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Abstract This paper presents an attack detection approach using data encryption for the cyber-physical systems with the purpose

of (i) detecting the false data injection (FDI) attacks, and (ii) significantly improving the attack detection rate without sacrificing any

system performance. To this end, a dynamic encryption scheme (DES) is designed to realize the encrypted transmission of measurement

output, in which the secret key is updated dynamically using historical measurement outputs. Then, the effectiveness of DES in detecting

FDI attacks is discussed through the theoretical analysis. It is certified that, the attack detection approach proposed in this paper can

increase the anomaly detector’s attack detection rate by accumulating the effects of FDI attacks on the estimation residual. When there

are no attacks, the DES can restore the original measurement output. In this case, such a scheme would not deteriorate the system

performance. Moreover, the proposed attack detection approach can also be used to detect replay attacks. Finally, the effectiveness of

the proposed attack detection approach is demonstrated on an IEEE 6 bus power system.
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1 Introduction

Cyber-physical systems (CPSs) are a kind of complex system integrating calculation, communication and control,
aiming at realizing the expected performance of physical processes [1]. Nowadays, CPSs can be found in applications
in different critical infrastructures [2]. However, due to the open communication network, CPSs are susceptible to
malicious cyber-attacks, e.g., denial-of-service (DoS) attacks [3–7] and deception attacks [8–15], which would cause
great negative impact on the system security [16–18]. It should be pointed out that the deception attacks, including
false data injection (FDI) attacks [8–11] and replay attacks [12–15], are carefully designed, which can bypass the
anomaly detection mechanism and seriously reduce the system performance. Thus, from the perspective of defenders,
it is crucial to investigate the issue of attack detection to identify potential attacks and guarantee the security of
CPSs.

1.1 Related work

In recent years, the issue of attack design and attack detection has received a lot of attention. Generally, the
residual-based χ2 detector, which distinguishes anomalies by using the statistical characteristics of system data,
is applied to detect anomalies in control systems [19]. To highlight the security risks associated with CPSs, some
recent studies have investigated attack strategies from the perspective of the attacker. There are two basic models
to design FDI attacks: the stochastic attack strategy [20–22] and the deterministic attack strategy [8–11, 23–25].
Stochastic FDI attacks are crafted as random sequences to ensure that the residual sequences before and after the
attacks have the same random distribution. These attacks can potentially avoid detection by anomaly detectors,
but real-time system data are required to generate attack signals. Conversely, if the system model is known,
deterministic attacks can be created offline. For the χ2 detector, a deterministic FDI attack is developed in [8, 9],
which only modifies the measurement outputs. In [11], this strategy is further developed to incorporate attacks on
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the control signals and measurement outputs. The deterministic FDI attacks were also investigated in [10] against
state estimation and closed-loop control with network delays. In [23], a stealthy innovation-based attack scheme is
developed that utilizes past and present estimation residuals to degrade the estimation performance while remaining
stealthy to the anomaly detector. A finite-horizon strictly stealthy FDI attack, which innovation-based detectors
cannot detect, is designed in [24]. In [25], a complete stealthy FDI attack is presented that completely nullifies its
effect on estimation residuals (described in Definition 2 below), making it invisible to residual-based detectors.

From the viewpoint of the defender, various methods have been developed to expose FDI and replay attacks.
In [26], the multiplicative watermarking scheme is given to increase the attack detection rate (ADR) by actively
modifying measurement outputs and control inputs. In [27], an improved multiplicative watermarking scheme is
introduced. An optimal linear encryption-based detection technique is presented in [28] to guarantee that the χ2

detector can detect stochastic linear FDI attacks. To expose random linear FDI attacks in the problem of remote
state estimation, watermarking-based methods are developed under χ2 detector [29], in which the pseudo-random
numbers are used as watermarks to encrypt and decrypt measurement outputs. In [30], by utilizing past and
present measurement outputs, a summation (SUM) detector is proposed to expose FDI attacks. Furthermore,
a noisy-control scheme was developed in [13] to detect replay attacks at the expense of control performance by
introducing Gaussian noise into the control input. In [31], this strategy is improved even further by addressing the
trade-off between detection efficiency and control performance. A stochastic game technique is presented in [32] to
reduce the control performance loss under the noisy-control scheme. In [33], a periodic watermarking strategy is
proposed for detecting the so-called discontinuous replay attack in CPSs. Besides, the stochastic coding scheme [14]
and output coding scheme [15] are designed and applied in the transmission process of measurement outputs to
detect replay attacks without compromising system performance.

1.2 Motivation and contributions

Generally, to satisfy CPS security requirements in engineering applications, an efficient attack detection approach
should aim to achieve the following three objectives from the perspective of the defender.

• The ADR of the anomaly detector will improve significantly when the attack occurs.

• When there are no attacks, the attack detection approach will not damage the system performance.

• The attack detection approach should be capable of detecting various deception attacks, such as FDI and
replay attacks.

To the best of our knowledge, it is still a challenging problem to realize the three aforementioned goals at the
same time. For example, in the noisy-control-based approaches [13,31–33], the Gaussian noise superimposed on the
control input will degrade system performance. The coding-based approaches [14, 15] only consider the problem
of replay attack detection. Furthermore, it is another challenging problem to design an attack detection method
that can effectively detect both FDI and replay attacks. The watermarking-based detection approaches [26, 27]
and encryption-based detection approaches [28] can be used to detect FDI attacks, but are unable to detect replay
attacks. In [29], the authors claim that the proposed method is also effective against replay attacks by using the
time stamp of data packets. However, the time stamp can be easily modified by malicious attackers to render
the detection method invalid. In summary, due to different natures of various cyber-attack types, it is difficult to
develop a detection approach that can reliably detect both FDI and replay attacks.

Motivated by the above discussions, this paper will investigate the attack detection problem with the goal of
detecting FDI and replay attacks to satisfy the three security requirements in CPSs. To this end, the dynamic
encryption scheme (DES) is designed to encrypt and decrypt the measurement output. When the attack occurs,
the DES can assist the anomaly detector in detecting both FDI and replay attacks. The main contributions of this
paper can be summarized as follows.

(1) By utilizing the historical measurement outputs to dynamically update the secret key, a novel DES is first
proposed to significantly improve the ADR of anomaly detector compared with the noisy-control-based approaches
[13, 31–33] and the coding-based approaches [14, 15].

