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This study addresses the problem of pinning control in simpli-
cial complexes influenced by two types of noise: dynamic noise
and communication noise. It establishes the intricate relation-
ships among synchronization behavior, node dynamics, higher-
order structures, coupling strengths, noise characteristics, and con-
trol strategies. The findings reveal that both dynamic and commu-
nication noise can exert either beneficial or detrimental effects on
synchronization. Specifically, the impact of dynamic noise is highly
dependent on the intrinsic node dynamics, the inner-coupling func-
tions, and the noise diffusion pattern. In contrast, communica-
tion noise demonstrates a dual role in synchronizability—either
promoting or impairing synchronization—depending on factors
such as network topology, the choice of pinned nodes, coupling
strengths, and feedback gains (see Appendix C).

Problem formulation. Consider a D-simplicial complex com-
posed of N identical nodes. The dynamics of the ¢th node is de-
scribed by
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where z; = [x1, T2, - - ,xim]T € R™ is the state vector of node 7,
F(:) : R™ — R™ is a function that describes the intrinsic dynamics
of an individual node, and H(4) : R(d+D)m s gm (4 =1,2,... D)
are inner-coupling functions, satisfying H (%) (z,z,--- ,2) =0, Vd.
The parameters o4 € Rt (d = 1,2,---, D) denote the coupling
ada
A g =1,2,... . D. The term oyg(z;)dW (t) denotes the un-
certainty in the node dynamics, where o, is the intensity of the
dynamic noise, g(-) : R™ — R™ is the noise diffusion function,
and W (t) is 1-dimensional Brownian motion, representing the dy-
namic noise. The final term represents the uncertainty that exists
in communication, where o, is the intensity of the communication
noise, and b(t) is a one-dimensional Wiener process independent
of W (t), used to represent the communication noise.

strengths, and a are the elements of the adjacency tensors
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In this study, we employ pinning control on the simplicial com-
plex, enabling the noise-perturbed system described by (1) to syn-
chronize to a desired target state x5, which satisfies

dxs = F(zs)dt + ovg(xs)dW (¢). (2)

Therefore, the controlled D-simplicial complex can be described
as
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with
ui =bioy HY (w5,25), i=1,2,--- N, (4)

where &; indicates whether the ith node is controlled, and b; de-
notes the corresponding feedback gain. Specifically, if node 7 is
controlled, then & = 1 and b; > 0; otherwise, {; = 0 and b; = 0.
Let ZZJ\L 1& = I, where [ represents the number of controlled
nodes, satisfying 1 < ! < N. It is important to emphasize that
pinning control is applied only to a limited subset of nodes in the
simplicial complex.

Assumption 1. Assume that the functions F(-), g(-), and H(®
are C'! continuously differentiable (i.e., first-order derivatives exist
and are continuous) and Lipschitz continuous on the neighborhood
Q) of the synchronous state 5.

Definition 1. The controlled simplicial complex (3) is said to
reach complete stochastic synchronization onto xg if

P (Jim e =0) =1, as. i=120 0,
t— o0

where P(w) denotes the probability of an event w.
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Next, we analyze the stability of the controlled noise-affected
simplicial complex. Due to the complexity of (3), we first analyze
the case D = 2 for simplicity, without loss of generality. It is
worth noting that the analysis for D = 2 can be readily extended
to higher-order cases with D > 2.

When D = 2, Eq. (3) can be rewritten as
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where o1 and o2 denote the coupling strengths for two-body and
three-body interactions, respectively.

Assumption 2. Assume that

HY (2, 25) = wW(2)) — 0V (@),

H(2)(mi7 xj, ) = w(2)(mj,mk) — w(2)(mi, Zi),

(6)

where w(® : Rdm _y Rm (d = 1,2) satisfy the following condition:
w®(z,2) = w®(z). (7)

The local stability condition for network synchronization can
be derived.

Theorem 1. Suppose Assumptions 1 and 2 hold. The pinned
simplicial complex (5) achieves complete stochastic synchroniza-
tion if the largest Lyapunov exponent A < 0, where A is related

to oy and oc.

The proof of Theorem 1 is provided in Appendix D. The syn-
chronized region of the system is defined as the set of parameters
for which A < 0 holds. Unlike conventional network models, the
extended master stability equation incorporates noise terms and
is not a differential equation with respect to a single parameter
(see Appendix D). Moreover, in the case of simplicial complexes,
the extended master stability equation no longer depends solely
on the eigenvalues of a single Laplacian matrix—as is typical in
traditional networks—but instead involves the eigenvalues of mul-
tiple generalized Laplacian matrices, together with the sum of the
products of the corresponding coupling strengths.

Remark 1. It is worth emphasizing that this study differs from
existing studies. On one hand, in [1], pinning control was stud-
ied in lower-order networks subject to both dynamic and commu-
nication noise. By contrast, we investigate the pinning control
of higher-order networks modeled by simplicial complexes, which
provide a more suitable framework for representing real-world sys-
tems. On the other hand, in [2], a virtual node called a pinner
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is introduced, whose dynamics are not affected by those of the
controlled nodes. In this setting, control actions are modeled as
directed hyperedges from the pinner to a subset of nodes, allow-
ing multiple nodes to share the same control action. In our work,
however, pinning control is pairwise: the control actions are ap-
plied only to a small fraction of nodes, with each action targeting
a single node. This scheme reflects a more localized and resource-
efficient control strategy, where the influence of each controller is
confined to an individual node rather than being simultaneously
distributed across multiple nodes. Such a design not only reduces
the complexity of implementation in practical systems but also fa-
cilitates a clearer analysis of how local control propagates through
higher-order interactions in simplicial complexes.

Conclusion. This work investigates the pinning control of sim-
plicial complexes under two types of noise. Within the master
stability function (MSF) framework, we derive an extended mas-
ter stability equation and corresponding synchronization stability
criteria. By applying different nonlinear systems as intrinsic node
dynamics, we analyze how noise affects synchronization, focusing
on the roles of diffusion and coupling functions. The results show
that noise can modulate synchronization patterns, inducing phase
transitions between stable and unstable regimes. For dynamic
noise, the impact depends on both intrinsic dynamics and diffu-
sion patterns, and when applied to all state variables, it often en-
hances synchronization in a certain range. Communication noise,
however, can either promote or hinder synchronization, depending
on network topology, pinned nodes, coupling strengths, and feed-
back gains. These findings extend traditional synchronization and
control paradigms, offering a more realistic perspective for design-
ing control strategies in higher-order networks subject to noise.

Future research should further address synchronization in
higher-order networks with time delays [3] and heterogeneous dy-
namics, as well as compare noise effects between lower- and higher-
order networks. Exploring the structural differences between hy-
pergraphs and simplicial complexes, optimizing network topology
[4], conducting robustness analysis under varying noise intensities,
and integrating with machine learning algorithms [5] will advance
interdisciplinary frameworks and open new directions for network
science and its applications to real-world systems.
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