters
of the actor and critic networks through random sampling.

In the execution phase, each agent’s actor network calculates the motion control strategy and new commu-
nication interaction cycle based on the received current ISCC global information observation O,En) from the BS.
Furthermore, within the communication interaction cycle, each agent generates the motion control strategy u(™
and communication interaction cycle ng) based on its local observation and previous ISCC global observation data.

Additionally, during the training phase, the actor network updates the joint advantage function A, based on the
global information of the agent in the critic network, enabling effective action decisions. Concurrently, the actor
network parameters (") are updated using the clipped loss function L (0) and gradient ascent optimization.

L (6 = B [min (s A clip (17,1 .14 £) A7) (34)

where r(gi? =Ty (a,ﬁ"’ o,g")) /0 old (a§") ‘o§">) represents the importance sampling proportion coefficient, which is

the ratio of the probability of the new policy to the old policy of the actor. The clipping function clip () is used to
n

)
i

limit the range of ré and prevent excessively large update steps, with & denoting the clipping range. Additionally,

flgn) represents the generalized advantage estimation (GAE) calculated for each time step. The advantage function

is utilized to evaluate the feasibility of selecting a specific action aﬁ") under a certain state oﬁ"), given by

A =) v (o)) = v (o), (35)

where V' (oﬁ”’) is the value function, and +y is the discount coefficient. Furthermore, the actor network parameters

of the leader and follower agents are dynamically updated based on the type of AGV agent. Considering the critic
network is typically shared, take the global observation as input to estimate the value function, thereby eliminating
the need for distinction.

In the critic network, the primary objective is to minimize the loss function L (¢), and the gradient descent
optimization is performed to update the network parameters [cp(")}, as expressed in

L(¢™) =E, [(m (o) - Rt)z} : (36)

where Vi, represents the estimated value function of the critic network for the state oﬁ"), and R; denotes the

accumulated return, given by R; = r(gflt) +~V (0511). The MAPPO multi-agent formation control algorithm based

on ISCC global information is outlined in Algorithm 1.

Finally, to illustrate the interplay between sensing, communication, and control in the closed-loop control process
of multi-AGV formation, we introduce high-dimensional feature state values, such as the upper bound of communi-
cation closed-loop interaction cycle and the sensed CVaR risk value, into the proposed MAPPO formation control
strategy. By substituting the original low-order observation data with higher-order information in the local observa-
tion, including relative distance, velocity, and angle of obstacles, as well as quality of communication channels, the
state space dimension is reduced, thereby increasing the decision-making information available to the actor and critic
networks and decreasing computational complexity. Specifically, assuming D fully connected layers in the actor net-
work, with wg neural units in the d-th layer, where the input and output layers have dimensions equal to the ISCC
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Algorithm 1 ISCC-based MAPPO multi-agent formation control algorithm.

1: Initialize the actor network parameters 6("™) and critic network parameters Lp("), learning rate arscc-
2: while episodes < Meps do
3: for step =1 to L do

4 Initialize trajectory list 7;

5: Initialize RNN states h(()lgr, ey h[(;fz and h[(f%/, . h(()n‘)/,
6: fort =1 to T do

7 for each agent n € {1,..., N} do

8 Generate ISCC state oin) from o(n) CVaRq Tg:),
9: Execute action a( "o (oﬁ")),

10: Compute value v(") — V(sgn));

11: end for

12: Observe reward r; and new state s;41;

13: Store 7 < [St, 00, Ay, e, Vi, Stg1, 00413

14: end for

15: Calculate A, R via GAE;

16: Store 7 in D;

17: end for

18: Update RNN states for w and V;

19: Update 6 using 0 < 0 — arsccVL(0);
20: Update ¢ using ¢ < ¢ — arsccVL(p);
21: end while

22: for each agent n € {1,..., N} do
(n)

23: Obtain E)( ™ and execute a, ’ offline during Tét),
24: Generate new o( ) after T( ;) delay;

25: Update ng) and restart closed-loop control;

26: end for

global observation state space and action space, respectively, and wj and wj units in the ReLU and Tanh layers,
respectively. The Critic network has a similar structure, with wg neural units in the d-th layer, and w} and w}, units
in the ReLU and Tanh layers, respectively. When predicting the action of intelligent body n € N, the complexity is

caused by the forward propagation of action decision calculation, expressed as O (Z a1 weder1 + Z de1W wd“).
During network training, the complexity is caused by the forward propagation of value function calculation and
the backward propagation of network parameter gradient descent, which is O (Z a1 wewdﬂ) +0 (Z i1 wd d+1)

and O (we + 30 whwdttpewh + wy, + DOy wlwdt 4+ 6wl ) Additionally, the complexity of GAE is O (N25y),
where N is the number of intelligent bodles and S ¢ is the vector dimension of the global state space. In summary,
the complexity of the proposed MAPPO formation control strategy is O (25:1 2T (Np + 1) (Zd 1w§lwg+1+

S wledtt)) + 0 (TN2S)).