(2) Different from the noisy-control-based approaches [13, 31–33], the proposed DES can recover the original
measurement output without degrading the system performance when there are no attacks.

(3) It is certified that through theoretical analysis and simulations, the designed attack detection approach can
accumulate the attacked estimation residual to assist the anomaly detector in detecting both FDI attacks (Theorem
1, Theorem 2, Corollary 1) and replay attacks (Theorem 3).

Notations: R
n and R

n×m denote the n-dimensional Euclidean space and the set of all n × m real matrices,
respectively. XT represents the transpose of X . In is the identity matrix with n dimension. diag {·} stands for a
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block diagonal matrix. ‖ ·‖ refers to the Euclidean norm of vectors or matrices. N (µ, σ2) is a Gaussian distribution,
with a mean of µ and a variance of σ2.

2 Problem formulation

Consider the CPSs represented by the linear discrete-time system as follows:

{

xk+1 = Axk + Buk + wk,

yk = Cxk + vk,
(1)

where xk ∈ R
n, uk ∈ R

m and yk ∈ R
p represent the system state, control input, and measurement output,

respectively. The process noise wk ∼ N (0, Q) and measurement noise vk ∼ N (0, R) are the independent zero-mean
Gaussian white noise. The initial state x0 follows x0 ∼ N (0,Σ) and is independent of both wk and vk. It is assumed
that (A,B) and (C,A) are completely controllable and observable matrix pairs, respectively.

The Kalman filter below is utilized to obtain the state estimation x̂k from yk [13]:

x̂k+1|k = Ax̂k +Buk,

Pk+1|k = APkA
T +Q,

Lk = Pk|k−1C
T(CPk|k−1C

T +R)−1,

x̂k = x̂k|k−1 + Lk(yk − Cx̂k|k−1),

Pk = Pk|k−1 − LkCPk|k−1, (2)

where x̂0|−1 = x̄0, P0|−1 = Σ. It can be seen from [13] that the Kalman filter gain Lk will converge to a constant
value in a few steps, and then we define

P , lim
k→∞

Pk|k−1, L , PCT(CPCT +R)−1. (3)

Further, the steady state form of the Kalman filter is given as follows:
x̂k+1|k = Ax̂k|k +Buk,

x̂k|k = x̂k|k−1 + L(yk − Cx̂k|k−1), (4)

where zk = yk−Cx̂k|k−1 is zero-mean Gaussian distributed which has a covariance of Pz = CPCT+R [10], which is

called the estimation residual. The controller uk = Kx̂k is designed to ensure ρ(A+BK) < 1. Define ek , xk − x̂k

as the estimation error. Based on (1) and (4), ek and zk are derived as follows:

ek+1 = Φek + (I − LC)wk − Lvk+1,

zk+1 = CAek + Cwk + vk+1, (5)

where Φ = (A− LCA).
Generally, the χ2 detector is used to identify anomalies in CPSs, which is defined as follows [19]:

g(zk) = zTk P
−1
z zk. (6)

Given that zk is a zero-mean Gaussian distribution, then g(zk) follows χ
2 distributed with p degrees of freedom [19].

At every time, the χ2 anomaly detector judges whether g(zk) is greater than η, in which η is selected to maintain
a false alarm rate (FAR). If g(zk) > η, the χ2 anomaly detector will trigger an alarm. Otherwise, if g(zk) 6 η, the
system is considered normal. Define θ , Pr(g(zk) > η) as the FAR, which will be a constant value in steady state.

As shown in Figure 1, the FDI attack taken into consideration in the existing studies is deemed to possess the
following abilities [8–10]: (1) the attacker can access to the system parameters A, B, C, K and L; (2) the attacker
is capable of injecting false data into the measurement output through communication channel. The compromised
measurement output is modeled as follows:

y′k = yk + Γak = Cx′
k + vk + Γak, (7)

where ak is the attack signals, Γ = diag{γ1, . . . , γp} is the attack selection matrix. Here, γj = 1 means that the
attacker injects false data into the jth communication channel, otherwise γj = 0.
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Figure 1 The block diagram of the CPSs under FDI attacks.

Let x′
k, y

′
k and x̂′

k be the attacked system state, measurement output, and state estimation, respectively. Then,
under the FDI attack (7), system models (1)–(4) are rewritten as follows:

x′
k+1 = Ax′

k +Bu′
k + wk,

y′k = Cx′
k + Γak + vk,

x̂′
k+1|k = Ax̂′

k +Bu′
k,

x̂′
k+1 = x̂′

k+1|k + L(y′k+1 − Cx̂′
k+1|k),

u′
k = Kx̂′

k, (8)

where z′k , y′k −Cx̂′
k|k−1 is the estimation residual under FDI attacks. In general, assume that the attacker begins

at time 0 and x̂′
−1 = x̂−1.

Let e′k = x′
k − x̂′

k be the attacked estimation error. To analyze the difference between the normal system (1)–(4)
and the attacked system (8), we define ∆ek , e′k − ek and ∆zk , z′k − zk, respectively. Furthermore, based on (5)
and (8), ∆ek and ∆zk are obtained as follows:

∆ek+1 = Φ∆ek − LΓak+1,

∆zk+1 = CA∆ek + Γak+1, (9)

where ∆e−1 = 0 because FDI attack begins at time 0. Thus, one has ∆e0 = −LΓa0 and ∆z0 = Γa0.
In the existing literature [8–10], the purpose of the FDI attack is to cause the estimation error e′k divergent and

have a sufficiently small impact on estimation residual z′k. Since z′k = zk +∆zk, if ‖∆zk‖ is small enough, then the
χ2 anomaly detector will not be able to reliably identify z′k and zk. The definition of FDI attack in [8–10] is given
as follows.

Definition 1 ([8–10]). The FDI attacks are stealthy if there is a constant α such that the error system (9) under
FDI attacks satisfies

lim
k→∞

‖∆ek‖ = ∞, ‖∆zk‖ 6 α. (10)

Lemma 1 ([8]). The existence condition of the FDI attack sequence in Definition 1 is that the system matrix A
has at least one eigenvalue λ greater than 1, and the corresponding eigenvector v satisfies the conditions as follows:

(i) Cv ∈ span(Γ);
(ii) v ∈ span(V ), where V is the controllability matrix pair (A− LCA,LΓ).

