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Abstract This paper investigates the substabilization problem for a class of coupled-inverted pendulum systems (CIPSs) connected by

two springs. Unlike most control studies that only focus on the CIPS without any input failure, this paper considers a more complex

situation. That is, individual control inputs in the CIPS fail entirely, significantly complicating the control design. To solve this control

problem, the original CIPS is converted into a sub-fully actuated system (sub-FAS) model. Then, using the fully actuated system

(FAS) approach, the substabilizing controllers for the obtained sub-FAS are designed within the feasible set, and the corresponding

region of exponential attraction (RoEA) is derived, in which the closed-loop sub-FAS is exponentially stable, and the original CIPS is

asymptotically stable. Finally, simulation research proves the effectiveness of the proposed control method.
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1 Introduction

Nonlinear control has been widely recognized as one of the most active research fields because of its application
value. Until now, most experts and scholars have been inclined to tightly combine with the first-order state-space
approaches to solve nonlinear control problems because the approaches have successfully addressed the control
problems for linear time-invariant systems, raising many state-oriented dilemmas [1]. Furthermore, when modeling
systems, due to the use of a series of physical laws, the original models of many physical systems are second- or
high-order ones. Thus, if we use the approaches to design controller, it is inevitable to convert the original system
into first-order ones by reducing the system order. However, this procedure will increase the system dimensions and
destroy the full-actuation feature of the system. In fact, the state-space approaches are more suitable for solving
the problems of response analysis and state observer design, and do not provide enough convenience for system
controller design [1]. Fortunately, in recent years, Duan heuristically proposed the high-order fully actuated system
(HOFAS) models together with a control-oriented approach, namely, the fully actuated system (FAS) approach [1,2].
Different from the state-space approach, using the FAS approach can fully utilize the full-actuation feature of
system, and thus directly design controller for nonlinear high-order systems, which significantly simplifies control
design. Furthermore, in certain situations, a linear closed-loop system can be obtained with an arbitrarily desired
eigenstructure. The reader is referred to [2] and its relevant studies for a detailed discussion about the FAS approach.
At present, vast scientific research and engineering applications on the FAS approach have been widely reported
relying on its inherent advantages in control design. Therein, some scholars focus on control research for systems
with actuator or input failures, and have obtained numerous significant results. As a pioneering work, Cai et
al. presented a fault tolerance framework for HOFASs with disturbances and multiplicative actuator faults, and
firstly introduced the extended state observer into HOFASs [3]. In addition, a simpler case, namely, the scalar
system, was considered in [4]. Ulteriorly, to handle simultaneously parameter uncertainties, actuator faults, and
measurement noises, a novel observer-based low-power fault tolerant control (FTC) was established in [5], which
indeed filled the relevant gaps in the safety control of FASs. Very recently, Cai et al. also studied the FTC
for unknown nonaffine HOFASs with multiplicative actuator and sensor faults, concluding that the ultimately
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uniformly bounded stability was achieved [6]. For a more general system that can be decomposed into a fully
actuated subsystem and an extra autonomous subsystem, a fault-tolerant controller was constructed to ensure the
stabilization of such compound systems with nonlinear uncertainties and actuator faults, relying on the theory of
input-to-state stability [7]. In applications, Ma et al. developed the prescribed-time and neuroadaptive cooperative
FTC for heterogeneous multiagent systems subject to partial effectiveness loss faults in [8,9], respectively. However,
most existing studies for systems with actuator or input failures focus primarily on the scenarios involving partial
actuator or input failures, while more extreme cases, such as entire actuator or control input failures, have received
relatively little attention, possibly due to the significantly greater complexity of control design for such systems.
However, these scenarios are commonly observed in practical engineering applications.

The control for inverted pendulums is a typical problem in the control community, and various relevant control
methods have been proposed [10–14]. In [11], a control strategy based on an energy method was proposed for
trolley and pendulum systems. Different from the inverted pendulum without uncertainties considered in [11], the
control problem for inverted pendulums with uncertainty was further considered in [12–14]. Therein, in [12], an
output feedback stabilization method was developed to ensure that the equilibrium point of the closed-loop system is
exponentially stable. In [13], an interval type-2 fuzzy PID control method was proposed for a cart-pendulum system
with an uncertain model. In [14], a backstepping-based sliding mode control method was presented for uncertain
underactuated systems and was further validated on cart-pendulum systems. Along this line of research, a few
studies consider more complicated coupled-inverted pendulum systems (CIPSs). For example, a CIPS connected
by a spring was studied in [15], for which a combined nonlinear control method using the hyperstability criterion
was proposed. In addition, the decentralized control methods were presented in [16–18], and were successfully
applied to the stabilization control for CIPSs. Under the framework of the FAS approach, there are also some
references that focus on the control research for inverted pendulums [19, 20]. In [19], an adaptive guaranteed cost
tracking control method was proposed for FASs with unknown parameters and applied to the guaranteed cost
control for an inverted pendulum. Different from [19], in [20], the practical prescribed time control method for a
class of strongly interconnected nonlinear systems was given, and verified on an inverted pendulum. Further, some
scholars have investigated the control problems for inverted pendulum systems with actuator or input failures. In
order to overcome the actuator faults, Ref. [21] proposed a sliding mode-based FTC method for a class of inverted
pendulum and cart systems. Similarly, in [22], the adaptive fuzzy sliding mode control approach was developed
against actuator faults. For a class of inverted pendulums with actuator faults and dead zones, Ref. [23] proposed
a funnel-based neural adaptive FTC method. Ref. [24] solved the adaptive fuzzy tracking control problem for a
class of double inverted pendulums with actuator failures. Based on the prescribed performance control and the
FTC, Ref. [25] addressed the preassigned tracking performance problem for inverted pendulums with unknown
control directions, actuator and component faults. The FTC scheme for sample-data systems was developed in [26]
and subsequently applied to an inverted pendulum with floating faults. In [27], the disturbance observer-based
robust control method was applied to a class of CIPSs with a stuck actuator, ensuring good output performance.
Then, Ref. [28] extended the result of [27] to the decentralized control one for reducing information exchange
among multiple inverted pendulum systems. In [29], the event-driven-observer-based adaptive distributed fault
compensation control method was applied to the CIPSs with time-varying uncertainties and partial actuator loss
faults. However, most of the aforementioned studies have focused only on some specific actuator or input failures,
including but not limited to floating faults and partial loss faults. There is a lack of extensive research on cases
involving entire input failures.

