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This study addresses the problem of pinning control in simpli-

cial complexes influenced by two types of noise: dynamic noise

and communication noise. It establishes the intricate relation-

ships among synchronization behavior, node dynamics, higher-

order structures, coupling strengths, noise characteristics, and con-

trol strategies. The findings reveal that both dynamic and commu-

nication noise can exert either beneficial or detrimental effects on

synchronization. Specifically, the impact of dynamic noise is highly

dependent on the intrinsic node dynamics, the inner-coupling func-

tions, and the noise diffusion pattern. In contrast, communica-

tion noise demonstrates a dual role in synchronizability—either

promoting or impairing synchronization—depending on factors

such as network topology, the choice of pinned nodes, coupling

strengths, and feedback gains (see Appendix C).

Problem formulation. Consider a D-simplicial complex com-

posed of N identical nodes. The dynamics of the ith node is de-

scribed by

dxi=

[

F (xi) +
D
∑

d=1

σd

N
∑

j1,··· ,jd=1

a
(d)
ij1···jd

H(d)(xi, xj1 , · · · , xjd )

]

dt

+ σvg(xi)dW (t)

+ σc





D
∑

d=1

σd

N
∑

j1,··· ,jd=1

a
(d)
ij1 ···jd

H(d)(xi, xj1 , · · · , xjd )



 db(t),

i = 1, 2, · · · , N,

(1)

where xi = [xi1, xi2, · · · , xim]T ∈ R
m is the state vector of node i,

F (·) : Rm → R
m is a function that describes the intrinsic dynamics

of an individual node, and H(d) : R(d+1)m → R
m (d = 1, 2, · · · ,D)

are inner-coupling functions, satisfying H(d)(x, x, · · · , x) ≡ 0, ∀d.

The parameters σd ∈ R
+ (d = 1, 2, · · · , D) denote the coupling

strengths, and a
(d)
ij1···jd

are the elements of the adjacency tensors

A(d), d = 1, 2, · · · , D. The term σvg(xi)dW (t) denotes the un-

certainty in the node dynamics, where σv is the intensity of the

dynamic noise, g(·) : R
m → R

m is the noise diffusion function,

and W (t) is 1-dimensional Brownian motion, representing the dy-

namic noise. The final term represents the uncertainty that exists

in communication, where σc is the intensity of the communication

noise, and b(t) is a one-dimensional Wiener process independent

of W (t), used to represent the communication noise.

In this study, we employ pinning control on the simplicial com-

plex, enabling the noise-perturbed system described by (1) to syn-

chronize to a desired target state xs, which satisfies

dxs = F (xs)dt + σvg(xs)dW (t). (2)

Therefore, the controlled D-simplicial complex can be described

as

dxi =

[

F (xi) +
D
∑

d=1

σd

N
∑

j1,··· ,jd=1

a
(d)
ij1···jd

H(d)(xi, xj1 , · · · , xjd )

+ ξiui

]

dt+ σvg(xi)dW (t)

+ σc

[

D
∑

d=1

σd

N
∑

j1,··· ,jd=1

a
(d)
ij1···jd

H(d)(xi, xj1 , · · · , xjd )

+ ξiui

]

db(t), i = 1, 2, · · · , N

(3)

with

ui = biσ1H
(1)(xi, xs), i = 1, 2, · · · , N, (4)

where ξi indicates whether the ith node is controlled, and bi de-

notes the corresponding feedback gain. Specifically, if node i is

controlled, then ξi = 1 and bi > 0; otherwise, ξi = 0 and bi = 0.

Let
∑N

i=1 ξi = l, where l represents the number of controlled

nodes, satisfying 1 6 l < N . It is important to emphasize that

pinning control is applied only to a limited subset of nodes in the

simplicial complex.

Assumption 1. Assume that the functions F (·), g(·), and H(d)

are C1 continuously differentiable (i.e., first-order derivatives exist

and are continuous) and Lipschitz continuous on the neighborhood

Ω of the synchronous state xs.

Definition 1. The controlled simplicial complex (3) is said to

reach complete stochastic synchronization onto xs if

P

(

lim
t→∞

‖xi − xs‖2 = 0

)

= 1, a.s., i = 1, 2, · · · , N,

where P(w) denotes the probability of an event w.
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Next, we analyze the stability of the controlled noise-affected

simplicial complex. Due to the complexity of (3), we first analyze

the case D = 2 for simplicity, without loss of generality. It is

worth noting that the analysis for D = 2 can be readily extended

to higher-order cases with D > 2.