Note that, although α is small enough in Definition 1, the FDI attack still brings some influence on the χ2

detector. To remove the influences on the χ2 detector, completely stealthy FDI attack is developed in [25], which
can guarantee limk→∞ ‖∆zk‖ = 0. The definition of completely stealthy FDI attack is described as follows.

Definition 2 ([25]). The FDI attacks have complete stealthiness if there is a constant α such that the error system
(9) under FDI attacks satisfies

lim
k→∞

‖∆ek‖ = ∞, ‖∆zk‖ 6 α, lim
k→∞

‖∆zk‖ = 0. (11)
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Figure 2 The DES without attacks.

Note that, the FDI attack in Definition 1 can make the estimation error divergent and remain undetected by χ2

detector. Then, from the attackers’ perspective, a completely stealthy FDI attack in Definition 2 can fully eliminate
its impact on the estimation residual, that is, limk→∞ ‖∆zk‖ = 0. Therefore, residual-based detectors, such as the
χ2 detector and SUM detector [30], fail to detect these completely stealthy FDI attacks because limk→∞ ‖∆zk‖ = 0.
Therefore, it is crucial to develop an efficient detection approach for these completely stealthy FDI attacks.

To sum up, this paper aims to achieve the following main goals.
• The first goal is to develop the DES to improve the ADR of the anomaly detector.
• The second goal is to ensure that the proposed DES does not damage the system performance when there are

no attacks.

Remark 1. Compared with the FDI attacks in Definition 1, the completely stealthy FDI attacks in Definition 2
are more difficult to detect due to limk→∞ ‖∆zk‖ = 0. In [25], a specific FDI attack was designed to achieve the
complete stealthiness described in Definition 2, which will be used as an example to verify the effectiveness of our
proposed attack detection approach.

3 A dynamic encryption scheme

In this section, the DES is developed to realize encrypted transmission of measurement output, in which the historical
measurement outputs are used to dynamically update the secret key. As shown in Figure 2, the measurement output
yk is first encrypted using the secret key ck. Before the encrypted yck is fed into the estimator, the decryption scheme
is applied to restore the measurement output. Concretely, the following encryption process is designed:

{

yck = yk − ck,

ck+1 = yk + sk, c0 = s0,
(12)

where yck is the encrypted measurement output, ck is a pre-designed secret key, and sk ∼ N (0, S) is produced by a
random number generator. Then, yck will be sent to the estimator. To restore yk from yck, the following decryption
process is designed:

{

ydk = yck + dk,

dk+1 = ydk + sk, d0 = s0,
(13)

where ydk is the decrypted value of yk, and dk is a pre-designed secret key.
Note that the random number generator uses the same random seeds in (12) and (13) to ensure the consistency

of sk in the encryption and decryption process. Then, without attacks, it follows from (12) and (13) that

ydk =

{

yc0 = y0 − c0 + d0 = y0, if k = 0,

yck + dk = yk − ck + dk, otherwise.
(14)

According to (14), the following proposition is given.

Proposition 1. When there is no attacks, the yk is restored from the decrypted measurement output ydk, i.e.,

ydk = yk, dk+1 = ck+1, k = 0, 1, 2, . . . . (15)
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Proof. This proposition can be proven by mathematical induction.
Initial step. It can be seen from (14) that yd0 = y0 holds.
Inductive step. Suppose ydk = yk and dk+1 = ck+1 hold for k > 0. Then, it can be obtained from (14) that

ydk+1 = yk+1 − ck+1 + dk+1 = yk+1 − yk − sk + ydk + sk = yk+1,

dk+2 = ydk+1 + sk+1 = yk+1 + sk+1 = ck+2.

According to mathematical induction, it can be concluded that Eq. (15) holds. This completes the proof.
In Proposition 1, yk can be restored from ydk in the absence of attacks, i.e., ydk = yk, which implies that the

proposed DES (12) and (13) does not damage the system performance.

Remark 2. In the DES (12) and (13), the random signal sk must remain consistent throughout both encryption
and decryption. Since a given seed generates a unique random sequence [34], allowing us to use the same seed for
both processes to ensure sk remains consistent. In practical applications, seeds can be stored in advance on the
on-board chip in the encryptor and decryptor to ensure seed synchronization. In fact, this solution is commonly
used in cryptography [35]. Since encryption and decryption operations need to be performed at the sensor and
the estimator, respectively, it is required that the sensor and the estimator have simple computing capabilities.
Besides, considering the issue of data transmission delay, the timestamp of data packets can be used to ensure the
synchronization of the encryption and decryption processes.

Remark 3. The most important feature of the proposed DES (12) and (13) is establishing a dynamic relationship
between yk, y

c
k, y

d
k and sk. Particularly, when an FDI attack occurs, this dynamic relationship changes, aiding

the anomaly detector (such as the χ2 detector or SUM detector) in identifying FDI attacks. Therefore, different
from the data encryption algorithms [36] in the information science (the purpose of these algorithms is to ensure
data security by designing complex encryption functions), the main purpose of the DES (12) and (13) is to detect
cyber-attacks. The next section will analyze the effectiveness of the proposed attack detection approach under FDI
and replay attacks.

Remark 4. The DES (12) and (13) is a low computational complexity algorithm, which can be used for real-
time closed-loop feedback control in CPSs. Specifically, from the perspective of computation, there are some linear
operations designed in (12) and (13) that require very little computation. From the perspective of communication,
the ciphertext yck and measurement output yk have the same dimension, and it does not require additional bits
compared to the transmission of yk. Besides, it should be pointed out that the proposed DES (12) and (13) does not
use any system parameters except yk, which means that this scheme is decoupled from system dynamics. Therefore,
the proposed encryption-based attack detection approach is simple, practical and easy to extend.

4 Effectiveness analysis of the proposed scheme

4.1 Analysis of detecting FDI attacks

In this section, the effectiveness of DES (12) and (13) will be given in detecting FDI and replay attacks, respectively.
As shown in Figure 3, under the DES, the FDI attack model (7) can be rewritten as follows:

yak = yck + Γak. (16)

Then, the following decryption process is given:
{

ydk = yak + dk,

dk+1 = ydk + sk.
(17)

Based on the (12), (16) and (17), it can be obtained by iterating from time 0 to k that














ydk = yak + dk = yk +
k
∑

i=0

Γai,

dk+1 = yk +
k
∑

i=0

Γai + sk.