As a matter of fact, the FAS approach-based substabilization method can be invoked to address this circumstance.
According to the definition of sub-FASs, Duan provided some new concepts, that is, substability and substabilization,
which allow “gaps” and “holes” in the region of attraction of the Lyapunov exponential stability, and even allow
the origin to be a boundary point of the region of attraction [30]. They are very useful, especially when the region
of attraction could be large enough for certain applications. The reader is referred to the discussion about the sub-
FASs, as detailed in [30]. Considering the case that a CIPS with full-actuation feature becomes underactuated due
to individual control input failure, we can equivalently convert it into a sub-FAS with a nonempty feasible set, and
thus design the substabilizing controllers and provide the corresponding region of exponential attraction (RoEA)
with the help of the substabilization method. Therefore, in light of the above discussion, this paper investigates
the substabilization problem for a class of CIPSs with individual input failure by using the FAS approach-based
substabilization method. Main studies and contributions of this paper are as follows.

(1) The substabilization problem for the CIPS is addressed for the first time, which establishes a novel robust
control framework for CIPS with input failure.

(2) Different from most prior studies focused on the control research for the CIPS without any failure or with
partial actuator/input failures [26–29], this paper focuses on a more complex situation where individual control
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inputs fail entirely. In this scenario, we can only design the remaining controllers to achieve the stability of the
whole CIPS, which is a challenging task that constitutes the primary innovation of this paper.

(3) For control design, the original CIPSs are transformed into the sub-FAS models, based on which the sub-
stabilizing controllers are designed within the feasible sets. Furthermore, the corresponding RoEAs are derived, in
which the exponential stability of the closed-loop sub-FASs and the asymptotic stability of the original CIPSs are
ensured.

The remainder of this paper is organized as follows. The problem formulations are given in Section 2. Some
useful preliminaries are provided in Section 3. Sections 4 and 5 give respectively the control design for the CIPS
with two different situations. The simulation research is shown in Section 6 to prove the effectiveness of our control
method. Finally, the conclusion appears in Section 7.

Notations. In the following sections, let f (k)(t) denote the k-th derivative of the function f(t) and s̄ denote the
complex conjugate of the complex number s ∈ C. For a variable θ ∈ R, let

θ(0∼k) =















θ

θ̇

...

θ(k)















, (1)

A0∼m−1 =
[

a0 a1 · · · am−1

]

, (2)

and

Φ
(

A0∼m−1
)

=















0 1
...

. . .

0 0 · · · 1

−a0 −a1 · · · −am−1















∈ Rm×m, (3)

where k, m ∈ Z+, ai ∈ R, i = 0, 1, · · · ,m− 1 are a set of proper constants.

2 Problem descriptions

Consider a class of CIPSs depicted in Figure 1 [18], of which the dynamic equation is shown as follows:

S :















S1 : θ̈1 = g
l
sin θ1 +

k1a
2

m1l2
(sin θ2 cos θ2 − sin θ1 cos θ1) + u1,

S2 : θ̈2 = g
l
sin θ2 +

k1a
2

m2l2
(sin θ1 cos θ1 − sin θ2 cos θ2) +

k2a
2

m2l2
(sin θ3 cos θ3 − sin θ2 cos θ2) + u2,

S3 : θ̈3 = g
l
sin θ3 +

k2a
2

m3l2
(sin θ2 cos θ2 − sin θ3 cos θ3) + u3,

(4)

where θi, i = 1, 2, 3 are the angles of the i-th pendulum (◦), ui are the corresponding control inputs (N/(kg·m)).
Furthermore, mi, i = 1, 2, 3 are the mass of the i-th rod (kg), k1 and k2 are the spring constants (N/m), g is the
gravitational acceleration (m/s2), l and a are, respectively, the length of each rod and the distance from the pivot
to the center of gravity of the rod (m).

For system (4), this paper considers two special situations where u1 and u2 entirely fail, respectively, which often
occur in real-world systems.

2.1 The CIPS with the failed input u1

First, we consider the first situation, in which the control input u1 fails entirely. Then, the original system (4) is
changed into

Sα :















S1 : θ̈1 = g
l
sin θ1 +

k1a
2

m1l2
(sin θ2 cos θ2 − sin θ1 cos θ1) ,

S2 : θ̈2 = g
l
sin θ2 +

k1a
2

m2l2
(sin θ1 cos θ1 − sin θ2 cos θ2) +

k2a
2

m2l2
(sin θ3 cos θ3 − sin θ2 cos θ2) + u2,

S3 : θ̈3 = g
l
sin θ3 +

k2a
2

m3l2
(sin θ2 cos θ2 − sin θ3 cos θ3) + u3.

(5)

Problem 1. For the system (5), design two controllers u2 and u3, such that the closed-loop system (5) is asymp-
totically stable.
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Figure 1 Coupled-inverted pendulums.

2.2 The CIPS with the failed input u2

Then, we consider the second situation, in which the control input u2 fails entirely. Then, the original system (4)
is changed into

Sβ :















S1 : θ̈1 = g
l
sin θ1 +

k1a
2

m1l2
(sin θ2 cos θ2 − sin θ1 cos θ1) + u1,

S2 : θ̈2 = g
l
sin θ2 +

k1a
2

m2l2
(sin θ1 cos θ1 − sin θ2 cos θ2) +

k2a
2

m2l2
(sin θ3 cos θ3 − sin θ2 cos θ2) ,

S3 : θ̈3 = g
l
sin θ3 +

k2a
2

m3l2
(sin θ2 cos θ2 − sin θ3 cos θ3) + u3.

(6)

Problem 2. For the system (6), design two controllers u1 and u3, such that the closed-loop system (6) is asymp-
totically stable.

3 Preliminaries

To facilitate subsequent discussion, some preliminaries are presented below.
The so-called FAS, introduced in [31], appears in the following form:

x(n) = f
(

x(0∼n−1), t
)

+B
(

x(0∼n−1), t
)

u, (7)

where n > 1 is an integer, x ∈ Rr and u ∈ Rr are, respectively, the state vector and the control input,
f
(

x(0∼n−1), t
)

∈ Rr and B
(

x(0∼n−1), t
)

∈ Rr×r are two piece-wise continuous matrix functions. Furthermore,
as defined in [31], the sets of singularity and feasibility of system (7) are

S = {X| detB (X, t) = 0 or ∞, X ∈ Rnr, t > 0} , (8)

and
F = Rnr \S , (9)

respectively.