4 Simulation and discussion

In this section, we use the Python and MATLAB platforms to simulate the 100 m x 100 m environment of a
flexible assembly workshop for automobiles. In the simulated assembly workshop, a diamond formation of 4 AGVs
as a baseline case, we generate 7 distinct multi-agent formations and deploy them randomly across multiple ring-
shaped production lines. Then, we simulate the multi-agent formation performing cooperative transportation tasks.
The formations’ traveling trajectory and motion state data are recorded and analyzed, to validate the safety and
scalability of the proposed algorithm. Furthermore, we conduct comparative analysis against both learning-based
traditional MAPPO and MADDPG strategies, as well as kinematic model-based virtual structure approach and
leader-follower approach, evaluating formation synchronization accuracy, closed-loop latency, and travel time in
dynamic environments. Simulation parameters are detailed in Table 1.

Simulation results comparing the convergence of learning effects in formation control systems under varying
AGYV scales within the ISCC system. As shown in Figure 5, the z-axis denotes the number of training episodes,
while the y-axis represents the total reward. The figure comprises five curves, corresponding to deployments of
8, 16, 24, 28, and 32 agents per thousand square meters. The solid lines indicate the average reward function
values derived from five parallel simulations conducted in distinct random environments, with the shaded regions
delineating the upper and lower bounds of the positive and negative standard deviations. It is evident that as the
number of controllable agents increases from 8 to 28, the convergence value of the reward curves rises progressively,
accompanied by an accelerated convergence rate. Concurrently, the shaded areas narrow, signifying enhanced
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Table 1 Simulation parameters.

Symbol Simulation parameter Value
82’:’ Formation synchronization error threshold 30 mm
Teye Cycle time 4 ms

N Number of AGVs 28 /km?
v Velocity of AGVs 1-5 m/s
hs Safe braking distance of AGVs 5 m
ng") Average data value of uplink sensing signal 40-250 bytes
€ Decoding error rate of short packets le—5
Meps Maximum episode times 400
L Maximum learning step times 500
181
16 -
14r -8 Agents
o 12k 16 Agents
© 24 Agents
5 10l ~ 28 Agents
% — 32 Agents
P8
6 L
4+
2 . . . . . . .
0 50 100 150 200 250 300 350

Episodes

Figure 5 (Color online) Training results of the ISCC-based formation control strategy under different AGV scales in dynamic and complex
environments; each curve (8, 16, 24, 28, 32 AGVs per 1000 m2) shows the smoothed mean reward versus training episodes with shaded 90%
confidence intervals over five random seeds.

algorithmic convergence and stability. The improvement is attributed to agent collaboration and latent information
sharing, such as updates to the CVaR dynamic risk map, which bolsters the systems’ capabilities in safe obstacle
avoidance and navigation. Furthermore, a greater number of formations expands the environmental area accessible
for learning by the actor-critic network, enabling the system to more comprehensively explore control decisions across
diverse environmental feedback scenarios. This reduces the likelihood of decisions converging to local optima, thereby
expediting the learning process and enhancing the convergence speed of rewards associated with obstacle avoidance,
navigation, and formation control. Additionally, the different formation scales used in Figure 5 can be viewed as
analogous to varying operational loads in real industrial workshops. Smaller-scale formations correspond to low-
load conditions with sparse AGV interactions, whereas larger formations represent high-load scenarios characterized
by dense coordination in confined spaces. The consistent improvement in convergence and stability across these
varying scales demonstrates the robustness and adaptability of the proposed ISCC-based MAPPO algorithm to
diverse operational environments, thereby strengthening the argument for its practical generalizability.

However, when the agent scale increases to 32, the rewards decline gradually, and the shaded areas widen. This
degradation stems from the limited network resources that are not able to support the escalated communication
overhead induced by the surge in agents. Delayed sensing and control decisions result in significant synchroniza-
tion errors in pose estimation, elevating the risk of congestion and collisions, which in turn diminish rewards for
navigation and formation tasks. When the number of agents per unit area exceeds the ideal capacity threshold of
the networked control system, the multi-agent system struggles to meet the ultra-low latency and efficient coor-
dination demands of complex formation tasks. It is evident that the proposed algorithm effectively characterizes
the coupling among sensing, communication, and control, enabling an expansion of the controllable agent popula-
tion, reducing communication overhead and latency, and further enhancing control performance in navigation and
obstacle avoidance.