(18)

Furthermore, according to (1) and (4), the dynamics of attacked system model under DES (12) and (13) is rewritten
as follows:

xa
k+1 = Axa

k +Bua
k + wk,
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Figure 3 (Color online) The DES under FDI attacks.

x̂a
k+1|k = Ax̂a

k +Bua
k,

x̂a
k+1 = x̂a

k+1|k + L(ydk+1 − Cx̂a
k+1|k),

ua
k = Kx̂a

k, (19)

where x̂a
k and zak = ydk − Cx̂a

k|k−1 are the attacked state estimation and residual, respectively. Define g(zak) =

(zak)
TP−1

z zak and P
a
k , Pr(g(zak) > η). Compared with z′k, under the DES (12) and (13), the estimation residual zak

is changed after the FDI attack occurs. Accordingly, we need to obtain the dynamics of estimation residual zak to
analyze the effectiveness of the DES (12) and (13).

Let eak = xa
k − x̂a

k be the attacked estimation error. Then, eak and zak are obtained as follows:

eak+1 = Φeak − L

k+1
∑

i=0

Γai + (I − LC)wk − Lvk+1,

zak+1 = CAeak +

k+1
∑

i=0

Γai + Cwk + vk+1. (20)

Furthermore, we define ∆eak = eak − ek and ∆zak = zak − zk, respectively. Based on (5) and (20), the dynamics of
∆eak and ∆zak are obtained as follows:

∆eak+1 = Φ∆eak − L
k+1
∑

i=0

Γai,

∆zak+1 = CA∆eak +
k+1
∑

i=0

Γai, (21)

where ∆ea−1 = ∆e−1 = 0, ∆ea0 = ∆e0 = −LΓa0 and ∆za0 = ∆z0 = Γa0.

Proposition 2. The dynamics of ∆eak and ∆zak satisfy the following condition:

∆eak =

k
∑

i=0

∆ei, ∆zak =

k
∑

i=0

∆zi. (22)

Proof. Combining (21) with the fact that ∆ea−1 = ∆e−1 = 0, we have

∆eak+1 −∆eak = Φ∆eak − L

k+1
∑

i=0

Γai − Φ∆eak−1 + L

k
∑

i=0

Γai

= Φ
(

∆eak −∆eak−1

)

− LΓak+1 = Φk+1∆ea0 − L

k+1
∑

i=0

[

ΦiΓak+1−i

]

,
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∆zak+1 −∆zak = CA∆eak +

k+1
∑

i=0

Γai − CA∆eak−1 −
k

∑

i=0

Γai

= CA
(

∆eak −∆eak−1

)

+ Γak+1 = CA

[

Φk∆ea0 − L

k
∑

i=0

(

ΦiΓak−i

)

]

+ Γak+1. (23)

On the other hand, Eq. (9) is derived by iteration as follows:

∆ek+1 = Φk+1∆e0 − L
k+1
∑

i=0

(

ΦiΓak+1−i

)

,

∆zk+1 = CA

[

Φk∆e0 − L
k
∑

i=0

(

ΦiΓak−i

)

]

+ Γak+1. (24)

Then, due to ∆ea0 = ∆e0, substituting (24) into (23) leads to

∆eak+1 −∆eak = ∆ek+1,

∆zak+1 −∆zak = ∆zk+1. (25)

Furthermore, based on (25), Eq. (22) can be obtained, which implies that the proof is complete.
Based on Proposition 2, the effectiveness analysis of the DES (12) and (13) in detecting the FDI attack in

Definition 1 is given in the following theorem. First, to derive our main results, the following lemma is necessary.

Lemma 2 ([25]). For the χ2 detector with the threshold η, the following statements are satisfied when the system
(1) subjects to the FDI attack:

(i) P′
k > Pk, if ‖∆zk‖ 6 α, ∀k ∈ N[0,∞);

(ii) limk→∞ P
′
k = limk→∞ Pk, if limk→∞ ‖∆zk‖ = 0;

(iii) limk→∞ P
′
k > limk→∞ Pk, if limk→∞ ‖∆zk‖ 6= 0;

(iv) limk→∞ P
′
k = 1, if limk→∞ ‖∆zk‖ = ∞,

where Pk = Pr(g(zk) > η), P′
k = Pr(g(z′k) > η), g(zk) = zTk P

−1
z zk, and g(z′k) = z′Tk P−1

z z′k. Pk and P
′
k are the FAR

and ADR of the χ2 detector, respectively.

Theorem 1. Considering the system (8) under an arbitrary FDI attack satisfying Definition 1, using the DES
(12) and (13), the condition (10) is transformed into

lim
k→∞

‖∆eak‖ = ∞, ‖∆zak‖ 6 ∞, (26)

which implies that limk→∞ P
a
k = 1, i.e., the FDI attack in Definition 1 is no longer stealthy under the χ2 detector.

Proof. Based on the condition (10) in Definition 1, it can be obtained from (22) in Proposition 2 that

lim
k→∞

‖∆eak‖ = ∞,

lim
k→∞

‖∆zak‖ = lim
k→∞

∥

∥

∥

∥

∥

k
∑

i=0

∆zi

∥

∥

∥

∥

∥

1
6 lim

k→∞

k
∑

i=0

‖∆zi‖
2
6 lim

k→∞
kα = ∞, (27)

where the triangle inequality is used in step 1 of the proof, and the condition (10) in Definition 1 is used in step 2
of the proof. Therefore, it follows from Lemma 2 that limk→∞ P

a
k = 1 due to limk→∞ ‖∆zak‖ = ∞, which implies

that the FDI attack in Definition 1 is no longer stealthy under the χ2 detector. The proof is complete.
Next, the effectiveness analysis of the DES (12) and (13) in detecting the completely stealthy FDI attack in

Definition 2 is given in the following theorem.

