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Abstract Non-Gaussian noise and measurement anomalies are major challenges in using filters for state estimation in engineering

practice, particularly in the absence of relevant prior statistical information. Hence, we propose an adaptive-weighted variational Bayesian

filter (AW-VBF) to obtain a robust state estimation. First, the variational Bayes approach is used to establish a fundamental filter

framework that can handle both nonlinear and non-Gaussian scenarios by approximating the true posterior distribution through a

parameterized distribution. Interestingly, the state transition and state measurement processes play independent roles in this framework.

Subsequently, kernel density estimation is adopted to capture non-Gaussian noise characteristics from historical data. A novel adaptive

weight function that is twice differentiable (thus ensuring the existence of gradient estimators) replaces the likelihood loss function to

address measurement anomalies. The algorithm process, including the gradient estimator details, is provided. Target-tracking simulation

results under different conditions verify the superiority of the AW-VBF to existing methods. Compared with these conventional methods,

our method enhances position estimation accuracy by 37.96% and velocity estimation accuracy by 32.35% in the presence of non-Gaussian

noise. The corresponding enhancements in the presence of measurement anomalies are 64.92% and 25.59%, respectively.
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1 Introduction

State estimation provides fundamental data support for decision-making in various fields, including industries [1],
aerospace [2], and energy [3]. Bayesian filters, the primary technology for state estimation, have been widely used
in dynamic systems for reliable state estimation since their inception [4, 5]. For example, the classic Kalman filter
(KF), a special Bayesian filter, has been theoretically proven to be optimal under linear and Gaussian conditions.
Furthermore, several nonlinear Gaussian filters have been developed for complex systems, such as the extended KF
(EKF) [6,7], unscented KF (UKF) [8], and cubature KF [9,10]. These filters use different Gaussian-weighted integral
approximation criteria and can achieve at least second-order accuracy [11]. However, in engineering practice, in
addition to the challenges entailed by nonlinearity, we are confronted with two other challenges arising from non-
Gaussian noise and measurement anomalies, thereby making it difficult for us to obtain a stable state estimation
result. In recent years, researchers have attempted to address the aforementioned challenges for more reliable and
robust state estimation.

Non-Gaussian noise might originate from modeling approximations or the variability of working environments.
When noise characteristics (uncalibrated or time varying) substantially deviate from the preset values, they will
affect the filter performance [12]. One of the popular technologies is based on information theoretic learning [13]. For
example, the Rényi entropy [14] and correntropy [15] are utilized as adaptation criteria to improve the robustness of
state estimation in the presence of heavy-tailed impulsive noise. Furthermore, several information-based algorithms
perform better under complex noise distributions; examples include Gaussian entropy [16], generalized correntropy
[17], least stochastic entropy [18], centered error entropy [19], and other approaches [20–23]. Using a particle filter
(PF) based on Monte-Carlo sampling can estimate states in strongly nonlinear and non-Gaussian systems without
assuming the noise distribution type [24]; however, its application is limited by degeneracy [25, 26].
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Measurement anomalies are frequently induced by environmental interference or unpredictable sensor malfunc-
tions, which are assumed to exert a sustained adverse impact on system state estimation. Scalable approaches are
applied to filters by detecting measurements that deviate significantly from the data center. Ref. [27] developed
a robust filter based on a detect-and-reject idea; this filter automatically identifies anomalies by iteratively using
a mean-field variational Bayesian method at each time instant. Ref. [28] modeled measurement anomalies from
an impulsive signal and developed a parameter-dependent set-membership filter to determine whether the current
measurement output is abnormal. Ref. [29] unified randomly occurring measurement anomalies, modeled them as a
Dirichlet distribution, and simultaneously estimated the state and measurement anomaly parameters through a ro-
bust variational filter. Some other robust general techniques have been derived from M-estimation statistics. Using
robust loss functions, these filters can effectively minimize the interference of anomalies and avoid large estimation
errors [30]. In addition, similar methods have been used in engineering practice [31, 32].

Although scholars have made various improvements based on classical filters to adapt to non-Gaussian noise
and measurement anomalies, the superiority of their approaches inevitably depends on practical applications. The
variational Bayesian filter (VBF), a novel framework, selects the closest result to the true posterior probability
distribution from a specified parameterized distribution cluster. Ref. [33] originally applied variational Bayes to joint
recursive estimation, proposed the variational-Bayesian-based adaptive KF algorithm for time varying measurement
noise, and verified its feasibility through simulations. Various nonlinear adaptive VBFs have since been proposed to
solve problems involving unknown measurement noise [34,35]. Refs. [36–38] modeled a predicted covariance matrix
using an inverse Wishart distribution for robust state estimation in a VBF. Ref. [39] embedded maximum likelihood
(ML) estimation into a VBF and applied the strong robust centered error entropy criterion to handle measurement
noise. However, the complex computation of this VBF limits its further development. Ref. [40] proposed a classic
solution based on the mean-field assumption to seek an approximate distribution close to the target joint. Ref. [41]
presented an alternative algorithm based on stochastic optimization, which allows for the direct optimization of
the variational lower bound and avoids nonclosed-form integrals in the mean-field method. Ref. [42] applied a
natural gradient method to the Kullback-Leibler (KL) divergence and obtained a closed-form iterative procedure
of variational parameters. In addition, various engineering applications of VBF have been attempted [43, 44].

In summary, although existing filters (including VBF) have been specifically improved, they are mostly dependent
on prior information. In fact, previous studies frequently assumed a specific form for non-Gaussian noise and derived
the corresponding loss functions for dealing with it. When handling measurement anomalies, they typically detect
them based on prior information and assign the weights of 0 and 1 to eliminate the influence of anomalies.

Therefore, we present some innovative approaches in this paper for dealing with non-Gaussian noise and mea-
surement anomalies without relying on prior statistics. The detailed contributions of this paper are as follows.

(1) The individual roles of state transfer and state measurement processes in the VBF are identified, and im-
provements can be made according to requirements.

(2) Kernel density estimation (KDE) is used to approximate non-Gaussian process noise.

(3) A novel weighting function that is twice differentiable (to ensure the existence of gradient estimators) is
designed to handle measurement anomalies.

(4) The adaptive-weighted VBF (AW-VBF) is proposed; the algorithm process, including the details of the
gradient estimator, is provided.

