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Underactuated autonomous surface vehicles (ASVs), originating
from the need for efficient maritime operations with reduced actu-
ators, embody profound significance in modern ocean engineering
by revealing the evolution of marine robotics and autonomous nav-
igation [1]. However, their coordination in multi-agent formations
is hindered by severe challenges caused by time-varying ocean dy-
namics, communication limitations, and conflicting objectives be-
tween individual vessels and collective formation goals [2].

Traditional control methods, reliant on static modeling and
constrained to single-objective optimization, lack generalizability
and scalability [3], while modern neural network-based approaches,
particularly those utilizing recurrent architectures with attention
mechanisms [4], suffer from quadratic computational complexity
O(n?) for n hidden units and strict initial condition requirements
le(0)] < p(0), rendering them impractical for real-time maritime
applications where vessels cannot be precisely positioned before de-
ployment. Given the trade-offs between computational efficiency
and control performance in existing methods, it is imperative
to develop an end-to-end, training-efficient, low-cost framework
specifically designed for ASV formation control, capable of effi-
cient multi-objective coordination without sacrificing prescribed
performance.

Therefore, we propose a comprehensive control framework
based on online deep learning and game theory, designed to effi-
ciently coordinate underactuated ASV formations. The framework
leverages the temporal learning capabilities of LSTM networks,
which capture time-varying dynamics through attention-weighted
memory cells, achieving high-quality, adaptive, and generalizable
control. Central to its design is the integration of Nash equilib-
rium seeking strategy with prescribed-time performance functions
(PTPF), eliminating traditional initial error constraints while en-
suring user-defined convergence.

Method. Consider N underactuated ASVs with dynamics:

i = R(Yi)vi, My = —Cvy)vi —Dwi)vi +71i +di, (1)
where m; = [xi,vi, 0T € R3, v = [us,v,m)T € RS, and
Ti = [Tui, 0, 7] T represents underactuated control with zero lat-
eral force.
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The framework operates within a non-cooperative game struc-
ture I' = (P, A, J) over distributed communication topology
G = (V,€). The dual-objective optimization balances global for-
mation and individual tasks:
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where 6; parameterizes individual trajectories evolving as 0; =
00,i, with interaction weights ,6 < 1/(NN — 1) ensuring convexity.
To incorporate the online learning strategy and LSTM-based
time-varying dynamic model (LSTM-TDM) [5], the unknown dy-
namics is approximated through

vi=  He(vi,mid)  +MIT'm+ Heooo, (3)
—_—— ~~

LSTM-learned dynamics modeling error

where Hy = M [~C(vi)v; — D(vi)v; + di] + (M7 — M Hm
represents time-varying uncertainties including unmodeled dy-
namics, parameter variations, and environmental disturbances,
learned via LSTM with attention
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The prescribed-time performance function eliminates initial error
constraints through sigmoid modulation:

1 (51kpk(t) +S(t)3k) 7

b = 2 i dorpr(t) — S(t)ey ®)

where S(t) = min{1, %[1 + tanh(A(t — T%))]} ensures smooth acti-
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vation at ¢t = T, and py(t) evolves according to

7
(Ty +to—t)7' ©)

Pr(t) = ar(t) — Brlpr(t) — pr,f] -
The singularity at t = T created by (T + to —t)~7 forces ex-
act convergence regardless of initial conditions, eliminating the
requirement |e(0)| < p(0) of traditional methods.
The Nash equilibrium parallel tracking controller synthesizes
formation and individual objectives:
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where 71 = S(t)(0114 Pri+021i Pri ) /[2(011i i +eri ) (O2ri Pl —€ki)]
and the underactuation compensation through auxiliary dynamics

i = [0y tanh(Byi), o tanh(Byq), i tanh(,BM)}T (8)
with adaptive laws Bp; = cosh™2(8p:)[pi Bpi — wpil /api ensuring
bounded evolution.

The composite control law integrates all components:

Tpi = [—Kpizpi — Hipi + Ypi + bpiBpil/mpi, P €{u, 7}, (9)
where 2zp; = Vpi — Ypi — lpi represents tracking errors in the trans-
formed coordinates.

The online LSTM training employs Adam optimizer with learn-
ing rate @ = 1079, momentum parameters 81 = 0.8, B2 = 0.9,
minimizing the loss function

Lo = E[|[He — Hel ]+ A WI12 (10)
The experiments were conducted
to evaluate formation performance, learning efficiency, and
prescribed-time convergence. First, a comparative experiment as-
sessed coordination quality under various disturbance conditions
(di = 0.5sin(0.1¢) + 0.3rand(¢t)). Compared to state-of-the-art
methods [4], the proposed framework demonstrated superior Nash
equilibrium convergence ([|[V7;|| < 107%) and formation mainte-
nance, particularly under parameter uncertainty.

Second, an ablation study validated the LSTM-TDM effective-
ness. For temporal dynamics learning, the framework exhibited
rapid convergence (loss < 10™% within 50 iterations) with com-
putational complexity O(T/p?) where T is sequence length and
p is parallelization factor, significantly outperforming traditional
RNN approaches requiring O(T - n?). The attention mechanism
successfully identified critical temporal patterns, improving ap-
proximation accuracy to |[H¢ — He | < 1073,

Lastly, PTPF validation demonstrated convergence at user-
defined Ty = 60 s regardless of initial conditions: m1(0) =
[40,20,7t/2]T, n2(0) = [50,20,7/2]T, n3(0) = [60,20,7/2]T with
initial errors exceeding traditional bounds by 300%. The sigmoid
activation at ¢ = 30 s ensured a smooth transition without perfor-
mance degradation. Detailed experimental configurations: Adam

Experiments and results.
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optimizer (o = 1076, g1 = 0.8, B2 = 0.9), LSTM with 10 hid-
den neurons, attention dimension d, = 8. Figure 1 shows the
formation trajectories, validating the effectiveness of the proposed
algorithm.
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Figure 1
target encirclement with radius R = 10 m and phase separation 27t/3.
Despite large initial errors, ASVs converge to the desired formation at
the prescribed time.

(Color online) Formation trajectories of ASVs executing

Discussion and conclusion. We present a comprehensive con-
trol framework for underactuated ASV formation, built on online
LSTM learning enhanced by Nash equilibrium seeking and PTPF.
The framework demonstrates exceptional adaptability to complex
ocean dynamics through attention-weighted temporal learning, su-
perior multi-objective coordination achieving proven Pareto opti-
mality, and guaranteed prescribed-time performance without ini-

tial constraints. Key innovations include (1) temporal dynam-

ics capture through attention-weighted LSTM eliminating manual
modeling with complexity O(T/p?), (2) Nash equilibrium balanc-
ing individual and collective objectives with convergence guarantee
under convexity conditions ,d < 1/(N — 1), and (3) PTPF with
sigmoid modulation ensuring user-defined convergence regardless
of initial errors.
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