Theorem 2. Considering the system (8) under an arbitrary FDI attack satisfying Definition 2, using the DES
(12) and (13), the condition (11) is transformed into

lim
k→∞

‖∆eak‖ = ∞, lim
k→∞

‖∆zak‖ 6 lim
k→∞

k
∑

i=0

‖∆zi‖ , β, (28)

which implies that limk→∞ P
a
k > limk→∞ Pk, i.e., the FDI attack in Definition 2 is no longer completely stealthy

under the χ2 detector, where β is a calculable constant corresponding to a specific FDI attack.
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Proof. Based on the condition (11) in Definition 2, it can be obtained from (22) in Proposition 2 that

lim
k→∞

‖∆eak‖ = ∞,

lim
k→∞

‖∆zak‖ = lim
k→∞

∥

∥

∥

∥

∥

k
∑

i=0

∆zi

∥

∥

∥

∥

∥

1
6 lim

k→∞

k
∑

i=0

‖∆zi‖ , β, (29)

where the triangle inequality is used in step 1 of the proof. Furthermore, due to limk→∞ ‖∆zk‖ = 0 in Definition 2,
it can be obtained that β is a constant, which can be calculated corresponding to a specific FDI attack. Therefore,
it follows from Lemma 2 that limk→∞ P

a
k > limk→∞ Pk due to limk→∞ ‖∆zak‖ 6= 0, which implies that the FDI

attack in Definition 2 is no longer completely stealthy under the χ2 detector. The proof is now complete.
In fact, a specific FDI attack sequence ak was designed in [25] to achieve the complete stealthiness in Definition

2, which takes the following form:
{

ak − ak−1 = −ρ1λ
k+1a∗, 1 6 k 6 ε,

ak − ak−1 = −ρ2λ
k+1a∗, k > ε,

(30)

where λ is a unstable eigenvalue of A, v is a corresponding eigenvector, i.e., Av = λv, ρ1 and ρ2 are non-zero
constants, and the constant vector a∗ satisfies Cv = Γa∗. Meanwhile, the following Lemma shows the conditions
for FDI attack (30) to achieve complete stealthiness.

Lemma 3 ([25]). Consider the system (8), the FDI attack (30) achieves complete stealthiness if and only if

(λε+1 − 1)ρ1 − λε+1ρ2 = 0. (31)

Under condition (31), the FDI attack (30) can realize the complete stealthiness as described in Definition 2, i.e.,
limk→∞ ‖∆eak‖ = ∞, ‖∆zak‖ 6 α, limk→∞ ‖∆zak‖ = 0. In this case, we present the following Corollary 1 to give the
effectiveness analysis of the DES (12) and (13) in detecting the completely stealthy FDI attack (30). The following
concept about w norm is first given to further obtain Corollary 1.

Lemma 4 ([25]). Define the matrix w norm in R
n×n as ‖Y ‖w , ‖(DǫU)Y (DǫU)−1‖∞, where Dǫ = diag{1, ǫ, ǫ2,

. . . , ǫn}, ǫ < 1 − p(X), X ∈ R
n×n is a given matrix, ρ(X) < 1, and U is an invertible matrix so that J = UXU−1

is the Jordan canonical form of X . Then, the following conditions hold:
(i) ‖X‖w < 1;
(ii) for γ ∈ R

n, its vector w norm ‖γ‖w , ‖DǫUγ‖∞ is compatible with matrix w norm, i.e., ‖Y γ‖w 6 ‖Y ‖w‖γ‖w;
(iii) for γ ∈ R

n, the vector w norm ‖γ‖w , ‖DǫUγ‖∞ satisfies ‖γ‖ 6
√
n‖(DǫU)−1‖‖v‖w.

Corollary 1. Considering the system (8) subjected to the FDI attack (30) under condition (31), using dynamic
encryption scheme (12) and (13), the condition (11) is transformed into

lim
k→∞

‖∆eak‖ = ∞,

lim
k→∞

‖∆zak‖ 6
√
n |ρ1|

∥

∥(DǫU)−1
∥

∥ ‖CA‖ κ̄ , β, (32)

where Dǫ = diag{1, ǫ, ǫ2, . . . , ǫn}, ǫ < 1 − ρ(A − LCA) and U is the Jordan canonical form of A − LCA. κ̄ is a

positive constant satisfying κ̄ = κ1(ε) + κ̄2, where κ1(k) is defined as κ1(k) ,
∑k

l=0

∑l

i=0 ‖A− LCA‖iw ‖v‖w and

κ̄2 is defined as κ̄2 ,
∑ε+1

i=0 ‖A− LCA‖iw ‖v‖w /(1− ‖A− LCA‖w).
Proof. Please see Appendix A.

At present, we have given the effectiveness analysis of the DES (12) and (13) in detecting FDI attacks (including
completely stealthy FDI attacks). Next, we will discuss the effectiveness of the DES (12) and (13) in detecting
replay attacks.

4.2 Analysis of detecting replay attacks

Consider the replay attack model studied by [13], which consists of two stages.
(1) The attacker records measurement outputs from time −τ to −1 as attack signals, in which τ is sufficiently

large to capture an adequate number of attack signals.
(2) Consider the replay attack starting at time 0. In this stage, the attacker replaces yk with yk−τ . Then, under

the DES (12) and (13), the replay attack is given as follows:

yrck = yck−τ = yk−τ − ck−τ , (33)

where yrck is the replay attack signals and ck−τ = yk−τ−1 + sk−τ−1.
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Theorem 3. Considering the system (8) subjected to replay attack (33), using (12) and (13), the ADR of χ2

detector tends to limk→∞ P
a
k = 1.

Proof. Under the replay attack (33), the decryption process is given as follows:

{

ydk = yrck + dk,

dk+1 = ydk + sk.
(34)

Combining with (33) and (34), it can be obtained by iterating from time 0 to k that











ydk = yrck + dk = yk−τ − ck−τ + dk

= yk−τ − yk−τ−1 − sk−τ−1 + ydk−1 + sk−1,= yk−τ + y−1 − y−τ−1 + σk,

dk+1 = ydk + sk,

(35)

where σk ∼ N (0, 2(k + 1)S) and its variance can be easily obtained according to the derivation process of (35)
under replay attack (33). Then, it follows from (35) that the decrypted measurement output ydk is divergent when
k → ∞ under replay attack (33), which implies that zak = ydk − Cx̂a

k|k−1 is also divergent and limk→∞ ‖∆zak‖ = ∞.
Therefore, it can be obtained from Lemma 2 that limk→∞ P

a
k = 1.