The rest of this article is organized as follows. In Section 2, we introduce the issue of state estimation and expound
the forms and potential influences of non-Gaussian noise and measurement anomalies. In Section 3, AW-VBF is
proposed to improve the robustness of state estimation. The details of this algorithm are also presented in this
section. Section 4 contains the simulation details and a systematic analysis of the performance of our method and
comparative methods.

2 Problem formulation

Consider the following general nonlinear discrete dynamical system with nonlinear measurements as

{

xk = fk|k−1 (xk−1) + wk−1,

yk = hk (xk) + vk,
(1)

where xk ∈ R
nx and yk ∈ R

ny are the system state and measurement, respectively, at time tk; fk|k−1 (·) and
hk (·) are the state transfer function and measurement function, respectively; wk−1 and vk are the state noise and
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measurement noise, respectively. Usually, system (1) meets the Markov condition











p (xk|x1:k−1, y1:k−1) = p (xk|xk−1) ,

p (xk−1|xk:k+T , yk:k+T ) = p (xk−1|xk) ,

p (yk|x1:k, y1:k−1) = p (yk|xk) ,

(2)

where x1:k = {x1, x2, . . . , xk} and y1:k = {y1, y2, . . . , yk}.
A filter aims to obtain the current system state estimation x̂k using the current and historical observation data

y1:k. Then, the optimal nonlinear filtering problem aims to find the posterior distribution p (xk|y1:k) of xk with the
given measurement yk. According to the Bayesian principle, the posterior distribution of the system state is

p (xk|y1:k) =
p (yk|xk) p (xk|y1:k−1)

p (yk|y1:k−1)
, (3)

where














p (xk|y1:k−1) = Ep(xk−1|y1:k−1) [p (xk|xk−1)] =

∫

p (xk|xk−1) p (xk−1|y1:k−1) dxk−1,

p (yk|y1:k−1) = Ep(xk|y1:k−1) [p (yk|xk)] =

∫

p (yk|xk) p (xk|y1:k−1) dxk.

(4)

The integration in (4) is difficult, except in the case of linear Gaussian systems (in Appendix A).
For recursive computations, we assume that the state estimate x̂k−1 and its posterior distribution p (xk−1|y1:k−1)

at time tk−1 are known. System (1) is reasonably rewritten into the form

ỹk = h̃k (xk) + ṽk, (5)

where

ỹk =

[

fk|k−1 (x̂k−1)

yk

]

, h̃k (xk) =

[

xk

hk (xk)

]

, ṽk =

[

−ŵk

vk

]

. (6)

In accordance with (3), the ML estimation of the system state xk is

(x̂k)ML = argmax
x̂k

p
(

ỹk

∣

∣

∣h̃k (x̂k)
)

= argmax
x̂k

log p
(

ỹk

∣

∣

∣h̃k (x̂k)
)

. (7)

If ṽk meets the Gaussian noise, then Eq. (7) can degenerate into generalized least squares estimation:

(x̂k)GLS = argmin
x̂k

eTk R̃
−1
k ek, ek = ỹk − h̃k (x̂k) , (8)

where R̃k is the covariance matrix of the noise ṽk.
However, non-Gaussian noise and measurement anomalies pose substantial challenges in this method, especially

when their statistical properties remain unknown. Here, non-Gaussian noise undermines the quadratic form of the
loss function as shown in (8), resulting in a disparity between the least squares and ML estimations. Concurrently,
non-Gaussian noise also gives rise to computational difficulties in (4). In addition, measurement anomalies refer
to measurements that substantially deviate from the data center, typically signifying |yk − hk (xk)| > 3σ. These
abnormal measurements will induce a wrong estimation result because their occurrence probability is nearly zero.

M-estimation, as a robust estimation theory, can maintain its performance in non-Gaussian process noise or
abnormal measurements. Then, the M-estimate of the system state xk is as follows:

(x̂k)M = argmin
x̂k

nx+ny
∑

i=1

ρ
(

r
(i)
k

)

, rk = R̂
−1/2
k · ek, (9)

where ρ (·) is the robust M-estimate objective function, which is usually a real-valued, even function. R̂k is the
robust estimation of residual covariance, which can be expressed as

R̂k = {ŝij} , ŝij =
1

L− 1

(

e
(i)
k −med

[

e
(j)
k+1−L:k

])

·
(

e
(j)
k −med

[

e
(j)
k+1−L:k

])

, (10)

where med (·) is the median operator over the data window e
(j)
k+1−L:k.
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Furthermore, M-estimation (9) can be written in the weighted form

(x̂k)W = argmin
x̂k

nx+ny
∑

i=1

ϕ
(

r
(i),2
k

)

· r(i),2k , r
(i),2
k =

(

r
(i)
k

)2

, (11)

where ϕ (·) is an adaptive weight function. In this equivalent form, only different weighting functions are required
to be designed, such as those by Andrew [45], Hampel [46], and Huber [47].

Up to now, we have obtained a distinct understanding of this problem and the fundamental concepts of M-
estimation. In the subsequent sections, we will learn the incorporation of these concepts into (3) and (5).

3 Proposed AW-VBF algorithm

3.1 VBF

According to the variational Bayesian principle, a parameterized posterior distribution qφk
(xk|y1:k) is introduced

to approximate the unknown true posterior distribution p (xk|y1:k). Unlike the approximate posterior in mean-field
variational inference, it is not necessarily factorial, and its parameters φk are not computed from some closed-form
expectation.

The marginal likelihood of individual data points yk is rewritten as

log p (yk|y1:k−1) = Eqφk
(xk|y1:k)

[

log
p (yk|xk) p (xk|y1:k−1)

p (xk|y1:k)

]

= Eqφk
(xk|y1:k)

[

log
qφk

(xk|y1:k) p (yk, xk|y1:k−1)

p (xk|y1:k) qφk
(xk|y1:k)

]

= DKL (qφk
(xk|y1:k)|p (xk|y1:k)) + L (φk; yk) .

(12)

The first right-hand side (RHS) term is the KL divergence (a nonnegative term) of the approximate posterior and
true posterior. The second RHS term L (φk; yk) is called the (variational) lower bound on the marginal likelihood
of the data point yk and is written as follows:

L (φk; yk) = Eqφk
(xk|y1:k) [log p (yk, xk|y1:k−1)− log qφk

(xk|y1:k)]
= Eqφk

(xk|y1:k) [log p (yk|xk) + log p (xk|y1:k−1)− log qφk
(xk|y1:k)]

= Eqφk
(xk|y1:k) [log p (yk|xk)]− DKL (qφk

(xk|y1:k)|p (xk|y1:k−1)) .

