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As the third-generation neural network models, spiking neural net-
works (SNNs) rely on discrete spatiotemporal spike sequences for
information transmission and computation, featuring high brain
biomimicry, energy efficiency, and low power consumption. These
inherent advantages have enabled SNNs to be widely applied in di-
verse fields, including image and speech recognition, robotics con-
trol, and time series analysis. Currently, most SNN hardware plat-
forms are CPUs and GPUs, both of which adopt the von Neumann
architecture. This architecture separates processing units from
memory, resulting in latency due to constant data exchange and,
thus, reducing computational efficiency and throughput. However,
field-programmable gate arrays (FPGAs) support direct intercon-
nections between processing elements, delivering lower latency and
higher energy efficiency after bitstream programming, while offer-
ing greater programmability and flexibility than ASICs. The de-
ployment of FPGAs for SNN acceleration has already been inves-
tigated for several years. In 2025, a proposed convolutional neural
network (CNN)-SNN hybrid accelerator reduced power consump-
tion by 32% while maintaining 97.5% accuracy, improving FPS per
watt by 47%—67% over conventional CNN architectures [1]. How-
ever, convolutional residual SNNs (CRSNNs) have not yet offered
significant advantages on FPGA platforms. Herein, we deploy a
CRSNN on an FPGA platform for gene analysis and text clas-
sification tasks. Results demonstrate that on both the HIV and
AGNews datasets, the proposed implementation achieves reduced
inference time and power consumption while maintaining the same
accuracy as a GPU-based counterpart.

Design for FPGA-based accelerator. The architecture of the
CRSNN is similar to that in [2]. The ZCU216 development board
from Xilinx, equipped with the latest Zynq Ultrascale4+ RFSOC
49DR main chip, is selected for deployment. The overall architec-
ture of the ZCU216-based hardware accelerator is shown in Figure
1(a). The core components of the architecture are constituted by a
processing element (PE) array, spike PE array, a leaky integrate-
and-fire (LIF) core, and residual structure among others. The
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convolutional encoding of nonspiking signals in the spike encoder
part is primarily undertaken by the PE array. These PEs are
implemented using digital signal processors (DSPs). Twenty PE
cores are employed in the spike encoder. Internally, each PE core
is equipped with 3 x 8 x 6 PEs. After multiplication in each clock
cycle, adders are implemented. A total of 6 x 1 X 8 = 48 adders
are required per clock cycle. The spike neurons of the neuronal
membrane potential across multiple time steps are implemented
by the LIF core. The convolutional processing of spiking signals
in the spike feature extractor part is handled by a spike PE array
based on look-up tables (LUTs). On the HIV dataset, it is com-
posed of six spike PE cores, with each core containing 3 X 8 X 8
spike PEs. There are 48 parallel addition modules following mul-
tiplication modules, which are used to form a 6 x 1 x 8 feature
map. Other convolutional layers and the dataset follow a similar
principle. All convolutions in the spike feature extractor part are
achieved based on configurable logic block (CLB) LUTs and CLB
registers. When the max-pooling layer is configured with a stride
of 2, three comparisons are needed to generate the output for a
single channel. The spiking residual structure used in this archi-
tecture is shown in Figure 1(b). The spiking residual network is
composed of multiple spiking residual structure layers with spiking
convolution. These residual connections are implemented using a
combination of CLB LUTs and CLB registers. The fully connected
classification layer performs further operations via multiplication
and addition modules.

In the architecture, block random access memory (BRAM) is
utilized to store network parameters and intermediate results, min-
imizing off-chip memory access.

Results. We programmed the bitstream file of the network onto
the ZCU216 development board. An integrated logic analyzer was
used to monitor the real-time computation results on the ZCU216.
A frequency of 100 MHz was adopted in the ZCU216. The overall
resource utilization of the CRSNN for a single sample in the HIV
(AGNews) dataset included 24.21% (51.65%) of CLB LUTs, 6.17%
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Figure 1

(Color online) (a) Overall architecture of a field-programmable gate array (FPGA)-based hardware accelerator designed for a con-

volutional residual spiking neural network (CRSNN); (b) architecture of the residual structure; on-chip power on the (¢) HIV dataset and

(d) AGNews dataset; (e) performance of the hardware accelerator.

(6.52%) of CLB registers, 67.42% of DSPs, and 3.3% (7.87%) of
BRAMs of ZCU216. A pipelined approach was employed for pro-
cessing multiple samples, allowing for efficient and continuous data
processing. On-chip power consumption achieved on the HIV and
AGNews datasets is shown in Figures 1(c) and (d).

Other performance metrics and comparisons with the Nvidia
RTX3090 GPU model are shown in Figure 1(e). On the HIV
dataset, the total required time was 0.0273 ms, meaning the
FPGA-based inference time was 1/194.31 of that on the GPU
platform. The total on-chip power was 1/39.35 of the power con-
sumption of 102.31 W of the GPU platform. On the AGNews
dataset, the inference time was 0.3085 ms, approximately 1/48.20
of that on the GPU platform. The power consumption reduced
from 202.49 W on the GPU platform to 1.9 W on the FPGA,
representing approximately 1/106.57 reduction. The accuracy, ac-
tual throughputs, and power efficiency on the two datasets are
also shown in Figure 1(e). The performance was considerably en-
hanced on the FPGA platform, with the same inference accuracy
as GPU. The inference speed of the proposed work outperformed
those of state-of-the-art FPGA-based neural networks from other
studies [1,3].

Conclusion. We successfully deployed a CRSNN on an FPGA

platform for gene analysis and text classification tasks. The eval-
uation was conducted using the ZCU216 board. On the HIV
dataset, the FPGA-based inference achieved 0.0273 ms inference
time and 2.6 W power consumption, representing approximately
194 x speed-up and 39x reduction in power consumption relative
to the GPU platform. On the AGNews dataset, the FPGA de-
livered 0.31 ms inference time and 1.9 W power consumption, ac-
counting for approximately 1/48 of the inference time of the GPU
platform and 1/106 of its power consumption. This deployment
highlighted the potential of the FPGA-based accelerator for edge
devices with constraints on time and power.
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