Remark 5. In [30], a residual-based SUM detector is designed as follows:

g(zsk) =
1
k
(zsk)

TP−1
z zsk, (36)

which is proven to have superior detection capabilities to the χ2 detector, where zsk =
∑k

i=0 zi, and zi is the
estimation residual. According to the conclusion in [30], the SUM detector is capable of detecting the FDI attack in
Definition 1 due to limk→∞ ‖∆zk‖ 6= 0, and it cannot detect the completely stealthy FDI attack in Definition 2 due
to limk→∞ ‖∆zk‖ = 0. Noticed that, using the DES (12) and (13), it can be easy obtained that limk→∞ ‖∆zsk‖ =

limk→∞ ‖∑k

i=0 ∆zai ‖ = ∞. According to the conclusion in [30], if limk→∞ ‖∆zsk‖ = ∞, one has limk→∞ P
a
k = 1.

Therefore, using the DES (12) and (13), it can be easily proven that the completely stealthy FDI attack can be
detected by the SUM detector. The stealthiness analysis of FDI attacks and replay attacks under both χ2 detector
and SUM detector will be given in Section 5.

So far, we have demonstrated that the proposed DES (12) and (13) is effective in detecting FDI attacks (including
completely stealthy FDI attacks) and replay attacks, and this approach does not damage the system performance
without attacks. Particularly, our proposed approach is developed independently of the anomaly detector, so it can
be directly applied based on the anomaly detector.

5 Simulations

In this section, an IEEE 6 bus power system [25], illustrated in Figure 4, is adopted to illustrate the effectiveness
of the DES (12) and (13) in detecting FDI and replay attacks. According to [37], the system model is represented
in the form of model (1) as follows:

A =

[

I3 T · I3
−M−1

g (LglL
−1
ll Llg − Lgg)T I3 −M−1

g DgT

]

, B =

[

0

M−1
g T

]

, (37)

where T = 0.1 s is sampling period, xk = [δTk , ω
T
k ]

T. δk = [δ1(k), δ2(k), δ3(k)]
T and ωk = [ω1(k), ω2(k), ω3(k)]

T rep-
resent the generator rotor angles and frequencies. uk = Pω(k)−LglL

−1
ll Pθ(k)−ωd(k)Dg is equivalent control inputs,

in which ωd(k), Pω(k) and Pθ(k) are the expected generator frequency, mechanical power input and real power,
respectively. Let Mg = diag{0.125, 0.034, 0.016}, Dg = diag{0.125, 0.068, 0.48}, Lgg = diag{0.058, 0.063, 0.059}
and

Lgl =
[

−0.058 0 0 0 0 0
0 −0.063 0 0 0 0
0 0 −0.059 0 0 0

]

, Llg = LT
gl,

Lll =





0.235 0 0 −0.085 −0.092 0
0 0.296 0 −0.161 0 −0.072
0 0 0.329 0 −0.17 −0.101

−0.085 −0.161 0 0.246 0 0
−0.092 0 −0.17 0 0.262 0

0 −0.072 −0.101 0 0 0.173



 .
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Figure 4 (Color online) The IEEE 6 bus power systems under attacks.

The measurement output is yk = [I3, I3]xk + vk. Consider wk ∼ N (0, I6) and vk ∼ N (0, I3). The controller gain K
and the filter gain L are designed as follows:

K =

[−0.058 0 0 0 0 0
−0.695 0.015 0.016 −0.696 0 0
0.015 −0.327 0.015 0 −0.278 0
0.014 0.014 −0.173 0 0 0.299

]

, LT =
[

0.394 0 0.002 0.339 −0.002 −0.003
−0.02 0.449 0 0.018 0.288 −0.003
−0.003 0.002 0.253 0.001 −0.005 0.672

]

.

Consider a scenario where the measurement outputs yk are compromised by an FDI attack. Meanwhile, the χ2

detector (6) is employed to identify system anomalies. The threshold η for both the χ2 detector (6) and SUM
detector (36) is set to η = 12.84 corresponding to the FAR θ = 0.005.

5.1 Detection results of FDI attacks

In this subsection, we present the detection results of χ2 detector and the SUM detector under FDI attacks using
the DES (12) and (13).

5.1.1 FDI attack I with complete stealthiness satisfying Definition 2

It is obvious that A contains unstable eigenvalues: −2.0059, 1.0417 and 1.0178. The eigenvector of unstable
eigenvalue λ = 1.0417 is v = [0.2275,−0.879, 0.0474, 0.1157,−0.3364, 0.0198]

T
. Let the attack selection matrix be

Γ = I3. Choosing ρ1 = −0.9811 and ε = 4, it can be obtained from Lemma 3 that ρ2 = −0.1822. Then, according
to (30), the completely stealthy FDI attack sequence ak in attack model (7) is given as follows [25]:

{

ak − ak−1 = 0.9811× 1.0417k+1a∗, 1 6 k 6 4,

ak − ak−1 = 0.1822× 1.0417k+1a∗, k > 4,
(38)

where a∗ satisfying Cv = Γa∗, and a0 = −ρ1λa
∗.

First, we give the results of ∆ek, ∆zk and
∑k

l=0 ∆zl shown in Figure 5 to illustrate the complete stealthiness of FDI
attack sequence (38). It can be observed from Figure 5 that limk→∞ ‖∆ek‖ = ∞, ‖∆zk‖ 6 α and limk→∞ ‖∆zk‖ = 0
(i.e., the complete stealthiness condition in Definition 2), which means that FDI attack sequence (38) is completely
stealthy under χ2 detector (6) and SUM detector (36), as shown in Figure 6.

Furthermore, using the DES (12) and (13), ∆eak, ∆zak and
∑k

l=0 ∆zal are shown in Figure 7. The detection results
under χ2 detector (6) and the SUM detector (36) are exhibited in Figure 8. It can be seen from Figure 7 that
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Figure 5 (Color online) The curves of (a) ∆ek, (b) ∆zk, and

(c)
k∑

l=0

∆zl under FDI attack I.

Figure 6 (Color online) The detection results of (a) χ2 detector

and (b) SUM detector under FDI attack I.

Figure 7 (Color online) The curves of (a) ∆ea
k
, (b) ∆za

k
, and

(c)
k∑

l=0

∆za

l
under FDI attack I using the DES.

Figure 8 (Color online) The detection results of (a) χ2 detector

and (b) SUM detector under FDI attack I using the DES.

limk→∞ ‖∆eak‖ = ∞, limk→∞ ‖∆zak‖ 6= 0 and ‖∑k

l=0 ∆zal ‖ are divergent. Figure 8 shows that the ADR of the χ2

detector increases significantly, and the ADR of the SUM detector tends to 1. Thus, it can be concluded from
Figures 5–8 that the FDI attack sequence (38) is no longer completely stealthy using the DES (12) and (13). This
aligns with the results in Theorem 2, Corollary 1, and Remark 5.