When D = 2, Eq. (3) can be rewritten as

dxi =

[

F (xi) + σ1

N
∑

j1=1

a
(1)
ij1

H(1)(xi, xj1 )

+ σ2

N
∑

j1=1

N
∑

j2=1

a
(2)
ij1j2

H(2)(xi, xj1 , xj2 ) + ξiui

]

dt

+ σvg(xi)dW (t)

+ σc

[

σ1

N
∑

j1=1

a
(1)
ij1

H(1)(xi, xj1)

+ σ2

N
∑

j1=1

N
∑

j2=1

a
(2)
ij1j2

H(2)(xi, xj1 , xj2 ) + ξiui

]

db(t),

i = 1, 2, · · · , N,

(5)

where σ1 and σ2 denote the coupling strengths for two-body and

three-body interactions, respectively.

Assumption 2. Assume that

H(1)(xi, xj) = ω(1)(xj)− ω(1)(xi),

H(2)(xi, xj , xk) = ω(2)(xj , xk)− ω(2)(xi, xi),
(6)

where ω(d) : Rdm → R
m (d = 1, 2) satisfy the following condition:

ω(2)(x, x) = ω(1)(x). (7)

The local stability condition for network synchronization can

be derived.

Theorem 1. Suppose Assumptions 1 and 2 hold. The pinned

simplicial complex (5) achieves complete stochastic synchroniza-

tion if the largest Lyapunov exponent Λ < 0, where Λ is related

to σv and σc.

The proof of Theorem 1 is provided in Appendix D. The syn-

chronized region of the system is defined as the set of parameters

for which Λ < 0 holds. Unlike conventional network models, the

extended master stability equation incorporates noise terms and

is not a differential equation with respect to a single parameter

(see Appendix D). Moreover, in the case of simplicial complexes,

the extended master stability equation no longer depends solely

on the eigenvalues of a single Laplacian matrix—as is typical in

traditional networks—but instead involves the eigenvalues of mul-

tiple generalized Laplacian matrices, together with the sum of the

products of the corresponding coupling strengths.

Remark 1. It is worth emphasizing that this study differs from

existing studies. On one hand, in [1], pinning control was stud-

ied in lower-order networks subject to both dynamic and commu-

nication noise. By contrast, we investigate the pinning control

of higher-order networks modeled by simplicial complexes, which

provide a more suitable framework for representing real-world sys-

tems. On the other hand, in [2], a virtual node called a pinner

is introduced, whose dynamics are not affected by those of the

controlled nodes. In this setting, control actions are modeled as

directed hyperedges from the pinner to a subset of nodes, allow-

ing multiple nodes to share the same control action. In our work,

however, pinning control is pairwise: the control actions are ap-

plied only to a small fraction of nodes, with each action targeting

a single node. This scheme reflects a more localized and resource-

efficient control strategy, where the influence of each controller is

confined to an individual node rather than being simultaneously

distributed across multiple nodes. Such a design not only reduces

the complexity of implementation in practical systems but also fa-

cilitates a clearer analysis of how local control propagates through

higher-order interactions in simplicial complexes.

Conclusion. This work investigates the pinning control of sim-

plicial complexes under two types of noise. Within the master

stability function (MSF) framework, we derive an extended mas-

ter stability equation and corresponding synchronization stability

criteria. By applying different nonlinear systems as intrinsic node

dynamics, we analyze how noise affects synchronization, focusing

on the roles of diffusion and coupling functions. The results show

that noise can modulate synchronization patterns, inducing phase

transitions between stable and unstable regimes. For dynamic

noise, the impact depends on both intrinsic dynamics and diffu-

sion patterns, and when applied to all state variables, it often en-

hances synchronization in a certain range. Communication noise,

however, can either promote or hinder synchronization, depending

on network topology, pinned nodes, coupling strengths, and feed-

back gains. These findings extend traditional synchronization and

control paradigms, offering a more realistic perspective for design-

ing control strategies in higher-order networks subject to noise.

Future research should further address synchronization in

higher-order networks with time delays [3] and heterogeneous dy-

namics, as well as compare noise effects between lower- and higher-

order networks. Exploring the structural differences between hy-

pergraphs and simplicial complexes, optimizing network topology

[4], conducting robustness analysis under varying noise intensities,

and integrating with machine learning algorithms [5] will advance

interdisciplinary frameworks and open new directions for network

science and its applications to real-world systems.
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