We simulate the collaborative material handling process of 28 AGVs in an unknown dynamic environment.
Figure 6 depicts the movement trajectories and motion state trends of four AGVs within the diamond-shaped
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Figure 6 (Color online) The multi-agent formation dynamically adjusts its motion state to accommodate complex environmental changes
involving both dynamic and static obstacles. Three key metrics illustrate the formation control process: (a) movement trajectories of agents,
(b) linear velocity variations across agents, and (c) formation synchronization accuracy.

formation No.l. As observed from Figure 6(a), upon receiving a collaborative handling request at the initial
moment, formation No.l reduces its speed to maintain its configuration while seeking the shortest path to the
destination. After 55 s, Figure 6(b) reveals a sharp decline in the formation’s speed, as indicated by the velocity
fluctuation curve. The formation anticipates that the next path will pass through point (50, 70) based on the
obtained global CVaR risk map information. Specifically, unknown static obstacles near this point lie within the
safety clearance threshold of the formation planned route. Meanwhile, other AGV formations in the vicinity are
treated as dynamic obstacles, presenting a high risk of potential congestion and collision. Consequently, the leader
AGYV in formation No.1 cannot accurately determine the probability of an impending collision. To mitigate the risk
of load displacement or damage caused by abrupt speed changes, it initiates a gradual and smooth deceleration. To
preserve strict geometric synchronization, the follower AGVs in the formation also reduce their speed accordingly.

After 80 s, as the formation moves close to the exit of the obstacle zone, it progressively accelerates to its
maximum speed. Subsequently, at 140 s, the formation passes through point (50, 70) again. Based on learned
optimal control strategies from prior operations in similar environments, formation No.l determines this area to be
free of safety threats. The decision to proceed without deceleration markedly enhances its adaptability and travel
efficiency in a complex, unknown dynamic environment.

Furthermore, Figure 6(c) highlights that when the formation first reaches a maximum speed of 5 m/s around
25 s, the synchronization accuracy of some formations approaches the predefined safety threshold of 30 mm. Here,
the synchronization accuracy is computed from (17), where hg and hy denote relative positional drift between for-
mations. The resulting formation synchronization error approximates the formation synchronization accuracy in
millimeters. However, by 120 s, when the maximum speed of 5 m/s is achieved again, the synchronization accuracy
across all formations stabilizes at approximately 10 mm. This improvement is twofold. First, the proposed algo-
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rithm leverages global information from the ISCC system to construct a CVaR risk map, quantifying the severity
of potential congestion and collisions between AGVs and dynamic obstacles. The foresight allows sufficient time for
smooth speed adjustments and formation synchronization, enabling AGVs to maintain high speeds without risking
material deformation due to emergency braking or startup. Concurrently, the proposed dynamic communication
cycle allocation mechanism, based on networked control states, ensures high-precision synchronization while min-
imizing communication overhead, thus avoiding high pose errors arising from delayed control decisions or sensing
data. Second, by exploiting high-dimensional state information from the ISCC system and differential collaborative
learning among heterogeneous AGVs, the algorithm refines optimal control strategies from historical environmental
interactions, substantially improving formation synchronization accuracy and traveling efficiency.

Figure 7 illustrates the average formation synchronization accuracy across five parallel random environments,
with the solid line representing the mean and the shaded areas delineating the positive and negative standard
deviations. The results demonstrate that the strategy proposed in this study achieves a stable synchronization
accuracy of 8 mm when 28 agents are deployed per unit area, significantly outperforming the performance at other
deployment scales. This superior performance arises because, in multi-agent systems, a higher number of agents
can leverage the global information provided by the ISCC framework to more comprehensively explore control
decisions across diverse environments. It reduces the risk of converging to local optima and accelerates the learning
process for collaborative transportation tasks. Furthermore, by dynamically adjusting the communication cycles of
agents based on their networked control states, the proposed approach substantially mitigates the communication
overhead resulting from frequent data exchanges during learning and decision-making. Meanwhile, the system
strikes an optimal balance between the communication overhead sustainable by the network and the efficiency of
the learning algorithm. The 28 agents are identified as the ideal threshold for the unknown environmental capacity
under consideration. Consequently, agents at this scale can more rapidly study optimal control strategies from
historical environmental interactions, efficiently execute tasks, and achieve high rewards. It enables high mobility
and stringent geometric formation synchronization in dynamic and complex environments.