Definition 1 ([31]). The FAS (7) is called a sub-FAS when S 6= ∅ or equivalently F 6= R
nr.

Consider the following time-varying nonlinear system:

ẋ = f (x, t) ,f (0, t) = 0 (10)

with x ∈ Rr being the state vector. Without loss of generality, assume that system (10) possesses a unique
equilibrium x = 0.

Definition 2 ( [30]). Let Q ⊂ R
r be nonempty. If for any initial value x0 ∈ Q, the solution of system (10),

x (t,x0), exponentially converges to zero, then system (10) is called substable with respect to the RoEA Q.

To present the definition of substabilization, further consider the following forced system:

ẋ = f (x, t) +B (x, t)u (11)

with u ∈ Rr being the control vector.
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Definition 3 ([30]). The system (11) is called substabilizable if there are a nonempty set Q ∈ Rr and a control
vector u = α (x, t), such that the closed-loop system

ẋ = f (x, t) +B (x, t)α (x, t) (12)

is substable with respect to the RoEA Q.

4 Substabilization for the CIPS (5)

This section focuses on the control design and analysis for the system (5) based on the FAS approach. First, we
convert the system (5) into a sub-FAS. Then, for the obtained sub-FAS, the substabilizing controllers are designed,
and the corresponding RoEA is derived.

4.1 Sub-FAS model of the CIPS (5)

In this subsection, the system (5) is converted into a sub-FAS for control design. First, from the subsystem S1 of
the system (5), we have

θ2 =
1

2
arcsin

(

2m1l
2

k1a2

(

θ̈1 −
g

l
sin θ1

)

+ sin 2θ1

)

(13)

and

θ
(3)
1 =

g

l
θ̇1 cos θ1 +

k1a
2

2m1l2

(

2θ̇2 cos 2θ2 − 2θ̇1 cos 2θ1

)

(14)

with the following constraint:

− 1 6
2m1l

2

k1a2

(

θ̈1 −
g

l
sin θ1

)

+ sin 2θ1 6 1. (15)

Therefore, we have

θ̇2 =

m1l
2

k1a2

(

θ
(3)
1 − g

l
θ̇1 cos θ1

)

+ θ̇1 cos 2θ1

cos
(

arcsin
(

2m1l2

k1a2

(

θ̈1 −
g
l
sin θ1

)

+ sin 2θ1

)) (16)

with the second constraint:
2m1l

2

k1a2

(

θ̈1 −
g

l
sin θ1

)

+ sin 2θ1 6= ±1. (17)

From (5), (13) and (14), again taking the derivative for θ
(3)
1 , we obtain

θ
(4)
1 =

g

l
θ̈1 cos θ1 −

g

l
θ̇21 sin θ1 +

k1a
2

m1l2
θ̈2 cos 2θ2 −

2k1a
2

m1l2
θ̇22 sin 2θ2 −

k1a
2

m1l2
θ̈1 cos 2θ1 +

2k1a
2

m1l2
θ̇21 sin 2θ1

= f1

(

θ
(0∼3)
1 , θ3

)

+B1

(

θ̈1, θ3

)

u2, (18)

where

f1

(

θ
(0∼3)
1 , θ3

)

=
g

l
θ̈1 cos θ1 −

g

l
θ̇21 sin θ1 +

k1a
2g

m1l3
sin

(

1

2
arcsin

(

2m1l
2

k1a2
θ̈1 −

2m1lg

k1a2
sin θ1 + sin 2θ1

))

× cos

(

arcsin

(

2m1l
2

k1a2
θ̈1 −

2m1lg

k1a2
sin θ1 + sin 2θ1

))

+
k21a

4

2m1m2l4

(

sin 2θ1 −
2m1l

2

k1a2
θ̈1 +

2m1lg

k1a2
sin θ1 + sin 2θ1

)

cos

(

arcsin

(

2m1l
2

k1a2
θ̈1 −

2m1lg

k1a2
sin θ1 + sin 2θ1

))

+
k1k2a

4

2m1m2l4

(

sin 2θ3 −
2m1l

2

k1a2
θ̈1 +

2m1lg

k1a2
sin θ1 − sin 2θ1

)

cos

(

arcsin

(

2m1l
2

k1a2
θ̈1 −

2m1lg

k1a2
sin θ1 + sin 2θ1

))

−
2k1a

2

m1l2





m1l
2

k1a2 θ
(3)
1 − m1lg

k1a2 θ̇1 cos θ1 + θ̇1 cos 2θ1

cos
(

arcsin
(

2m1l2

k1a2 θ̈1 −
2m1lg
k1a2 sin θ1 + sin 2θ1

))





2
(

2m1l
2

k1a2
θ̈1 −

2m1lg

k1a2
sin θ1 + sin 2θ1

)

−
k1a

2

m1l2
θ̈1 cos 2θ1 +

2k1a
2

m1l2
θ̇21 sin 2θ1
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Figure 2 (Color online) The block diagram of the closed-loop system (5).

and

B1

(

θ1, θ̈1

)

=
k1a

2

m1l2
cos

(

arcsin

(

2m1l
2

k1a2

(

θ̈1 −
g

l
sin θ1

)

+ sin 2θ1

))

.

Furthermore, for subsystem S3, according to (13), there is

θ̈3 = f̃1

(

θ1, θ̈1, θ3

)

+ u3, (19)

where

f̃1

(

θ1, θ̈1, θ3

)

=
g

l
sin θ3 +

m1k2

m3k1
θ̈1 −

m1k2g

m3k1l
sin θ1 +

k2a
2

2m3l2
sin 2θ1 −

k2a
2

m3l2
sin θ3 cos θ3.

Thus, according to (18) and (19), we can obtain the corresponding sub-FAS model of the system (5) as follows:

[

θ
(4)
1

θ̈3

]

=

[

f1

f̃1

]

+

[

B1 0

0 1

][

u2

u3

]

(20)

with the following feasible set:

F1 =

{[

θ
(0∼3)
1

θ
(0∼1)
3

]∣

∣

∣

∣

∣

− 1 <
2m1l

2

k1a2

(

θ̈1 −
g

l
sin θ1

)

+ sin 2θ1 < 1

}

, (21)

which is simply derived from (15) and (17).