(13)

The purpose of the VBF is to find the optimal parameter φk that makes the approximate posterior qφk
(xk|y1:k)

and true posterior p (xk|y1:k) as close as possible, which means

φ∗
k = argmin

φk

DKL (qφk
(xk|y1:k)|p (xk|y1:k)). (14)

Because the marginal likelihood log p (yk|y1:k−1) is deterministic, Eq. (14) is equivalent to the optimization

φ∗
k = argmax

φk

L (φk; yk) = argmax
φk

(

Eqφk
[log p (yk|xk)]− DKL (qφk

|p (xk|y1:k−1))
)

. (15)

In (15), the parameterized posterior distribution and prior information are indispensable within the variational
Bayesian filter. The parameterized posterior distribution can be directly selected from the exponential family of
distributions, as the mean and variance of the state estimation remain under our observation. Therefore, we set
φk = {x̂k, Pk} and assume that qφk

(xk|y1:k) follows a normal distribution, which means

qφk
(xk|y1:k) = N (xk; x̂k, Pk) . (16)

Then, Eq. (15) can be calculated if the prior information is known, such as in system (A1). However, prior informa-
tion is typically unknown because of the presence of non-Gaussian noise and measurement anomalies, constraining
the application of VBF.
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Figure 1 (Color online) Schematic diagram of motivation and algorithmic framework.

Specific example with the linear Gaussian assumption. We apply VBF to the linear Gaussian system (A1).
Simple calculation (Appendix B) shows that

L (φk; yk) =
1

2





C0 − (x̂k − F x̂k−1)
T
P−1
k|k−1 (x̂k − F x̂k−1)− (yk −Hx̂k)

T
R−1

k (yk −Hx̂k)

+ log |Pk| − Tr
(

R−1
k HPkH

T
)

− Tr
(

P−1
k|k−1Pk

)



 , (17)

where C0 = nx − ny log (2π)− log |Rk| − log
∣

∣Pk|k−1

∣

∣. Considering the derivative of (17) with respect to φk yields







x̂k =
(

P−1
k|k−1 +HTR−1

k H
)−1 (

HTR−1
k yk + P−1

k|k−1F x̂k−1

)

,

P−1
k = HTR−1

k H + P−1
k|k−1.

(18)

This easily verifies that Eq. (18) is consistent with KF (A4).

3.2 Motivation and algorithm framework

Considering the issue that the prior information remains unknown, we have conducted a detailed analysis of the VBF
mechanism and have discovered an interesting fact that the state transition and measurement processes operate
independently in this filter. Motivated by this finding, we proposed an AW-VBF without prior statistic information,
as depicted in Figure 1. In this filter, KDE is used to handle non-Gaussian noise, and an adaptive weight function
is adopted to deal with anomalies.

In-depth examination of variational lower bound. The first RHS term of (13) is written as

Eqφk
[log p (yk|xk)] =

∫

qφk
(xk|y1:k) · log p (yk|xk)dxk. (19)

The second RHS term of (13) is written as

DKL (qφk
|p (xk|y1:k−1)) =

∫

qφk
(xk|y1:k) · log

qφk
(xk|y1:k)

∫

p (xk|xk−1) p (xk−1|y1:k−1) dxk−1
dxk. (20)

Interestingly, Eq. (19) is completely determined by the state measurement process, whereas Eq. (20) is completely
determined by the state transition process. Thus, the first RHS term of (13) can be interpreted as the reconstruction
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error of the measurement, and its second RHS term can be deemed the difference between the approximate posterior
and the true posterior derived from the state transition.

KDE for Non-Gaussian noise. As a nonparametric method, KDE can estimate distributions using historical
data without assuming the distribution types. Experience has shown that different kernel functions can generate
similar estimation results. In order to obtain clearer and more formal conclusions, a Gaussian kernel is adopted,
which is expressed as

κ (z; Λ) = (2π)
−nz/2 |Λ|−1/2

e−(z
TΛ−1z)/2. (21)

Therefore, given the historical state estimation x̂i (i = k − L− 1, k − L, . . . , k − 1), unknown and non-Gaussian
p (xk|xk−1) and p (xy|xk) can be obtained using KDE as follows:



























p (xk|xk−1) =
1

L

k−1
∑

i=k−L

κ
(

xk−1 −
(

fk|k−1 (xk−1) + x̂i − fi|i−1 (x̂i−1)
)

; Λ(i)
x

)

,

p (yk|xk) =
1

L

k−1
∑

i=k−L

κ
(

yk − (hk (xk) + yi − hi (x̂i)) ; Λ
(i)
y

)

,

(22)

where Λ
(i)
x and Λ

(i)
y are the scale matrices of the state transition process and state measurement process, respectively,

at time ti.
Moreover, by replacing p (xk−1|y1:k−1) with qφk−1

(xk−1|y1:k−1) and specifying Λ = λ · I [48], we obtain

p (xk|y1:k−1) ≈
∫

p (xk|xk−1) qφk−1
(xk−1|y1:k−1) dxk−1

=
1

L

k−1
∑

i=k−L

Eqφk−1

[

N
(

xk; fk|k−1 (xk−1) +
(

x̂i − fi|i−1 (x̂i−1)
)

, λ · I
)]

.

(23)

Combining (19), (20), (22) and (23) yields



























Eqφk
[log p (yk|xk)] = C1 + Eqφk

[

log

k−1
∑

i=k−L

e−
(yk−µ

(i)
y )

T
(yk−µ

(i)
y )

2λ

]

,

DKL (qφk
|p (xk|y1:k−1)) = C2 −

log |Pk|
2

− Eqφk

[

log

k−1
∑

i=k−L

Eqφk−1

[

e−
(xk−µ

(i)
x )

T
(xk−µ

(i)
x )

2λ

]]

,

(24)

where C1 and C2 are constant values and

µ(i)
x = fk|k−1 (xk−1) + x̂i − fi|i−1 (x̂i−1) , µ(i)

y = hk (xk) + yi − hi (x̂i) . (25)

Adaptive weight function for measurement anomalies. Although KDE can effectively deal with non-
Gaussian noise, it cannot handle anomalies in measurements, as these anomalies markedly deviate from historical
data and are exceedingly rare in statistical terms.