Figure 8 reveals that the proposed strategy maintains a stable synchronization accuracy of 10 mm, markedly
surpassing the performance of learning-based traditional MAPPO and MADDPG strategies. The advantage stems
from the strategy-integrated design, which enhances formation control by synergizing sensing, communication, and
control. By fully exploiting global sensing information to construct a CVaR map, the approach effectively miti-
gates potential collision risks, significantly reducing the likelihood of emergency braking. It provides sufficient time
for smooth velocity adjustments and formation synchronization. Additionally, based on state observations from
the ISCC framework, the multi-agent system dynamically adjusts the interaction cycles with the BS, enhancing
communication resource utilization and minimizing latency. It allows agents to capture dynamic environmental
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Table 2 The average simulation results for six test parameters of the proposed algorithm and the benchmark learning-based formation control
strategy are presented. The improvement effect indicated in parentheses denotes the lower bound of the performance enhancement achieved
when comparing the proposed algorithm to the other two algorithms.

Formation

Path Traveling Cycle Closed-loop e AGV Supported
length time time latency acbc}:;;a'cy velocity AGV
(m) (s) (ms) (ms) (mm) (m/s) scale

Proposed algorithm

20 11.63(+26.7%) 4.62(+15.5%) 3.73(—52.7%) 1.78(—59.9%) 2.07(—22.2%)
40 19.42(—5.2%) 4.69(+17.3%) 2.72(—67.6%) 1.72(—71.4%) 2.27(40.9%)
60 24.90(—11.5%) 4.68(+17.0%) 2.45(—72.8%) 1.51(—82.3%) 2.58(+13.7%) 28(+40%)
80 29.10(—14.4%) 4.67(4+16.8%) 3.18(—61.3%) 2.01(—76.5%) 2.87(+17.1%)
100 33.03(—16.8%) 4.64(+16.0%) 2.82(—65.9%) 2.64(—69.1%) 3.12(+17.7%)
Traditional MAPPO
20 11.34 7.89 15.01 2.12
40 20.48 8.39 16.25 2.14
60 28.13 4 9.46 16.50 2.27 20
80 33.99 8.22 16.60 2.45
100 39.68 8.98 16.00 2.65
MADDPG
20 9.18 9.01 4.44 2.66
40 23.14 8.63 6.02 2.29
60 217.99 4 9.02 8.53 0.81 20
80 230.63 8.63 8.54 1.04
100 234.98 8.27 8.55 1.11
COMA
20 9.71 9.66 226.17 1.50
40 22.96 10.9 226.17 1.50
60 37.06 4 10.56 231.93 1.50 16
80 50.40 10.30 235.92 1.56
100 62.42 10.41 341.23 1.50

changes with minimal delay and assess real-time variations in formation structure, leading to more precise synchro-
nization decisions and improved synchronization accuracy and control efficiency. Meanwhile, as shown in Figure 8,
COMA [39] achieves fast initial convergence but exhibits large fluctuations and higher steady-state error. This
is mainly because COMA relies on a centralized critic with counterfactual baselines for credit assignment, opti-
mizing policies purely from global rewards without modeling the coupling among communication, perception, and
control. Such a decoupled design limits responsiveness and synchronization accuracy in dynamic industrial environ-
ments. In contrast, the proposed ISCC-MAPPO integrates communication-perception-control synergy and adap-
tive interaction-cycle optimization, achieving higher precision and stability in formation control. Moreover, as de-
picted in the figure, the leader-follower approach sustains high-precision formation synchronization during the initial
25 s of the environment. However, as time progresses, system struggles to maintain strict geometric formations. The
limitation arises because kinematic model-based formation control methods rely on pre-defined rules for decision-
making, which ensure system stability in rule-compliant environments. In an unpredictable or dynamically evolving
environment, inaccuracies in the model and elevated communication latency undermine control effectiveness, failing
to guarantee the validity of all decisions in complex, unknown environments. It is evident that the proposed al-
gorithm effectively characterizes the interaction relationship among sensing, communication, and control, reducing
communication overhead and latency. And it can further enable an expansion of the controllable agent population,
and further improve control performance in navigation and obstacle avoidance.