4.2 Control design for the sub-FAS (20)

In this subsection, two substabilizing controllers for the sub-FAS (20) are designed and a core theorem is given.
First, with the help of the FAS approach, we can design, respectively, the control inputs u2 and u3 as

u2 = −B−1
1 f1 −B−1

1 A0∼3
1 θ

(0∼3)
1 (22)

and
u3 = −f̃1 −A0∼1

2 θ
(0∼1)
3 (23)

within the feasible set F1, where A0∼3
1 ∈ R1×4 and A0∼1

2 ∈ R1×2 are two design vectors to make Φ1(A
0∼3
1 ) and

Φ2(A
0∼1
2 ) Hurwitz stable.

To enhance readability, a block diagram of the closed-loop CIPS (5) is provided in Figure 2.
Now, we give the first theorem of this paper as follows.

Theorem 1. For the system (20), if the substabilizing controllers are designed as (22) and (23), then the resulting
closed-loop system

[

θ̇
(0∼3)
1

θ̇
(0∼1)
3

]

=

[

Φ1(A
0∼3
1 ) 04×2

02×4 Φ2(A
0∼1
2 )

][

θ
(0∼3)
1

θ
(0∼1)
3

]

(24)
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is exponentially stable within the feasible set F1, and the corresponding RoEA is

Ξ1=

{[

θ
(0∼3)
1 (0)

θ
(0∼1)
3 (0)

]∣

∣

∣

∣

∣

∣

∣

∣

∣

2m1l
2

k1a2

(

ET
3 e

Φ1tθ
(0∼3)
1 (0)−

g

l
sin

(

ET
1 e

Φ1tθ
(0∼3)
1 (0)

))

+ sin
(

2ET
1 e

Φ1tθ
(0∼3)
1 (0)

)

∣

∣

∣

∣

< 1

}

(25)

with

E1 =
[

1 0 0 0
]T

,E3 =
[

0 0 1 0
]T

.

Proof. Substituting (22) and (23) into (20), one has

θ̇
(0∼3)
1 = Φ1(A

0∼3
1 )θ

(0∼3)
1 (26)

and
θ̇
(0∼1)
3 = Φ2(A

0∼1
2 )θ

(0∼1)
3 . (27)

It is obvious from (26) and (27) that

θ
(0∼3)
1 (t) = eΦ1tθ

(0∼3)
1 (0) (28)

and
θ
(0∼1)
3 (t) = eΦ2tθ

(0∼1)
3 (0) , (29)

which intuitively indicate that the system (24) is exponentially stable within the feasible set F1. Therefore, we have

{

θ1 (t) = ET
1 e

Φ1tθ
(0∼3)
1 (0) ,

θ̈1 (t) = ET
3 e

Φ1tθ
(0∼3)
1 (0) .

(30)

Then, substituting (30) into (21), we obtain the RoEA (25) of the system (20). Further, according to (13) and (16),

once θ
(0∼3)
1 converges into 0, θ2 and θ̇2 will also converge into 0, which indicates that the closed-loop system (5) is

asymptotically stable within the feasible set F1.

It should be noted from (25) that the RoEA Ξ1 imposes the following constraint only on θ
(0∼3)
1 (0):

Ξ̃1 =

{

θ
(0∼3)
1 (0)

∣

∣

∣

∣

∣

∣

∣

2m1l
2

k1a2

(

ET
3 e

Φ1tθ
(0∼3)
1 (0)−

g

l
sin

(

ET
1 e

Φ1tθ
(0∼3)
1 (0)

))

+ sin
(

2ET
1 e

Φ1tθ
(0∼3)
1 (0)

)

∣

∣

∣

∣

< 1

}

. (31)

Now, we present the following proposition to show some characteristics of the set Ξ̃1.

Proposition 1. The set Ξ̃1 is symmetric with respect to the origin. Furthermore, it is also bounded when the
eigenvalues of the closed-loop system (26) are distinct.

Proof. In order to prove the symmetry, from (31), we define the function

Γ (X) =
2m1l

2

k1a2

(

ET
3 e

Φ1tX −
g

l
sin

(

ET
1 e

Φ1tX
)

)

+ sin
(

2ET
1 e

Φ1tX
)

.

Then, substituting the variable X in the function Γ by −X yields

Γ (−X) =
2m1l

2

k1a2

(

−ET
3 e

Φ1tX −
g

l
sin

(

−ET
1 e

Φ1tX
)

)

+ sin
(

−2ET
1 e

Φ1tX
)

= −
2m1l

2

k1a2

(

ET
3 e

Φ1tX −
g

l
sin

(

ET
1 e

Φ1tX
)

)

− sin
(

2ET
1 e

Φ1tX
)

= −Γ (X) ,

which directly indicates that the set Ξ̃1 is symmetric with respect to the origin.
For the proof of the boundedness, according to the closed-loop system (26), it is obvious that

θ
(4)
1 = −a0θ1 − a1θ̇1 − a2θ̈1 − a3θ

(3)
1 . (32)

Then, one has
λ4
i + a3λ

3
i + a2λ

2
i + a1λi + a0 = 0, (33)
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where λi, i = 1, 2, 3, 4 are the corresponding distinct eigenvalues of the matrix Φ1

(

A0∼3
1

)

. Then, we have

θ1(t) =
[

eλ1t eλ2t eλ3t eλ4t

]













v1

v2

v3

v4













, (34)

where vi, i = 1, 2, 3, 4 are a set of proper constants dependent on θ
(0∼3)
1 (0). Therein, vi ∈ R if λi ∈ R, and vi = v̄j

if λi = λ̄j for i, j = 1, 2, 3, 4.
Thus, from (34), there are













θ1(0)

θ̇1(0)

θ̈1(0)

θ
(3)
1 (0)













=













1 1 1 1

λ1 λ2 λ3 λ4

λ2
1 λ2

2 λ2
3 λ2

4

λ3
1 λ3

2 λ3
3 λ3

4

























v1

v2

v3

v4













(35)

and

θ̈1(t) =
[

λ2
1e

λ1t λ2
2e

λ2t λ2
3e

λ3t λ2
4e

λ4t

]













v1

v2

v3

v4













. (36)