5.1.2 FDI attack II satisfying Definition 1

Let ρ1 = ρ2 = −0.9811, the completely stealthy FDI attack sequence (38) degenerates into the FDI attack sequence
as follows [8]:

ak − ak−1 = 0.9811× 1.0417k+1a∗, k > 1, (39)

which only satisfies the condition (10) in Definition 1.
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Figure 9 (Color online) The curves of (a) ∆ek, (b) ∆zk, and

(c)
∑

k

l=0
∆zl under FDI attack II.

Figure 10 (Color online) The detection results of (a) χ2 detector

and (b) SUM detector under FDI attack II.

Figure 11 (Color online) The curves of (a) ∆ea
k
, (b) ∆za

k
, and

(c)
k∑

l=0

∆za

l
under FDI attack II using the DES.

Figure 12 (Color online) The detection results of (a) χ2 detector

and (b) SUM detector under FDI attack II using the DES.

Figure 9 shows the results of ∆ek, ∆zk and
∑k

l=0 ∆zl under the FDI attack (39). It can be seen from Figure 9

that limk→∞ ‖∆ek‖ = ∞, limk→∞ ‖∆zk‖ 6= 0 and ‖∑k

l=0 ∆zl‖ are divergent, which means that the condition (10)
in Definition 1 is satisfied. Meanwhile, according to Remark 5, the ADR of the SUM detector tends to 1 due to
limk→∞ ‖∆zk‖ 6= 0, which can be verified by the results in Figure 10.

Then, using the DES (12) and (13), ∆eak, ∆zak and
∑k

l=0 ∆zal are shown in Figure 11, and the detection results
of χ2 detector (6) and SUM detector (36) are depicted in Figure 12. Figure 11 exhibits limk→∞ ‖∆ek‖ = ∞,

limk→∞ ‖∆zk‖ = ∞ and limk→∞ ‖∑k

l=0 ∆zl‖ = ∞, which implies that the ADR of both χ2 detector (6) and SUM
detector (36) obeys limk→∞ P

a
k = 1, as shown in Figure 12. Thus, it can be concluded from Figures 9–12 that the

FDI attack sequence (39) is no longer stealthy using the DES (12) and (13), which is consistent with the results
in Theorem 1 and Remark 5. In addition, it should be pointed out that with the increase of attack intensity, the
attack detection probability increases. When the attack intensity is constant, if the noise intensity is large enough,
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Figure 13 (Color online) The curves of (a) yd

k
and (b) za

k
under

replay attack using the DES.

Figure 14 (Color online) The detection results of (a) χ2 detector

and (b) SUM detector under replay attacks using the DES.

it will make it difficult for the detector to distinguish between attack and noise, thus reducing the attack detection
probability. In practical applications, the noise intensity is usually required to be at a low level to ensure the
estimation accuracy.

5.2 Detection results of replay attacks

In this subsection, we would like to show the detection results with the χ2 detector and SUM detector under replay
attacks using the DES (12) and (13). The attacker records measurement outputs from k = 0 to k = 499 as attack
signals. Then, attack signals replayed at k = 500 (shown by the red dotted line in Figure 13). The threshold η of
χ2 detector (6) and SUM detector (36) is also set to η = 12.84 corresponding to the FAR θ = 0.005.

Figure 13 shows the decrypted measurement outputs ydk and estimation residuals zak . The detection results of the
χ2 detector (6) and SUM detector (36) are displayed in Figure 14. It observes from Figure 13 that the distributions
of decrypted measurement outputs ydk and estimation residuals zak are normal without replay attack (from time
k = 0 to k = 499), which are consistent with the results in Proposition 1. When replay attacks occur at k = 500,
the distributions of ydk and zak are obviously divergent, which will increase the ADR of the χ2 detector (6) and SUM
detector (36). Actually, it is obtained from Figure 14 that the outputs of χ2 detector and the SUM detector are
completely larger than the threshold η, which implies that the ADR of both the χ2 detector and the SUM detector
tends to 1. Accordingly, the results presented in Figures 13 and 14 align with the results drawn in Theorem 3 and
Remark 5.

6 Conclusion

This paper examines attack detection in CPSs under FDI attacks using data encryption. A DES has been proposed
to assist anomaly detectors in detecting FDI attacks. The effectiveness of the DES in detecting FDI attacks has
been proven through theoretical analysis. It observes that the DES can significantly improve the ADR of the
anomaly detector and that such a scheme does not degrade system performance without attacks. In particular, our
proposed approach is proven effective at detecting replay attacks. Finally, we conducted simulations on an IEEE
6-bus power system to verify the effectiveness of our proposed approach in detecting both FDI attacks and replay
attacks. Our future work will consider the joint problem of attack detection and distributed security estimation
under communication bandwidth constraints to weaken the impact of attacks on the estimation accuracy.
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Appendix A Proof of Corollary 1

To present the proof of Corollary 1, we first give the following lemma and proposition.

Lemma A1 ([25]). If A−LCA is strictly stable, i.e., ρ(A−LCA) < 1, then y− (A−LCA)y = c has a unique solution for a constant

vector c.

Proposition A1. Considering the FDI attack (30), the dynamics of ∆ea
k
and ∆za

k
is derived as follows:

∆ea
k+1 −∆ea

k
=

k−ε+1
∑

i=1

Φi(ρ1 − ρ2)λ
ε+1v −

k+2
∑

i=1

Φiρ1v +

k+1
∑

i=ε+1

ρ2λ
i+1v +

ε
∑

i=0

ρ1λ
i+1v, (A1)

∆za
k+1 −∆za

k
= (ρ1 − ρ2)λ

ε+1CA

k−ε
∑

i=0

Φiv − ρ1CA

k+1
∑

i=0

Φiv, (A2)

where Φ = (A− LCA).