Eqs. (19) and (24) characterize the reconstruction error using the marginal likelihood. In fact, considering the
simple case p (yk|xk) ∼ N (0, Rk), Eq. (19) can be expressed as

Eqφk
[log p (yk|xk)] = C1 −

1

2
Eqφk

[

(yk − hk (xk))
TR−1

k (yk − hk (xk))
]

. (26)

Inspired by the M-estimation method, an appropriate weight function can be devised for the reconstruction error
to replace (26), that is

DM (φk; yk) = −1

2
Eqφk

[

ny
∑

i=1

ϕ
(

r
(i),2
k

)

· r(i),2k

]

, rk = R̂
−1/2
k (yk − hk (xk)) . (27)

Previously reported weight functions, which are constant (0 and 1), do not downweight large residuals suffi-
ciently, or are nondifferentiable. To address these issues and ensure that Eq. (27) demonstrates robustness against
anomalies, we should assign equal weights to all smaller residuals (not greater than a cutoff value) and exponentially
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Figure 2 The graph of the weight function ϕ (z), where k = 10 and c = 100 are chosen. The left subfigure depicts the values of the weight

function, and the right subfigure presents its derivative.

downweight (penalize) larger residuals (greater than the cutoff value). Here, we consider a novel weight function [49],
as an ad hoc choice, in the form of

ϕ (z) = I (|z| 6 c) + I (|z| > c)
e−k(1−c/|z|)2 − e−k

1− e−k
, (28)

where the tuning parameter k > 1 is a positive number (usually between 1 and 10) controlling the steepness of
the exponentially decreasing weight, as depicted in Figure 2. The larger the k, the steeper the curve. The tuning
parameter c is the point where the weight function changes from a constant one to an exponentially decreasing one.
It is usually set to a large positive number, or it can be residual dependent (for example, the 50% or 75% percentile
of residuals); a larger c indicates higher efficiency.

For the novel weight function ϕ (z), verifying the following is straightforward:
(1) Function ϕ (z) is twice differentiable, and 0 < ϕ (z) 6 1;
(2) When z → ∞, ϕ (z) is asymptotically equivalent to α(eγ/z − 1) for positive constants α and γ;
(3) If z → ∞, then ϕ (z) z → 2ck/(ek − 1).
Notably, the novel weight function is twice differentiable, enabling its optimization in the subsequent AW-VBF

solution without the concern of its gradient problem. Furthermore, we assign a weight one to residuals that lie close
to the data center; points on the outskirts of the data cloud can be viewed as anomalies, so a lower positive weight
should be given.

3.3 AW-VBF algorithm and gradient estimator

In Section 3.2, we proposed KDE for non-Gaussian noise and adaptive weight function for measurement anomalies.
Combining (24) and (27), the optimization (15) can be written as

φ∗
k = argmax

φk

(DM (φk; yk)− DKL (qφk
(xk|y1:k)|p (xk|y1:k−1))). (29)

Although Eqs. (17) and (18) provide the results of VBF with the linear Gaussian assumption, the universal
analytical expression of AW-VBF is almost impossible to obtain.

Therefore, an iterative approach is required to solve the optimization (29), and considering the Taylor expansion
of L (φk; yk) with respect to the variational parameter φτ

k,

L (φk; yk) = L (φτ
k; yk) + ∇φk

L (φk; yk)|φk=φτ
k

∆φk +
1

2
∆φT

k ∇2
φk
L (φk; yk)

∣

∣

φk=φτ
k

∆φk +O
(

∆φk
3
)

. (30)

Then, it is relatively straightforward to obtain

φ∗
k = argmax

φk

L (φk; yk) = arg max
∆φk→0

∇φk
L (φk; yk) ·∆φk +

1

2
∆φT

k · ∇2
φk
L (φk; yk) ·∆φk. (31)

The iterative formula for the variational parameter φk is then expressed as

φτ+1
k = φτ

k − δτ ·
(

∇2
φk
L (φk; yk)

)−1 ∇φk
L (φk; yk)

∣

∣

∣

φk=φτ
k

, (32)

where δτ is an adjustable iteration step.
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So far, we still need to determine how to calculate gradients of the lower bound with respect to φk, which is
slightly problematic. Ignoring the coupling effect of the variational parameters, we can decompose (32) into

x̂τ+1
k = x̂τ

k − δτ ·
(

∇2
x̂k
L (φk; yk)

)−1 ∇x̂k
L (φk; yk)

∣

∣

∣

x̂k=x̂τ
k

, (33)

and
P τ+1
k = P τ

k − δτ ·
(

∇2
Pk
L (φk; yk)

)−1 ∇Pk
L (φk; yk)

∣

∣

∣

Pk=P τ
k

, (34)

thus improving calculation convenience. Subsequently, we individually address the computation of the variational
parameters x̂k and Pk.

Natural gradient estimator. In traditional variational Bayesian filter (15), the natural gradient estimator
is used and it is assumed that the approximating posterior qφτ

k
(xk|y1:k) at the τ -th iteration is the prior at the

(τ + 1)-th iteration, which means
p (xk|y1:k−1) ≈ qφτ

k
(xk|y1:k) , (35)

where φτ
k is the parameter of variational distribution at τ -th iteration. Noting that ∆φk = φk − φτ

k → 0, we obtain

{

∇φk
Eqφk

[log p (yk|xk)] = ∇φk
Eqφk

[log p (yk|x̂τ
k)] +O (∆φk) ,

∇φk
DKL

(

qφk

∣

∣qφτ
k
(xk|y1:k)

)

= ∇2
φk
DKL

(

qφk

∣

∣qφτ
k

)

·∆φk +O
(

∆φk
2
)

.
(36)

For the sake of brevity, denote the notation

G (φτ
k) = ∇2

φk
DKL

(

qφk

∣

∣qφτ
k

)

.