According to the feasible set (21), it can be obtained that

−
k1a

2

m1l2
−

g

l
6 θ̈1(t) 6

k1a
2

m1l2
+

g

l
. (37)

Choosing t = 0, 1, 2, 3, yields

[

θ̈1(0) θ̈1(1) θ̈1(2) θ̈1(3)
]













θ̈1(0)

θ̈1(1)

θ̈1(2)

θ̈1(3)













6 4

(

k1a
2

m1l2
+

g

l

)2

. (38)

From (35) and (36), there is













θ̈1(0)

θ̈1(1)

θ̈1(2)

θ̈1(3)













=













1 1 1 1

eλ1 eλ2 eλ3 eλ4

e2λ1 e2λ2 e2λ3 e2λ4

e3λ1 e3λ2 e3λ3 e3λ4

























λ2
1

λ2
2

λ2
3

λ2
4

























1 1 1 1

λ1 λ2 λ3 λ4

λ2
1 λ2

2 λ2
3 λ2

4

λ3
1 λ3

2 λ3
3 λ3

4













−1 











θ1(0)

θ̇1(0)

θ̈1(0)

θ
(3)
1 (0)













, Qθ
(0∼3)
1 (0). (39)

Then, according to (38) and (39), one has

λmin

(

QTQ
)

∥

∥

∥θ
(0∼3)
1 (0)

∥

∥

∥

2

6
(

θ
(0∼3)
1 (0)

)T

QTQθ
(0∼3)
1 (0) 6 4

(

k1a
2

m1l2
+

g

l

)2

, (40)

where λmin

(

QTQ
)

is the smallest eigenvalue of the square matrix QTQ. Thus, we have

∥

∥

∥θ
(0∼3)
1 (0)

∥

∥

∥ 6
2
(

k1a
2

m1l2
+ g

l

)

√

λmin (QTQ)
, (41)

which proves the boundedness of the set Ξ̃1.
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Next, to give an additional research result of this paper, we briefly analyze a symmetrical scenario regarding the
above control problem, in which the control input u3 fails entirely. Therefore, the original system (4) is changed
into

Sδ :















S1 : θ̈1 = g
l
sin θ1 +

k1a
2

m1l2
(sin θ2 cos θ2 − sin θ1 cos θ1) + u1,

S2 : θ̈2 = g
l
sin θ2 +

k1a
2

m2l2
(sin θ1 cos θ1 − sin θ2 cos θ2) +

k2a
2

m2l2
(sin θ3 cos θ3 − sin θ2 cos θ2) + u2,

S3 : θ̈3 = g
l
sin θ3 +

k2a
2

m3l2
(sin θ2 cos θ2 − sin θ3 cos θ3) .

(42)

Then, through a set of differentiation and variable substitution analogous to the aforementioned process, the system
(42) is transformed into the corresponding sub-FAS model:

[

θ̈1

θ
(4)
3

]

=

[

f̃∗
1

f∗
1

]

+

[

1 0

0 B∗
1

][

u1

u2

]

(43)

with the following feasible set:

F∗
1 =

{[

θ
(0∼1)
1

θ
(0∼3)
3

]∣

∣

∣

∣

∣

− 1 <
2m3l

2

k2a2

(

θ̈3 −
g

l
sin θ3

)

+ sin 2θ3 < 1

}

, (44)

where f̃∗
1 , f

∗
1 and B∗

1 are three appropriate functions computable similarly to the process in Subsection 4.1.
Then, based on the FAS approach, in the feasible set F∗

1, design the controllers u1 and u2 as

u1 = −f̃∗
1 −A∗0∼1

1 θ
(0∼1)
1 (45)

and
u2 = −B∗−1

1 f∗
1 −B∗−1

1 A∗0∼3
2 θ

(0∼3)
3 (46)

with A∗0∼1
1 ∈ R1×2 and A∗0∼3

2 ∈ R1×4 being two design vectors to ensure that Φ1

(

A∗0∼1
1

)

and Φ2

(

A∗0∼3
2

)

are
Hurwitz.

Now, we obtain the following theorem.

Theorem 2. For the system (43), if the substabilizing controllers are designed as (45) and (46), then the resulting
closed-loop system

[

θ̇
(0∼1)
1

θ̇
(0∼3)
3

]

=

[

Φ1(A
∗0∼1
1 ) 02×4

04×2 Φ2(A
∗0∼3
2 )

][

θ
(0∼1)
1

θ
(0∼3)
3

]

(47)

is exponentially stable within the feasible set F∗
1, and the corresponding RoEA is

Ξ∗

1 =

{[

θ
(0∼1)
1 (0)

θ
(0∼3)
3 (0)

]∣

∣

∣

∣

∣

∣

∣

∣

∣

2m3l
2

k2a2

(

E
T
3 e

Φ2tθ
(0∼3)
3 (0)−

g

l
sin

(

E
T
1 e

Φ2tθ
(0∼3)
3 (0)

))

+ sin
(

2ET
1 e

Φ2tθ
(0∼3)
3 (0)

)

∣

∣

∣

∣

< 1

}

. (48)

The proof of Theorem 2 parallels that of Theorem 1 and is omitted for brevity.

5 Substabilization for the CIPS (6)

Similar to Section 4, in this section, we convert the system (6) into its corresponding sub-FAS model. Then, for the
obtained sub-FAS, the substabilizing controllers are designed, and the corresponding RoEA is given.

