

• Supplementary File •

High Power Density X-band Source-Connected Field Plate-Free AlGaN/GaN HEMT with Recessed Gate Oxidation Process

Hao Lu¹, Xiaohua Ma^{1*}, Longge Deng¹, Ling Yang^{1*}, Bin Hou¹, Meng Zhang¹,
Mei Wu¹ & Yue Hao¹

¹*School of Microelectronics, Xidian University, Xi'an 710071, China*

Appendix A Device structure and fabrication process

The AlGaN/AlN/GaN HEMT structures were grown on a 3-inch semi-insulating 4H-SiC substrate by metal organic chemical vapor deposition (MOCVD). The epi-layers are consisted of cap layer, 26 nm $\text{Al}_{0.26}\text{Ga}_{0.74}\text{N}$, 0.7 nm AlN insert layer, 400 nm i-GaN, and buffer from top to bottom. Contactless Hall measurement at room temperature shows a carrier concentration of $1.03 \times 10^{13} \text{ cm}^{-2}$ and high carrier mobility of $2016 \text{ cm}^2/\text{V}\cdot\text{s}$, resulting in a low sheet resistance of $297 \Omega/\text{sq}$. The GaN buffer layer is doped with Fe, having a concentration of $4 \times 10^{17} \text{ cm}^{-2}$.

The fabrication process of the device commenced with the formation of the source/drain ohmic contact, including the ohmic metal stack of Ti/Al/Ni/Au (20/140/55/45 nm), followed by rapid thermal annealing at 860°C for 50 seconds. A transmission line method (TLM) measurement showed a low ohmic contact resistance of $0.3 \Omega\cdot\text{mm}$. Subsequently, the device electrical isolation was performed through nitrogen ion implantation (N/I/I). The nitrogen ion implantation was performed with multiple energy level ion implantation of 90, 120, and 150 KeV with dose of $5 \times 10^{14} \text{ cm}^{-2}$. Prior to the surface passivation processing, the device underwent treatment with a diluted ammonia solution at 55°C for 5 minutes to eliminate surface contaminants [1]. Following this, a 120-nm SiN passivation layer was deposited using the plasma-enhanced chemical vapor deposition (PECVD) to mitigate current collapse. The gate stem was opened using CF_4 -based plasma etching to remove SiN_x . Then the AlGaN barrier was recessed by BCl_3/Cl_2 plasma and treated by N_2O plasma using PECVD to form a recessed-gate architecture, followed by Ni/Au/Ni Schottky gate processing by metal e-beam evaporation. The purpose of this step was to decrease the distance of gate-2DEG to improve the electrostatic control of the gate over the channel and modulate the peak electric field. Finally, the fabrication process concluded with the incorporation of a Ti/Au metal stack for interconnections, forming the ground-signal-ground (GSG) probe pad for RF test. A T-shaped gate profile with gate length (L_g) of 250 nm was defined. The gate width is $2 \times 50 \mu\text{m}$ in a π -shape layout. The devices reported here possess a source-drain spacing of $L_{gd} = 4.5 \mu\text{m}$ and a source-gate spacing of $L_{sg} = 1.0 \mu\text{m}$.

References

- 1 Dwiliński R., Wysmołek A., Baranowski J., et al. GaN synthesis by ammonothermal method[J]. *Acta Physica Polonica A*, 1995, 88: 833

* Corresponding author (email: xhma@xidian.edu.cn, yangling@xidian.edu.cn)