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Underactuated autonomous surface vehicles (ASVs), originating

from the need for efficient maritime operations with reduced actu-

ators, embody profound significance in modern ocean engineering

by revealing the evolution of marine robotics and autonomous nav-

igation [1]. However, their coordination in multi-agent formations

is hindered by severe challenges caused by time-varying ocean dy-

namics, communication limitations, and conflicting objectives be-

tween individual vessels and collective formation goals [2].

Traditional control methods, reliant on static modeling and

constrained to single-objective optimization, lack generalizability

and scalability [3], while modern neural network-based approaches,

particularly those utilizing recurrent architectures with attention

mechanisms [4], suffer from quadratic computational complexity

O(n2) for n hidden units and strict initial condition requirements

|e(0)| < ρ(0), rendering them impractical for real-time maritime

applications where vessels cannot be precisely positioned before de-

ployment. Given the trade-offs between computational efficiency

and control performance in existing methods, it is imperative

to develop an end-to-end, training-efficient, low-cost framework

specifically designed for ASV formation control, capable of effi-

cient multi-objective coordination without sacrificing prescribed

performance.

Therefore, we propose a comprehensive control framework

based on online deep learning and game theory, designed to effi-

ciently coordinate underactuated ASV formations. The framework

leverages the temporal learning capabilities of LSTM networks,

which capture time-varying dynamics through attention-weighted

memory cells, achieving high-quality, adaptive, and generalizable

control. Central to its design is the integration of Nash equilib-

rium seeking strategy with prescribed-time performance functions

(PTPF), eliminating traditional initial error constraints while en-

suring user-defined convergence.

Method. Consider N underactuated ASVs with dynamics:

η̇i = R(ψi)νi, Miν̇i = −C(νi)νi −D(νi)νi + τi + di, (1)

where ηi = [xi, yi, ψi]T ∈ R
3, νi = [ui, vi, ri]T ∈ R

3, and

τi = [τui, 0, τri]T represents underactuated control with zero lat-

eral force.

The framework operates within a non-cooperative game struc-

ture Γ = (P,A,J ) over distributed communication topology

G = (V , E). The dual-objective optimization balances global for-

mation and individual tasks:

Ji,1(η,ηNi
(θi)) = ‖ηi − ηr,i(θi)‖2Q1

︸ ︷︷ ︸

individual tracking

− γ
∑

j∈Ni

‖ηj − ηr,j(θj)‖2Q2

︸ ︷︷ ︸

neighbor interaction

,

Ji,2(θ) = (θi − θr,i)
2

︸ ︷︷ ︸

self progress

− δ
N∑

j=1

(θj − θr,j)
2

︸ ︷︷ ︸

team synchronization

,

(2)

where θi parameterizes individual trajectories evolving as θ̇i =

̺θ,i, with interaction weights γ, δ < 1/(N − 1) ensuring convexity.

To incorporate the online learning strategy and LSTM-based

time-varying dynamic model (LSTM-TDM) [5], the unknown dy-

namics is approximated through

ν̇i = Ĥt(νi, τi,di)
︸ ︷︷ ︸

LSTM-learned dynamics

+M∗−1
i τi + H0i

︸︷︷︸

modeling error

, (3)

where Ĥt = M−1
i [−C(νi)νi −D(νi)νi + di] + (M−1

i −M∗−1
i )τi

represents time-varying uncertainties including unmodeled dy-

namics, parameter variations, and environmental disturbances,

learned via LSTM with attention

αt = softmax

(Wqht · (Wkht)T√
dk

)

, Ĥt =
T∑

j=1

αjhj . (4)

The prescribed-time performance function eliminates initial error

constraints through sigmoid modulation:

ξk =
1

2
ln

(
δ1kρk(t) + S(t)ek
δ2kρk(t) − S(t)ek

)

, (5)

where S(t) = min{1, 1
2
[1 + tanh(λ(t− Ts))]} ensures smooth acti-
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vation at t = Ts, and ρk(t) evolves according to

ρ̇k(t) = αk(t) − βk[ρk(t) − ρk,f ] ·
T γ
f

(Tf + t0 − t)γ
. (6)

The singularity at t = Tf created by (Tf + t0 − t)−γ forces ex-

act convergence regardless of initial conditions, eliminating the

requirement |e(0)| < ρ(0) of traditional methods.