Then, according to (33) and (34), the iterative formula of the variational parameter {x̂k, Pk} is

{

x̂τ+1
k = x̂τ

k +G−1 (x̂τ
k) · ∇x̂k

Eqφk
[log p (yk|x̂τ

k)] ,

P τ+1
k = P τ

k +G−1 (P τ
k ) · ∇Pk

Eqφk
[log p (yk|x̂τ

k)] .
(37)

Assuming that the noises satisfy the Gaussian condition (wk ∼ N (0, Qk) , vk ∼ N (0, Rk)), via careful derivation
(Appendix C), we easily obtain







∇x̂k
Eqφk

[log p (yk|x̂τ
k)] ≈ HT

x̂τ
k
R−1

k (yk − hk (x̂
τ
k)) ,

∇Pk
Eqφk

[log p (yk|x̂τ
k)] ≈ −1

2
HT

x̂τ
k
R−1

k Hx̂τ
k
,

Hx̂τ
k
=

∂hk (xk)

∂xT
k

∣

∣

∣

∣

xk=x̂τ
k

, (38)

and






G (x̂τ
k) = ∇2

x̂k
DKL

(

qφk

∣

∣qφτ
k

)

= (P τ
k )

−1
,

G (P τ
k ) = ∇2

Pk
DKL

(

qφk

∣

∣qφτ
k

)

≈ 1

2
(P τ

k )
−1 ⊗ (P τ

k )
−1 ,

(39)

where ⊗ denotes the Kronecker product, producing the operator
(

BT ⊗A
)

X = AXB. Thus, Eq. (37) can be
calculated in detail.

Preparation for Monte-Carlo gradient estimator. The natural gradient estimator heavily relies on the
Gaussian assumption, resulting in an analytical gradient expression. However, KDE weakens the Gaussian assump-
tion, thus hindering gradient calculation. Therefore, we introduce the Monte-Carlo gradient estimator to solve this
problem. Before commencing, certain conclusions about the derivative of qφk

are essential, one of which is

∇φk
qφk

= qφk
· ∇φk

log qφk
. (40)

Then, with (16),

∇φk
log qφk

= −1

2
∇φk

(

log |Pk|+ (xk − x̂k)
T
P−1
k (xk − x̂k)

)

, (41)

which means






∇x̂k
log qφk

= P−1
k (xk − x̂k) ,

∇Pk
log qφk

= −1

2

(

P−1
k − P−1

k (xk − x̂k) (xk − x̂k)
T
P−1
k

)

.
(42)
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With (40)–(42), the gradient of L (φk; yk) can be analyzed thoroughly.
Monte-Carlo gradient estimator. According to (22),

∇Pk
p (yk|xk) = 0, ∇Pk

p (xk|xk−1) = 0, ∇Pk
p (xk|y1:k−1) = 0. (43)

Therefore, we only need to consider the general gradient estimator of Eqφk
[g (xk)] and DKL (qφk

|g (xk)). Combining
(40), we obtain











































∇φk
Eqφk

[g (xk)] = Eqφk
[g · (∇φk

log qφk
)] ,

∇2
φk
Eqφk

[g (xk)] = Eqφk

[

g ·
(

(∇φk
log qφk

)
2
+∇2

φk
log qφk

)]

,

∇φk
DKL (qφk

|g (xk)) = Eqφk

[(

log
qφk

g
+ 1

)

· ∇φk
log qφk

]

,

∇2
φk
DKL (qφk

|g (xk)) = Eqφk

[

(

(∇φk
log qφk

)2 +∇2
φk

log qφk

)

·
(

log
qφk

g
+ 1

)

+ (∇φk
log qφk

)2
]

.

(44)

According to the Monte-Carlo method, the approximate calculation formula for the expectation can be represented
as

Eqφk
[γ (φk)] ≈

1

S

S
∑

s=1

γ
(

ξ(s)
)

, ξ(s) ∼ qφk
(xk|y1:k) , (45)

where ξ(s) is a series of generated samples that follow qφk
. Then, combining (44) and (45), we calculate the

required gradient (using the reparameterization technique in Appendix D). Remarkably, the gradient estimator of
∇φk

Eqφk
[g (xk)] is



























Eqφk
[g · ∇x̂k

log qφk
] =

1

S

S
∑

s=1

g · ∇x̂k
log qφk

= − 1

S

S
∑

s=1

g · ζ(s),

Eqφk
[g · ∇Pk

log qφk
] = − 1

2S

S
∑

s=1

g · P−1
k ·

(

I − ζ(s)
(

ζ(s)
)T

P−1
k

)

,

ζ(s) ∼ N (0, I) . (46)

Gradient of adaptive weight function. According to (44), given the adaptive weight function, we only need
to consider the gradient of Ψ (xk). Through calculation, we obtain



















ϕ′ (z) =
d

dz
ϕ (z) = α∗ · e−k(1−c/|z|)2 ·

(

1− c

|z|

)

· sgn(z)
z2

· I (|z| > c) ,

ϕ′′ (z) =
d2

dz2
ϕ (z) = α∗ · e−k(1−c/|x|)2 · 1

z3
·
(

−2
kc

|z|

(

1− c

|z|

)2

− 2 + 3
c

|z|

)

· I (|z| > c) ,

(47)

where α∗ = −2kc/
(

1− e−k
)

. Because Ψ (xk) and Pk are independent, we only need to consider their gradient with
respect to xk, which mean

∇xk

(

ϕ
(

r
(i),2
k

)

· r(i),2k

)

= ∇xk
ϕ
(

r
(i),2
k

)

· r(i),2k + ϕ(i) · ∇xk
r
(i),2
k

= −2 · R̂−1/2
k · r(i)k ·

(

ϕ′
(

r
(i),2
k

)

· r(i),2k + ϕ
(

r
(i),2
k

))

· ∇xk
h
(i)
k ,

(48)

and

∇2
xk

(

ϕ
(

r
(i),2
k

)

· r(i),2k

)

= 2R̂−1
k







(

∇xk
h
(i)
k · ∇T

xk
h
(i)
k

)

(

ϕ
(

r
(i),2
k

)

+ 5r
(i),2
k ϕ′

(

r
(i),2
k

)

+ 2
(

r
(i),2
k

)2

ϕ′′
(

r
(i),2
k

)

)

−R̂
1/2
k

(

r
(i)
k ·

(

ϕ′
(

r
(i),2
k

)

· r(i),2k + ϕ
(

r
(i),2
k

))

· ∇2
xk
h
(i)
k

)






.

(49)

Thus, ∇xk
Ψ(xk) and ∇2

xk
Ψ(xk) can be calculated according to (48) and (49).

Overall. So far, all essential conditions for conducting AW-VBF calculations have been provided. Its process is
summarized in Algorithm 1.
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Algorithm 1 AW-VBF algorithm with Monte-Carlo gradient estimator.