As shown in Table 2, when multiple agents execute a collaborative transportation task along a 100-meter path,
the average travel time is 33.03 s, representing a reduction of at least 16.8% compared to baseline algorithms.
Particularly, although COMA employs a centralized critic to perform credit assignment among agents, it struggles
to accurately model individual contributions in continuous action spaces, resulting in longer travel times and unstable
convergence in complex dynamic environments. Unlike the traditional MAPPO, MADDPG, and COMA baselines,
which rely primarily on low-dimensional motion states such as sensed positions and velocities, the proposed algorithm
emphasizes the interdependencies among sensing, communication, and control processes. In contrast, the proposed
algorithm leverages the rich global information provided by ISCC to jointly learn optimal strategies for continuous
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control and discrete communication cycles across diverse conditions. Consequently, agents can maintain higher
movement speeds without compromising safety, reducing the risk of material deformation during braking and
acceleration, which significantly improves formation velocity and reduces overall travel time.

In Table 2, cycle time denotes the communication interval between agents and the BS, where a larger value
corresponds to lower communication traffic per unit time, approximating reduced network overhead. The results
demonstrate that the proposed algorithm, by dynamically adjusting cycle time, achieves at least 15.5% reduction
in communication overhead compared to baseline methods, thereby alleviating communication congestion. During
networked formation control, the closed-loop latency decreases by at least 52.7%, substantially improving communi-
cation performance. The enhancement arises because the proposed algorithm enables agents to learn both optimal
control strategies, leveraging comprehensive ISCC global information, and optimal communication strategies tai-
lored to current control demands. A dynamic communication cycle allocation mechanism, allows AGVs to adjust
interaction cycles based on ISCC state observations within the action space. It minimizes redundant information
exchanges, ensuring high-precision formation synchronization while significantly reducing communication overhead
and closed-loop latency. In contrast, traditional MAPPO, MADDPG, and COMA algorithms overlook the vary-
ing communication needs of control performance in complex environments, employing fixed-cycle communication
strategies ill-suited to dynamic, intricate formation tasks. For instance, unlike in assembly areas with complex or
dense dynamic obstacles, agents traveling in open, non-assembly zones require less frequent BS interactions for strict
obstacle avoidance and navigation, resulting in lower communication demands. However, the baseline algorithms
allocate uniform communication resources to agents, leading to redundant high-frequency data exchanges, wasted
resources, elevated delays, and diminished control efficiency and safety due to delayed decision-making and sensing.

Moreover, the proposed algorithm surpasses baseline methods in critical metrics such as formation synchronization
accuracy and AGV speed, while also supporting larger-scale AGV formations, showcasing superior scalability.
These benefits stem from the multi-dimensional optimization of high-precision formation control enabled by the
integrated sensing, communication, and control design. The approach allows agents to efficiently acquire rich
ISCC global information with minimal communication overhead, facilitating rapid and effective learning of optimal
control and communication strategies in dynamic, complex environments. While the current experiments focus
on an automobile assembly scenario, the proposed ISCC-based framework is expected to be adaptable to other
formation control production settings, such as furniture assembly and warehousing logistics, where low-latency and
high-synchronization coordination are equally important. By reparametrizing the kinematic and environmental
variables, the approach could potentially maintain comparable control efficiency across different industrial contexts.
Future work will further validate the proposed algorithm in these diverse collaborative manufacturing environments.

5 Conclusion

In this study, we propose a novel ISCC-based multi-agent formation control strategy tailored for flexible automotive
assembly scenarios. By considering a new form of communication-sensing enhanced control, we develop an ISCC
formation control model and construct a dynamic obstacle avoidance risk map based on CVaR to quantify collision
risks, improve sensing accuracy and sensing range, and ensure smooth velocity transitions, and mitigate material
extrusion deformation risks without compromising velocity. The formation control problem is formulated as a
POMDP and solved using an ISCC-MAPPO algorithm. To reduce communication overhead and sensing errors, we
introduce a dynamic communication cycle allocation mechanism that enhances efficiency and expands the number
of controllable AGVs. A decoupled actor-critic framework further improves training stability and mitigates gradient
conflicts in heterogeneous agents. Simulations show our work reduces synchronization error by at least 59.9% and
communication overhead by 15.5%, while supporting larger AGV fleets and reducing travel time. In future work,
we will extend the ISCC framework by incorporating computational resource constraints, aiming to develop an
integrated sensing, communication, computation, and control paradigm for large-scale intelligent systems. This
effort will provide advanced theoretical insights and technical solutions to support large-scale intelligent machine
group control in flexible manufacturing workshops.
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