The Nash equilibrium parallel tracking controller synthesizes

formation and individual objectives:

γui =cos ζφi

[

κθdiθdi −̟di

πdi
+ Σdi +

ˆ̄ξi tanh

(
ˆ̄ξiθdiπdi

℘ ˆ̄ξ

)]

,

γvi =sin ζφi

[

κθdiθdi −̟di

πdi
+ Σdi +

ˆ̄ξi tanh

(
ˆ̄ξiθdiπdi

℘ ˆ̄ξ

)]

,

γri =
κθφi

θφi −̟φi

χφi

− v cos ζφi − u sin ζφi

ζdi

+
ˆ̄ξi

ζdi
tanh

(
ˆ̄ξiθφiπφi

ζdi℘ξ̄

)

+ µri tanh

(

µriθφiπφi

℘βri

)

,

(7)

where πki = S(t)(δ1kiρki+δ2kiρki)/[2(δ1kiρki+eki)(δ2kiρki−eki)]
and the underactuation compensation through auxiliary dynamics

µi = [αui tanh(βui), αvi tanh(βvi), αri tanh(βri)]
T (8)

with adaptive laws β̇pi = cosh−2(βpi)[µpiβpi − ωpi]/αpi ensuring

bounded evolution.

The composite control law integrates all components:

τpi = [−κpizpi − Ĥtpi + γ̇pi + µpiβpi]/m
∗
pi, p ∈ {u, r}, (9)

where zpi = νpi−γpi−µpi represents tracking errors in the trans-

formed coordinates.

The online LSTM training employs Adam optimizer with learn-

ing rate α = 10−6, momentum parameters β1 = 0.8, β2 = 0.9,

minimizing the loss function

Lt = E[‖Ht − Ĥt‖2] + λr‖W‖2. (10)

Experiments and results. The experiments were conducted

to evaluate formation performance, learning efficiency, and

prescribed-time convergence. First, a comparative experiment as-

sessed coordination quality under various disturbance conditions

(di = 0.5 sin(0.1t) + 0.3rand(t)). Compared to state-of-the-art

methods [4], the proposed framework demonstrated superior Nash

equilibrium convergence (‖∇Ji‖ < 10−3) and formation mainte-

nance, particularly under parameter uncertainty.

Second, an ablation study validated the LSTM-TDM effective-

ness. For temporal dynamics learning, the framework exhibited

rapid convergence (loss < 10−4 within 50 iterations) with com-

putational complexity O(T/p2) where T is sequence length and

p is parallelization factor, significantly outperforming traditional

RNN approaches requiring O(T · n2). The attention mechanism

successfully identified critical temporal patterns, improving ap-

proximation accuracy to ‖Ĥt −Ht‖ < 10−3.

Lastly, PTPF validation demonstrated convergence at user-

defined Tf = 60 s regardless of initial conditions: η1(0) =

[40, 20,π/2]T, η2(0) = [50, 20, π/2]T, η3(0) = [60, 20,π/2]T with

initial errors exceeding traditional bounds by 300%. The sigmoid

activation at t = 30 s ensured a smooth transition without perfor-

mance degradation. Detailed experimental configurations: Adam

optimizer (α = 10−6, β1 = 0.8, β2 = 0.9), LSTM with 10 hid-

den neurons, attention dimension da = 8. Figure 1 shows the

formation trajectories, validating the effectiveness of the proposed

algorithm.

Figure 1 (Color online) Formation trajectories of ASVs executing

target encirclement with radius R = 10 m and phase separation 2π/3.

Despite large initial errors, ASVs converge to the desired formation at

the prescribed time.

Discussion and conclusion. We present a comprehensive con-

trol framework for underactuated ASV formation, built on online

LSTM learning enhanced by Nash equilibrium seeking and PTPF.

The framework demonstrates exceptional adaptability to complex

ocean dynamics through attention-weighted temporal learning, su-

perior multi-objective coordination achieving proven Pareto opti-

mality, and guaranteed prescribed-time performance without ini-

tial constraints. Key innovations include (1) temporal dynam-

ics capture through attention-weighted LSTM eliminating manual

modeling with complexity O(T/p2), (2) Nash equilibrium balanc-

ing individual and collective objectives with convergence guarantee

under convexity conditions γ, δ < 1/(N − 1), and (3) PTPF with

sigmoid modulation ensuring user-defined convergence regardless

of initial errors.
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