Initialization: State estimation x̂0, estimation error covariance P0, termination threshold ε, parameters L,λ, c, k, and iteration N .

1: for all k = 1, 2, . . . ,K do

2: Compute initial state estimation: x̂0
k = fk|k−1 (x̂k−1);

3: Compute initial covariance matrix:

P 0
k = Fk|k−1Pk−1F

T
k|k−1 + Qk−1, Fk|k−1 = ∂fk|k−1 (x)/∂xT

∣

∣

∣

x=x̂0
k

;

4: for all τ = 1, 2, . . . , N and e > ε do

5: Generate random samples: ζ(s) ∼ N (0, I);

6: Compute the gradient of DKL

(

qφk

∣

∣p (xk|y1:k−1)
)

at φτ
k according to (44) and (46);

7: Compute the gradient of DM (φk; yk) at φτ
k according to (48) and (49);

8: Update the variational parameter φτ+1
k

according to (32);

9: Compute relevant error e =
∥

∥

∥

(

x̂τ+1
k

− x̂τ
k

)

/x̂τ
k

∥

∥

∥
;

10: end for

Output: x̂k = x̂τ
k and Pk = P τ

k ;

11: Compute prediction residuals: x̂k − fk|k−1 (x̂k−1);

12: Update the KDE of distribution p (xk+1|xk) to 1
L

∑

k
i=k−L+1 κ

(

xk − µ(i)
x ;λ · I

)

;

13: end for

4 Simulation

4.1 Preparation

The simulation was designed for a target-tracking [4] scenario. The dynamics of the moving target was described
using a constant-velocity model as

[

pk

ṗk

]

=

[

I dt · I
0 I

][

pk−1

ṗk−1

]

+ wk−1, (50)

where dt = tk − tk−1 is the discretization time interval, wk−1 is a process noise with appropriate dimensions,

pk = [xk, yk, zk]
T
and ṗk = [ẋk, ẏk, żk]

T
is the position and velocity of the target, respectively, at time tk.

The measurement primarily consisted of the radial distance (R) and radial velocity (Ṙ) between the source and
the target. Accordingly, the measurement function was







R (pk, si) =

√

(xp
k − xs

i )
2
+ (ypk − ysi )

2
+ (zpk − zsi )

2
+ v

(1)
k,i ,

Ṙ (pk, si) = (ẋp
k (x

p
k − xs

i ) + ẏpk (y
p
k − ysi ) + żpk (z

p
k − zsi )) /R (pk, si) + v

(2)
k,i ,

(51)

where si = [xs
i , y

s
i , z

s
i ]

T
represents the position of the i-th measurement source, v

(1)
k,i and v

(2)
k,i are the noise of the

corresponding measurement, at time tk.

4.2 Parameters and visualization

In the simulation, six range-velocity radars were deployed for obtaining the measurements of R and Ṙ, and the
specific positional parameters are detailed in Table 1. Then, noises and anomalies with distinct characteristics were
simulated to test the performance of diverse filters.

(1) Regarding the process noise wk, Gaussian noise and non-Gaussian noise are separately simulated, where
Gaussian noise is designated as wk ∼ N (wk; 0,Λ1) and non-Gaussian noise is designated as wk ∼ 1

2 (N (wk;µ1,Λ1)
+N (wk;−µ1,Λ1)).

(2) For normal measurements, its noise follows a normal distribution, that is, vk ∼ N (vk; 0,Λ2). For anomalies,
at most one measurement is abnormal at each moment, and its occurrence probability is set to p = 0.2. Moreover,
the range anomaly had an amplitude of 75 and a standard deviation of 15, whereas the velocity anomaly had an
amplitude of 7.5 and a standard deviation of 1.5.

In particular, the relevant parameters related to noise and anomalies are as follows:















µ1 = [0.5, 0.5, 0.5, 0, 0, 0]T , vk =
[

v
(1)
k,1, . . . , v

(1)
k,6, v

(2)
k,1, . . . , v

(2)
k,6

]T

,

Λ1 = diag
([

10−2, 10−2, 10−4, 10−2, 10−2, 2.5× 10−5
])

,

Λ2 = diag
([

103, 103, 103, 103, 103, 103, 10−2, 10−2, 10−2, 10−2, 10−2, 10−2
])

.

Furthermore, the simulation scene and some data details are visualized here. The target trajectory and measure-
ment source deployment are shown in Figure 3, and the change curves of the velocity components (with Gaussian
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Table 1 Parameter settings related to simulation scenarios.

Parameter Value Unit Parameter Value Unit

p0 (125,−3000, 100)T m dt 0.2 s

ṗ0 (0, 60,−0.75)T m · s−1 a 100 –

s1–s6 (±a,±b, 0)T , (±a, 0, 0)T m b 2000 –

Figure 3 (Color online) Trajectory and measurement source posi-

tion.

Figure 4 (Color online) Change curves of velocity components.

Figure 5 (Color online) Anomalies injected into radial distance R. Figure 6 (Color online) Anomalies injected into radial distance Ṙ.

process noise and normal measurements) are shown in Figure 4. In addition, Figures 5 and 6 present the anomalies
in radial distance and radial distance measurements, respectively, which are injected in the simulation.

4.3 Performance

We compare the performance of the AW-VBF algorithm with that of three related algorithms: EKF, UKF, and PF.
The EKF, a widely used linearization method, is a popular traditional baseline. The UKF can effectively handle
nonlinear problems by using the unscented transformation instead of linearization. The PF describes the distribution
of state variables through nonlinear systems through a large number of random samples; it is a representative method
for dealing with nonlinear and non-Gaussian problems.

The residual between the estimated state and the true state, directly reflecting the performance of the filter, was
utilized as an evaluation metric. Position and velocity were evaluated separately to ensure dimensional consistency,
and the relevant metrics (at time tk) were

RMSE (pk) = ‖pk − p̂k‖22 , RMSE (ṗk) =
∥

∥

∥ṗk − ˆ̇pk

∥

∥

∥

2

2
.
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Figure 7 (Color online) Case 1: system state estimation results

when the process noise is Gaussian and no measurement anomalies

exist.

Figure 8 (Color online) Case 2: system state estimation results

when the process noise is non-Gaussian and no measurement anoma-

lies exist.