5.1 Sub-FAS model of the CIPS (6)

First, it is obvious from the subsystem S2 of the system (6) that

θ
(3)
2 =

g

l
θ̇2 cos θ2 +

k1a
2

m2l2
θ̇1 cos 2θ1 −

k1a
2

m2l2
θ̇2 cos 2θ2 +

k2a
2

m2l2
θ̇3 cos 2θ3 −

k2a
2

m2l2
θ̇2 cos 2θ2. (49)

Then, taking the derivatives for two sides of (49), it can be obtained that

θ
(4)
2 =

g

l

(

θ̈2 cos θ2 − θ̇22 sin θ2

)

+
k1a

2

m2l2

(

θ̈1 cos 2θ1 − 2θ̇21 sin 2θ1

)

−
k1a

2

m2l2

(

θ̈2 cos 2θ2 − 2θ̇22 sin 2θ2

)
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+
k2a

2

m2l2

(

θ̈3 cos 2θ3 − 2θ̇23 sin 2θ3

)

−
k2a

2

m2l2

(

θ̈2 cos 2θ2 − 2θ̇22 sin 2θ2

)

. (50)

Now, we substitute the subsystems S1 and S3 of the system (6) into (50), which obtains

θ
(4)
2 =

g

l

(

θ̈2 cos θ2 − θ̇22 sin θ2

)

+
k1a

2

m2l2

((

g

l
sin θ1 +

k1a
2

2m1l2
(sin 2θ2 − sin 2θ1) + u1

)

cos 2θ1 − 2θ̇21 sin 2θ1

)

−
k1a

2

m2l2

(

θ̈2 cos 2θ2 − 2θ̇22 sin 2θ2

)

+
k2a

2

m2l2

((

g

l
sin θ3 +

k2a
2

2m3l2
(sin 2θ2 − sin 2θ3) + u3

)

cos 2θ3 − 2θ̇23 sin 2θ3

)

−
k2a

2

m2l2

(

θ̈2 cos 2θ2 − 2θ̇22 sin 2θ2

)

. (51)

From the subsystem S2 of the system (6), there is

sin 2θ3 =
2m2l

2

k2a2

(

θ̈2 −
g

l
sin θ2 −

k1a
2

2m2l2
(sin 2θ1 − sin 2θ2) +

k2a
2

2m2l2
sin 2θ2

)

, (52)

namely,

θ3 =
1

2
arcsin

(

2m2l
2

k2a2
θ̈2 −

2m2gl

k2a2
sin θ2 −

k1

k2
(sin 2θ1 − sin 2θ2) + sin 2θ2

)

= Ψ1

(

θ1, θ2, θ̈2

)

(53)

with the following constraint:

− 1 6 Ψ2

(

θ1, θ2, θ̈2

)

6 1, (54)

where

Ψ2

(

θ1, θ2, θ̈2

)

=
2m2l

2

k2a2
θ̈2 −

2m2gl

k2a2
sin θ2 −

k1

k2
(sin 2θ1 − sin 2θ2) + sin 2θ2.

Further, it can be known from (53) that θ̇3 satisfies

θ̇3 =

(

2m2l
2

k2a2 θ̈2 −
2m2gl
k2a2 sin θ2 −

k1

k2
(sin 2θ1 − sin 2θ2) + sin 2θ2

)′

2
√

1−Ψ2
2

=
1

2
√

1−Ψ2
2

(

2m2l
2

k2a2
θ
(3)
2 −

2m2gl

k2a2
θ̇2 cos θ2 −

2k1
k2

(

θ̇1 cos 2θ1 − θ̇2 cos 2θ2

)

+ 2θ̇2 cos 2θ2

)

=Ψ3

(

θ
(0∼1)
1 , θ

(0∼3)
2

)

, (55)

where

Ψ3

(

θ
(0∼1)
1 , θ

(0∼3)
2

)

=
1

2
√

1−Ψ2
2

(

2m2l
2

k2a2
θ
(3)
2 −

2m2gl

k2a2
θ̇2 cos θ2 −

2k1
k2

(

θ̇1 cos 2θ1 − θ̇2 cos 2θ2
)

+ 2θ̇2 cos 2θ2

)

,

which requires

− 1 < Ψ2

(

θ1, θ2, θ̈2

)

< 1. (56)

Then, according to (53) and (55), we can replace θ3 and θ̇3 by Ψ1

(

θ1, θ2, θ̈2

)

and Ψ3

(

θ
(0∼1)
1 , θ

(0∼3)
2

)

, which

makes (51) changed into

θ
(4)
2 =

g

l

(

θ̈2 cos θ2 − θ̇22 sin θ2

)

+
k1a

2

m2l2

((

g

l
sin θ1 +

k1a
2

2m1l2
(sin 2θ2 − sin 2θ1) + u1

)

cos 2θ1 − 2θ̇21 sin 2θ1

)

−
k1a

2

m2l2

(

θ̈2 cos 2θ2 − 2θ̇22 sin 2θ2

)
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+
k2a

2

m2l2

((

g

l
sinΨ1 +

k2a
2

2m3l2
(sin 2θ2 − sin 2Ψ1) + u3

)

cos 2Ψ1 − 2Ψ2
3 sin 2Ψ1

)

−
k2a

2

m2l2

(

θ̈2 cos 2θ2 − 2θ̇22 sin 2θ2

)

=f2 + u1
k1a

2

m2l2
cos 2θ1 + u3

k2a
2

m2l2
cos 2Ψ1 (57)

with

f2

(

θ
(0∼1)
1 , θ

(0∼3)
2

)

=
g

l
θ̈2 cos θ2 −

g

l
θ̇22 sin θ2 +

k1a
2g

m2l3
sin θ1 cos 2θ1

+
k1a

2

m2l2
(sin 2θ2 − sin 2θ1)

(

k1a
2

2m1l2
cos 2θ1 + 2θ̇21

)

−
k1a

2

m2l2
θ̈2 cos 2θ2

+
k2a

2

m2l2

(

g

l
sinΨ1 cos 2Ψ1 +

k2a
2

2m3l2
sin 2θ2 cos 2Ψ1 −

k2a
2

2m3l2
sin 2Ψ1 cos 2Ψ1

−2Ψ2
3 sin 2Ψ1 − θ̈2 cos 2θ2 + 2θ̇22 sin 2θ2

)

. (58)

Therefore, we can obtain the corresponding sub-FAS model of the system (6) as follows:

[

θ̈1

θ
(4)
2

]

=

[

f̃2

f2

]

+

[

1 0
k1a

2

m2l2
cos 2θ1

k2a
2

m2l2
cos 2Ψ1

][

u1

u3

]

(59)

with the feasible set

F2 =

{[

θ
(0∼1)
1

θ
(0∼3)
2

]∣

∣

∣

∣

∣

− 1 <
2m2l

2

k2a2
θ̈2 −

2m2gl

k2a2
sin θ2 −

k1

k2
(sin 2θ1 − sin 2θ2) + sin 2θ2 < 1

}

, (60)

where

f̃2 =
g

l
sin θ1 +

k1a
2

m1l2
(sin θ2 cos θ2 − sin θ1 cos θ1) .