Proof. For 0 6 k < ε, according to (21), it can be obtained that

∆ea
k+1 −∆ea

k
= Φ

(

∆ea
k
−∆ea

k−1

)

− LΓak+1 = Φ
(

∆ea
k
−∆ea

k−1

)

+ L

k+1
∑

i=0

ρ1λ
iCAv

= Φ

(

∆ea
k
−∆ea

k−1 −
k+1
∑

i=0

ρ1λ
iv

)

+

k+1
∑

i=0

ρ1λ
i+1v, (A3)

which can be further expressed by iteration as follows:

∆ea
k+1 −∆ea

k
= Φk+1

(

∆ea0 −∆ea
−1 − ρ1λv

)

−
k+1
∑

i=1

Φiρ1v +

k+1
∑

i=0

ρ1λ
i+1v = −

k+1
∑

i=0

Φi+1ρ1v +

k+1
∑

i=0

ρ1λ
i+1v, (A4)

where ∆ea
−1

= 0 and ∆ea
0
= −LΓa0 = ρ1LCAv. For k > ε,

∆ea
k+1 −∆ea

k
= Φ

(

∆ea
k
−∆ea

k−1

)

− LΓak+1 = Φ
(

∆ea
k
−∆ea

k−1

)

+ L

k+1
∑

i=ε+1

ρ2λ
iCAv + L

ε
∑

i=0

ρ1λ
iCAv

= Φ



∆ea
k
−∆ea

k−1 −
k+1
∑

i=ε+1

ρ2λ
iv −

ε
∑

i=0

ρ1λ
iv



+

k+1
∑

i=ε+1

ρ2λ
i+1v +

ε
∑

i=0

ρ1λ
i+1v. (A5)

Because the attack parameters are converted from ρ1 to ρ2 at ε+ 1, one has

∆ea
k+1 −∆ea

k
= Φk−ε+1

(

∆eaε −∆eaε−1 − ρ2λv −
ε
∑

i=0

ρ1λ
iv

)

−
k−ε
∑

i=1

Φi(ρ2 − ρ1)λ
ε+1v −

k−ε
∑

i=1

Φiρ1v

+

k+1
∑

i=ε+1

ρ2λ
i+1v +

ε
∑

i=0

ρ1λ
i+1v. (A6)

Substituting (A4) into (A6), Eq. (A1) can be obtained. For 0 6 k < ε, combining with (A4), it can be obtained that

∆za
k+1 −∆za

k
= CA

(

∆ea
k
−∆ea

k−1

)

+ Γak+1 = CA
(

∆ea
k
−∆ea

k−1

)

− Γ

k+1
∑

i=0

ρ1λ
i+1a∗

= CA

(

−
k
∑

i=0

Φi+1ρ1v +
k
∑

i=0

ρ1λ
i+1v

)

−
k+1
∑

i=0

ρ1λ
i+1Cv = −

k+1
∑

i=0

ρ1CAΦiv. (A7)

Next, for k > ε, it is derived from (A6) that

∆za
k+1 −∆za

k
= CA

(

∆ea
k
−∆ea

k−1

)

+ Γak+1 = CA
(

∆ea
k
−∆ea

k−1

)

−
k+1
∑

i=ε+1

ρ2λ
i+1Γa∗ −

ε
∑

i=0

ρ1λ
i+1Γa∗

= (ρ1 − ρ2)λ
ε+1CA

k−ε
∑

i=0

Φiv − ρ1CA

k+1
∑

i=0

Φiv, (A8)

which implies that the proof is complete.
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Proof of Corollary 1 follows.

Proof. According to (A1) in Proposition 4, it is derived that

lim
k→∞

(

∆ea
k+1 −∆ea

k

)

=

k+1
∑

i=ε+1

ρ2λ
i+1v +

ε
∑

i=0

ρ1λ
i+1v. (A9)

Due to λ > 1, it can be easy obtained from (A9) that

lim
k→∞

‖∆ea
k
‖ = ∞. (A10)

For 0 6 k < ε, it follows from (A7) that

∆za
k
= −

k
∑

l=0

l
∑

i=0

ρ1CAΦiv. (A11)

Then, according to Lemma 6, we have

‖∆za
k
‖ 6 |ρ1|‖CA‖

∥

∥

∥

∥

∥

k
∑

l=0

l
∑

i=0

Φiv

∥

∥

∥

∥

∥

6
√
n|ρ1|‖(DǫU)−1‖‖CA‖κ1(k), (A12)

where κ1(k) ,
∑

k

l=0

∑

l

i=0
‖Φ‖i

w
‖v‖

w
is an increasing function, i.e., κ1(k) 6 κ1(ε). Accordingly,

‖∆za
k
‖ 6

√
n|ρ1|‖(DǫU)−1‖‖CA‖κ1(ε). (A13)

For 0 6 k < ε, it can be derived from (A8) that

∆za
k
= −

k
∑

l=ε+1

l−ε−1
∑

i=0

(ρ1 − ρ2)λ
ε+1CAΦiv −

k
∑

l=ε+1

l
∑

i=0

ρ1CAΦiv −
ε
∑

l=0

l
∑

i=0

ρ1CAΦiv, (A14)

which is known from condition (31) that

‖∆za
k
‖ 6 |ρ1|‖CA‖





∥

∥

∥

∥

∥

ε
∑

l=0

l
∑

i=0

Φiv

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

k
∑

l=ε+1

l
∑

i=l−ε

Φiv

∥

∥

∥

∥

∥

∥



 6
√
n|ρ1|‖(DǫU)−1‖‖CA‖(κ1(ε) + κ̄2), (A15)

which κ2(k) ,
∑

k

l=ε+1

∑

l

i=l−ε
‖A− LCA‖i

w
‖v‖

w
. Obviously, κ2(k) is increasing with k, which means κ̄2 , limk→∞ κ2(k) > κ2(k).

Due to ‖A− LCA‖w < 1, it observes from Lemma A1 that

κ2(k)− ‖Φ‖wκ2(k) =

ε+l
∑

i=0

‖Φ‖i
w
‖v‖

w
(A16)

has a unique constant vector solution, which indicates

κ̄2 , lim
k→∞

κ2(k) =

ε+1
∑

i=0

‖Φ‖i
w
‖v‖

w
/(1− ‖Φ‖

w
). (A17)

Let κ̄ = κ1(ε) + κ̄2. Then, we have

lim
k→∞

‖∆za
k
‖ 6

√
n |ρ1|

∥

∥(DǫU)−1
∥

∥ ‖CA‖ κ̄. (A18)

Therefore, it follows from Lemma 2 that limk→∞ Pa

k
> limk→∞ Pk due to limk→∞ ‖∆za

k
‖ 6= 0, which means that the FDI attack (30)

is no longer completely stealthy under the χ2 detector. The proof is complete.
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