Figure 9 (Color online) Case 3: system state estimation results

when the process noise is Gaussian and anomalies exist in the mea-

surements.

Figure 10 (Color online) Case 4: system state estimation results

when the process noise is non-Gaussian and anomalies exist in the

measurements.

In the simulation, the parameters of AW-VBF are selected as follows:

L = 100, λ = 0.03, k = 10, c = 3×
√
103.

The simulation results of our proposed method (AW-VBF) and the compared methods are in Figures 7–10. As
shown in Figure 7, the AW-VBF maintains consistency with the classical filters in terms of Gaussian noise and
normal measurements. Figure 8 illustrates the effect of the non-Gaussian process noise on the filters, showing
acceptable degradation. Nevertheless, our method is less affected by this factor because of the precise estimation
of the process noise. Figure 9 illustrates filter performance in the presence of measurement anomalies. Because the
classical filters do not handle measurement anomalies, their performance degrades severely, resulting in a substantial
amplification (approximately 65 times) of position estimation errors and an amplification (approximately 35 times)
of velocity estimation errors.

Tables 2 and 3 present statistical data regarding the position and velocity estimation residuals, respectively.
By contrast, our proposed method (AW-VBF) effectively alleviates this decline, improving position estimation
accuracy by 64.9% to 66.6% and velocity estimation accuracy by 25.6% to 76.8% relative to the classical methods.
The effectiveness of our approach is further validated in Figure 10, where position estimation accuracy improves by
at least 61.1% and velocity estimation accuracy by at least 5.47%.
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Table 2 Position estimation performance (Mean ± Std, m) of AW-VBF and competing methods.

Cases AW-VBF EKF UKF PF

Case 1 1.285 ± 0.611 1.296 ± 0.581 1.292 ± 0.579 4.814 ± 1.794

Case 2 2.017 ± 1.173 3.251 ± 1.838 3.560 ± 1.927 7.436 ± 6.281

Case 3 28.248 ± 17.824 84.566 ± 44.902 84.564 ± 44.899 80.534 ± 45.976

Case 4 51.934 ± 31.461 206.414 ± 71.854 206.412 ± 71.856 133.564 ± 76.713

Table 3 Velocity estimation performance (Mean ± Std, m/s) of AW-VBF and competing methods.

Cases AW-VBF EKF UKF PF

Case 1 0.185 ± 0.106 0.190 ± 0.110 0.189 ± 0.110 0.284 ± 0.162

Case 2 0.251 ± 0.147 0.371 ± 0.201 0.378 ± 0.210 0.720 ± 0.403

Case 3 1.579 ± 1.087 6.795 ± 3.456 6.794 ± 3.455 2.122 ± 0.837

Case 4 3.110 ± 2.454 9.494 ± 4.534 9.494 ± 4.534 3.291 ± 1.111

5 Conclusion

We propose the AW-VBF to generate an approximate variational distribution for the true state posterior distribu-
tion. In the AW-VBF, the kernel density function is used to estimate unknown and non-Gaussian system noise, and
a novel weighted loss function with excellent properties replaces the likelihood function, thereby achieving robust
estimation. Thus, the AW-VBF can maintain its performance in the presence of non-Gaussian noise and measure-
ment anomalies. Simulation and analysis results show that the proposed method outperforms existing methods
(EKF, UKF, and PF).
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Appendix A Specific example for Bayesian filter with linear Gaussian assumption

We consider the discrete linear Gaussian system

{

xk = Fxk−1 + wk−1,

yk = Hxk + vk,
wk ∼ N (0, Qk) , vk ∼ N (0, Rk) , (A1)

where F and H are the state transition matrix and state measurement matrix, respectively, with appropriate dimensions. We assume

that the state at time tk−1 follows a normal distribution with a mean of x̂k−1 and a covariance of Pk−1, which means

p (xk−1|y1:k−1) = N (xk−1; x̂k−1, Pk−1) . (A2)

Therefore,










p (xk|y1:k) = N
(

xk;F x̂k−1 +Kk (yk −HFx̂k−1) , Pk|k−1 −Kk

(

HPk|k−1H
T + Rk

)

KT
k

)

,

Kk = Pk|k−1H
T
(

HPk|k−1H
T + Rk

)−1
, Pk|k−1 = FPk−1F

T +Qk−1.
(A3)

Simplifying (A3) can yield the classic KF, which is







x̂k = F x̂k−1 +Kk (yk −HFx̂k−1) ,

Pk = Pk|k−1 −Kk

(

HPk|k−1H
T +Rk

)

KT
k .

(A4)

Appendix B Computation details for VBF with linear Gaussian assumption

With the assumption (A1), there is

Eqφk
[log p (yk|xk)] =

∫

N (xk; x̂k, Pk) · log [N (yk;Hxk, Rk)]dxk

= −
1

2

(

ny log 2π+ log |Rk |+

∫

N (xk; x̂k, Pk) · (yk −Hxk)
T R−1

k (yk −Hxk) dxk

)

= −
1

2

(

ny log 2π+ log |Rk |+

∫

N (xk; 0, Pk) · ((yk −Hx̂k)−Hxk)
T R−1

k ((yk −Hx̂k)−Hxk) dxk

)

.

(B1)
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Owing to the evidence
∫

N (xk; 0, Pk) · H̃xkdxk = 0 and

∫

N (xk; 0, Pk) · x
T
kH

TR−1
k Hxkdxk = EN (xk;0,I)

[

(

R
−1/2
k HP

1/2
k xk

)T (

R
−1/2
k HP

1/2
k xk

)

]

= Tr

(

(

R
−1/2
k HP

1/2
k

)T
R

−1/2
k HP

1/2
k

)

= Tr
(

R−1
k HPkH

T
)

.

(B2)

Eq. (B1) can be rewritten as follows:

Eqφk
[log p (yk|xk)] = −

1

2

(

ny log 2π+ log |Rk|+ (yk −Hx̂k)
T R−1

k (yk −Hx̂k) + Tr
(

R−1
k HPkH

T
))

. (B3)

Similarly, it is easy to verify p (xk|y1:k−1) = N
(

xk;F x̂k−1, Pk|k−1

)

and

DKL

(

qφk

∣

∣p (xk|y1:k−1)
)

= Eqφk

[

log
p (xk|y1:k−1)

qφk
(xk|y1:k)

]

= Eqφk

[

log
N
(

xk;F x̂k−1, Pk|k−1

)

N (xk; x̂k, Pk)

]

= −
1

2
log
∣

∣Pk|k−1

∣

∣ +
1

2
log |Pk|+ Eqφk

[

(xk − F x̂k−1)
T P−1

k|k−1
(xk − F x̂k−1)− (xk − x̂k)

T P−1
k (xk − x̂k)

]

= −
1

2

(

log
∣

∣Pk|k−1

∣

∣ − log |Pk|+ (xk − F x̂k−1)
T P−1

k|k−1
(xk − F x̂k−1) + Tr

(

P−1
k|k−1

Pk

)

−Tr(Inx×nx )
)

.