5.2 Control design for the sub-FAS (59)

Now, we start to design the substabilizing controllers for the sub-FAS (59). In the feasible set F2, two controllers
u1 and u3 are, respectively, designed as

u1 = −f̃2 − Ã0∼1
1 θ

(0∼1)
1 (61)

and

u3 = −
m2l

2

k2a2 cos 2Ψ1

(

f2 +
k1a

2 cos 2θ1
m2l2

u1 + Ã0∼3
2 θ

(0∼3)
2

)

= −
m2l

2

k2a2 cos 2Ψ1

(

f2 −
k1a

2 cos 2θ1
m2l2

(

f̃2 + Ã0∼1
1 θ

(0∼1)
1

)

+ Ã0∼3
2 θ

(0∼3)
2

)

, (62)

where Ã0∼1
1 ∈ R1×2 and Ã0∼3

2 ∈ R1×4 are also two design vectors to make Φ1(Ã
0∼1
1 ) and Φ2(Ã

0∼3
2 ) Hurwitz.

In order to show the third theorem of this paper, we first define the following three vectors:

E11 =
[

1 0
]T

, E21 =
[

1 0 0 0
]T

, E23 =
[

0 0 1 0
]T

. (63)

Correspondingly, the block diagram about the closed-loop system (6) is shown in Figure 3.
Then, the third theorem of this paper is given as follows.

Theorem 3. For the sub-FAS (59), if the substabilizing controllers are designed as (61) and (62), then the resulting
closed-loop system

[

θ̇
(0∼1)
1

θ̇
(0∼3)
2

]

=

[

Φ1(Ã
0∼1
1 ) 02×4

04×2 Φ2(Ã
0∼3
2 )

][

θ
(0∼1)
1

θ
(0∼3)
2

]

(64)
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Figure 3 (Color online) The block diagram of the closed-loop system (6).

is exponentially stable within the feasible set F2, and the corresponding RoEA is

Ξ2 =







[

θ
(0∼1)
1 (0)

θ
(0∼3)
2 (0)

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

2m2l
2

k2a
2 E

T
23e

Φ2tθ
(0∼3)
2 (0)− k1

k2

(

sin
(

2ET
11e

Φ1tθ
(0∼1)
1 (0)

)

− sin
(

2ET
21e

Φ2tθ
(0∼3)
2 (0)

))

−

2m2gl

k2a
2 sin

(

E
T
21e

Φ2tθ
(0∼3)
2 (0)

)

+ sin
(

2ET
21e

Φ2tθ
(0∼3)
2 (0)

)∣

∣

∣
< 1







. (65)

Proof. We substitute (61) and (62) into (59), which yields

θ̇
(0∼1)
1 = Φ1(Ã

0∼1
1 )θ

(0∼1)
1 (66)

and
θ̇
(0∼3)
2 = Φ2(Ã

0∼3
2 )θ

(0∼3)
2 . (67)

Therefore, there are

θ
(0∼1)
1 (t) = eΦ1tθ

(0∼1)
1 (0) (68)

and
θ
(0∼3)
2 (t) = eΦ2tθ

(0∼3)
2 (0) , (69)

which illustrate that the closed-loop system (64) is exponentially stable within the feasible set F2.
Then, from (68) and (69), we have















θ1 (t) = ET
11e

Φ1tθ
(0∼1)
1 (0) ,

θ2 (t) = ET
21e

Φ2tθ
(0∼3)
2 (0) ,

θ̈2 (t) = ET
23e

Φ2tθ
(0∼3)
2 (0) .

(70)

Substituting (70) into the feasible set (60), one has the corresponding RoEA (65). Furthermore, from (53) and

(55), θ
(0∼1)
3 will converge into 0 when θ

(0∼1)
1 and θ

(0∼3)
2 converge into 0. Therefore, the closed-loop CIPS (6) is

asymptotically stable.

6 Simulation research

In this section, the simulation research for the CIPSs (5) and (6) is presented to demonstrate the effectiveness of
the proposed method.

First, for system (5), these physical parameters g, l, k1, k2, m1, m2, m3, and a are considered g = 9.8 (m/s2),
l = 0.6 (m), k1 = k2 = 1.8 (N/m), m1 = m2 = m3 = 0.4 (kg), and a = 0.3 (m), respectively. According to Theorem

1, two substabilizing controllers u2 and u3 can be designed with the design vectors A0∼3
1 =

[

192 232 98 17
]

and

A0∼1
2 =

[

6 5
]

, respectively. It can be known from Proposition 1 that the set Ξ̃1 is symmetric with respect to the

origin, and is also bounded. Then, in order to show other characteristics of the set Ξ̃1 under the above parameters,

we provide the projections of the set Ξ̃1 in the 3-D space along the θ1(0), θ̇1(0), θ̈1(0), and θ
(3)
1 (0) axes in Figures
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Figure 4 (Color online) The projection of Ξ̃1 along the θ1(0) axis. Figure 5 (Color online) The projection of Ξ̃1 along the θ̇1(0) axis.

Figure 6 (Color online) The projection of Ξ̃1 along the θ̈1(0) axis. Figure 7 (Color online) The projection of Ξ̃1 along the θ
(3)
1 (0) axis.

Figure 8 (Color online) The section of Ξ̃1 intersected by the 4-D

hyperplane θ1(0) = 0.

Figure 9 (Color online) The section of Ξ̃1 intersected by the 4-D

hyperplane θ̇1(0) = 0.

4–7, respectively. The sections of the set Ξ̃1 intersected by the 4-D hyperplanes θ1(0) = 0, θ̇1(0) = 0, θ̈1(0) = 0,

and θ
(3)
1 (0) = 0 are also shown in Figures 8–11. Furthermore, we approximately provide the inscribed hypersphere

(radius ≈ 0.947) and hypercube (edge length ≈ 3.1416) of the set Ξ̃1, and present the ranges of θ
(0∼3)
1 (0) according

to (31) as follows:






















−90 < θ1 (0) < +90,

−341 < θ̇1 (0) < +341,

−963 < θ̈1 (0) < +963,

−4985 < θ
(3)
1 (0) < +4985.
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Figure 10 (Color online) The section of Ξ̃1 intersected by the 4-D

hyperplane θ̈1(0) = 0.

Figure 11 (Color online) The section of Ξ̃1 intersected by the 4-D

hyperplane θ
(3)
1 (0).