(B4)

Therefore, Eqs. (B3) and (B4) yield (17).

Appendix C Computation details for natural gradient estimator

According to the assumption (35), the DKL

(

qφk

∣

∣p (xk|y1:k−1)
)

is given as

DKL

(

qφk

∣

∣

∣
qφτ

k

)

=

∫

qφk
· log

qφk

qφτ
k

dxk =

∫

qφk
· log qφk

dxk −

∫

qφk
· log qφτ

k
dxk. (C1)

With the Taylor’s series, log qφk
can be expanded into

log qφk
= log qφτ

k
+
(

∇φk
log qφk

)T
∣

∣

∣

φk=φτ
k

∆φk +
1

2
∆φT

k

(

∇2
φk

log qφk

)T
∣

∣

∣

∣

φk=φτ
k

∆φk + O
(

∆φ3
k

)

. (C2)

At point φτ
k , so that Eq. (C1) can be rewritten as

DKL

(

qφk

∣

∣

∣
qφτ

k

)

=

∫

qφk
·
(

∇φk
log qφk

)T
∣

∣

∣

φk=φτ
k

∆φkdxk +
1

2

∫

qφk
·∆φT

k

(

∇2
φk

log qφk

)T
∣

∣

∣

∣

φk=φτ
k

∆φkdxk + O
(

∆φ3
k

)

. (C3)

The first RHS term in (C3) becomes

∫

qφk
·
(

∇φk
log qφk

)T
∣

∣

∣

φk=φτ
k

∆φkdxk =

∫

(

∇φk
qφk

)T
∣

∣

∣

φk=φτ
k

∆φkdxk = 0. (C4)

The second RHS term in (C3) can be reformulated as

1

2

∫

qφk
·∆φT

k

(

∇2
φk

log qφk

)
∣

∣

∣
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1

2
∆φT

k

∫

qφk
·
(
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∣
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2
∆φT
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∫

qφk
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1

qφk

(

∇2
φk
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)
∣

∣

∣
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+
(

∇φk
qφk

) (

∇φk
qφk

)T
∣

∣

∣

φk=φτ
k
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dxk∆φk.

(C5)

Owing to the evidence
∫

qφk
· ∇2

φk
qφk

∣

∣

∣

φk=φτ
k

dxk = 0, Eq. (C3) yields

DKL

(

qφk

∣

∣

∣
qφτ

k

)

=
1

2
∆φT

k Fφk
∆φk + O

(

∆φ3
k

)

, Fφk
≈ ∇2

φk
DKL

(

qφk

∣

∣

∣
qφτ

k

)

. (C6)

Similar to (B3), there is

DKL

(

qφk

∣

∣

∣
qφτ

k

)

= −
1

2

(

log |P τ
k | − log |Pk|+ (x̂τ

k − x̂k)
T (P τ

k )−1 (x̂τ
k − x̂k) + Tr

(

(P τ
k )−1 Pk

)

− Tr(Inx×nx)
)

. (C7)

Compute the second-order partial derivative of (C7) with respect to φk = {x̂k, Pk}, we obtain







































Fx̂k
= ∇2

x̂k
DKL
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qφk

∣

∣

∣
qφτ

k

)

=
∂2

2∂x̂k
2

(

(x̂τ
k − x̂k)

T (P τ
k )−1 (x̂τ

k − x̂k)
)

= (P τ
k )−1 ,

FPk
= ∇2

Pk
DKL

(

qφk

∣

∣

∣
qφτ

k

)

=
∂2

2∂Pk
2

(

Tr
(

(P τ
k )−1 Pk

)

− log |Pk|
)

= −
∂2 log |Pk|

2∂Pk
2

= −
∂

2∂Pk

(

2P−1
k|k−1

− P−1
k ◦ I

)

=
∂P−1

k

∂Pk
+

∂P−1
k

2∂Pk
◦ I,

(C8)
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where ◦ denotes Hadamard product. Computation the operator
(

∂P−1
k /2∂Pk

)

◦ I in (C8) shows that only the non-diagonal elements

are left. Thus, FPk
can be approximated as follows:

FPk
≈

∂P−1
k

2∂Pk
=

1

2
P−1
k ⊗ P−1

k . (C9)

It follows that the iterative optimization yields that the final expression of (39).

Appendix D Reparameterization trick

Let us assume that the true posteriors are approximately Gaussian with an approximately diagonal covariance. In this case, we can let

the variational approximate posteriors be multivariate Gaussians with a diagonal covariance structure:

log qφk
(xk|y1:k) = logN (xk; x̂k, Pk), (D1)

where x̂k and Pk are yet unspecified functions of y1:k. As they are Gaussian, we can reparameterize the variational approximate

posteriors by

x̃k = x̂k + Pk ⊙ ζ, ζ ∼ N (0, I) , (D2)

where ⊙ denotes an element-wise product. Then, according to the Monte-Carlo method, Eq. (45) yields

Eqφk
[g (x)] =

1

S

S
∑

s=1

g
(

x̂k + Pk ⊙ ζ(s)
)

, ζ(s) ∼ N (0, I) . (D3)

Through this reparameterization trick, the derivatives of the Monte-Carlo estimator (D3) with respect to the parameters x̂k and Pk

can be calculated. Therefore, the resulting estimator of (44) is as follows:



























Eqφk

[

g · ∇x̂k
log qφk

]

=
1

S

S
∑

s=1

g · ∇x̂k
log qφk

= −
1

S

S
∑

s=1

g · ζ(s),

Eqφk

[

g · ∇Pk
log qφk

]

= −
1

2S

S
∑

s=1

g · P−1
k ·

(

I − ζ(s)
(

ζ(s)
)T

P−1
k

)

.

(D4)
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