Figure 12 (Color online) The curves of θ1 and θ̇1 of the system (5). Figure 13 (Color online) The curves of θ2 and θ̇2 of the system (5).

Then, we set the system initial values as

θ
(0∼3)
1 (0) =

[

30 −114.6 435.48 1427.3
]T

, θ
(0∼1)
3 (0) =

[

−45.84 45.84
]T

,

which are used to compute out θ
(0∼1)
2 (0) =

[

22.34 −64.4
]T

. The simulation curves are shown in Figures 12–15.

Therein, Figure 12 gives the curves of θ1 and θ̇1, the curves of θ2 and θ̇2 are depicted in Figure 13, and the curves
of θ3 and θ̇3 and the curves of u2 and u3 are, respectively, given in Figures 14 and 15. It is seen from simulation
results that all of the states converge into the origin, and the control inputs are within a reasonable range even if
the input u1 fails entirely, which proves the effectiveness of the proposed substabilization method.

Now, we consider the system (6). In this simulation, we keep the above physical parameters unchanged. Then,
from (65), the corresponding RoEA can be obtained as follows:

Ξ2 =







[

θ
(0∼1)
1 (0)

θ
(0∼3)
2 (0)

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

16
9 ET

23e
Φ2tθ

(0∼3)
2 (0)−

(

sin
(

2ET
11e

Φ1tθ
(0∼1)
1 (0)

)

− sin
(

2ET
21e

Φ2tθ
(0∼3)
2 (0)

))

− 784
27 sin

(

ET
21e

Φ2tθ
(0∼3)
2 (0)

)

+ sin
(

2ET
21e

Φ2tθ
(0∼3)
2 (0)

)∣

∣

∣ < 1







. (71)

It is easy to deduce the symmetry of the RoEA (71) with respect to the origin, so the corresponding proof is omitted
here. However, due to the complexity of the RoEA Ξ2, it is challenging to present a specific figure that captures
the characteristics of the set. Nonetheless, we present the inscribed hypersphere (radius ≈ 13.48) and hypercube

(edge length ≈ 15.7) of the set Ξ2. Additionally, the approximate ranges of θ
(0∼1)
1 (0) and θ

(0∼3)
2 (0), from (71), are
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Figure 14 (Color online) The curves of θ3 and θ̇3 of the system (5). Figure 15 (Color online) The curves of u2 and u3 of the system

(5).

as follows:










































−90 < θ1 (0) < +90,

−∞ < θ̇1 (0) < +∞,

−90 < θ2 (0) < +90,

−343.8 < θ̇2 (0) < +343.8,

−974.1 < θ̈2 (0) < +974.1,

−5271.6 < θ
(3)
2 (0) < +5271.6.

(72)

According to Theorem 3, the corresponding controllers u1 and u3 can be designed from (61) and (62) with the

design vectors being Ã0∼1
1 =

[

8 6
]

and Ã0∼3
2 =

[

144 180 80 15
]

. The system initial values are

θ
(0∼1)
1 (0) =

[

45 −229.2
]T

, θ
(0∼3)
2 (0) =

[

25.71 −103.14 366.72 −1031.4
]T

,

which are used to compute out θ
(0∼1)
3 (0) =

[

−20.55 403
]T

. Similarly, the curves of all of the system signals

are, respectively, shown in Figures 16–19. From Figures 16–19, we observe that the closed-loop system (6) is
asymptotically stable, even though only two inputs are utilized, illustrating the effectiveness of the proposed method
again.

Remark 1. To enhance the practicality of the proposed control method, the following guidelines are provided.
First, Eqs. (25) and (65) indicate that the RoEAs of the closed-loop systems (24) and (64) are influenced by
the matrices Φ1(A

0∼3
1 ), Φ2(A

0∼1
2 ), Φ1(Ã

0∼1
1 ) and Φ2(Ã

0∼3
2 ), which are directly determined by the design vectors

A0∼3
1 , A0∼1

2 , Ã0∼1
1 and Ã0∼3

2 , respectively. Consequently, when the system initial values in practical application
are larger, the matrices Φ1(A

0∼3
1 ), Φ2(A

0∼1
2 ), Φ1(Ã

0∼1
1 ) and Φ2(Ã

0∼3
2 ) should be judiciously selected to ensure

sufficiently large RoEAs. Furthermore, the control performance of the closed-loop systems (24) and (64) is also
governed by these matrices. To achieve faster state convergence, the design vectors A0∼3

1 , A0∼1
2 , Ã0∼1

1 and Ã0∼3
2

should be selected such that the corresponding matrices Φ1(A
0∼3
1 ), Φ2(A

0∼1
2 ), Φ1(Ã

0∼1
1 ) and Φ2(Ã

0∼3
2 ) possess

the eigenvalues with smaller real parts. Naturally, such design vectors often enlarge the control inputs, elevating
energy consumption. Moreover, when additional performance requirements are imposed on the control systems, the
design vectors A0∼3

1 , A0∼1
2 , Ã0∼1

1 and Ã0∼3
2 must be adjusted to configure the specific eigenstructure. In summary,

practical applicability demands systematic trade-offs among RoEA size, energy consumption, and other system
performance, with the optimal solution adjusted case by case.



Duan G R, et al. Sci China Inf Sci April 2026, Vol. 69, Iss. 4, 142201:16

Figure 16 (Color online) The curves of θ1 and θ̇1 of the system (6). Figure 17 (Color online) The curves of θ2 and θ̇2 of the system (6).

Figure 18 (Color online) The curves of θ3 and θ̇3 of the system (6). Figure 19 (Color online) The curves of u1 and u3 of the system

(6).

7 Conclusion

In this paper, we have addressed the substabilization problem for a class of CIPSs with individual control input
failure. In order to design controllers, the original CIPS is converted into a sub-FAS model. For the obtained
sub-FAS, the FAS approach is utilized to design the corresponding substabilizing controllers within the feasible
set. Further, the RoEA is derived, in which the closed-loop sub-FAS is exponentially stable, and the original CIPS
exhibits good system performance. Simulation results prove the effectiveness of the proposed control method. In
fact, input failure frequently occurs in other real-world systems as well, such as robotic systems and UAV systems.
Therefore, in future work, we are interested in further investigating the substabilization problems for such systems.
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