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The Smoluchowski-Kramers approximation originated from the
work of Smoluchowski and Kramers on particle motion. The mo-
tion equation of a particle of mass m in a force field with the
friction proportional to the velocity can be described as

mX™ =b(t, X") + 0 (t, X") By — X", (1)

where X" = xzo, X* = yo € R, b(t, X]") is the deterministic part
of the force, o (¢, X{™) is the intensity of the noise, oeXtm describes
the resistance (friction) to the motion, B; is the standard Gaussian
white noise, and the parameters m, « are positive real numbers.
Assume that the friction coefficient « is a fixed positive constant.
Without loss of generality, set o« = 1, and for 0 < m < 1, X"
may be approximated by the solution of the equation

Xy =b(t,X)+0(t, X¢) By, Xo=uxz0€R. (2)
For any 0 < T' < oo and € > 0, when
lim P ( max | X} — X¢| > e) =0, (3)
m—0 \0<t<T

let X¢ denote Smoluchowski-Kramers approximation of X;™.

As we know, Smoluchowski-Kramers approximation has at-
tracted attention of researchers and many qualitative theories have
been obtained. Recently, Son et al. [1] explored the Smoluchowski-
Kramers approximation for second-order mean-field stochastic dif-
ferential systems in L, distances and in the total variation distance
and gave an explicit rate of convergence. Liu et al. [2] investigated
the rate of convergence based on the total variation distance for
distribution dependent SDEs driven by fractional Brownian mo-
tion.

In this study, we discuss the rate of convergence in total vari-
ation distance for the Smoluchowski-Kramers approximation for
the following distribution dependent stochastic complex networks
(DDSCNSs) driven by the Brownian motion and Poisson jumps
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with finite intensity measure v, and X" satisfies
dX7} =Y, ndt,
n
mdy;® = [fkt (X;,’;,KX;J;) + % Hige (X,Q;,X;;l,
=
Lxpixm )| dt = Yipat + ge (X73, Zxpn ) dBe
+ Jry bt (X7} Lxn_,2)N(dt, dz).

(4)

Also, X satisfies the following DDSCN:

n
dXpe =it (X, Lxy,) + Z Hyjy (th7th7$thth) Jdt

j=1
+ gt (Xkes Zx,, ) dBt
[ (Xuim L, 2) Nt de), %)
Ro
where X = Xgo € LP(Q,R™%, F0,P), Vi = Y

o €
LP(Q,R¥%, 70, P), Xpo = &, & € LP(Q,RY,F0,P), p > 2.
Lx,, = Po X,;l is the law of X4, ngth is the joint dis-
tribution of Xy, and Xji. fr ¢ [0,7] x R x 22 (R%) — Rk,
Hyj [0, T] x Rk x RY x 2 (RWH45) — Rk, gy 2 [0,T] x R¥ x
2 (RIk) — Rk @ Rk, by, 1 [0,T] x R x 22 (RI) x Rg — Rk
n
are measurable and > dp = d. k,j € N = {1,2,---,n}. B
k=1
is one-dimensional Brownian motions on a complete probability
space (Q,.7,{Z:}+>0,P). Ro = R\{0}. The compensated Poisson
random measure is

N(dt,dz) = N(dt, dz) — v(dz)dt,

where N(dt,dz) is a Poisson counting measure, which is indepen-
dent of Brownian motion B, and v is the intensity measure of N
with v(Rg) < oo.

To obtain the main results, we need the following assumptions.
Assumption 1. Fort € [0,7T], k,j € N,

(1) frt (i, k) Hrjt (Th, Yies k5 ) s Ikt (Ths 1r) and by (Tge, pogg,
z) satisfy the Lipschitz conditions;
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(2) there exists a matrix A = (ax;)nxn such that the di-
graph (G, A) is strongly connected and for an arbitrary function
Fyj(zk,zj) (k € N,j € N), along each directed cycle C of the
weighted digraph (G, A), it holds that

>

(4,k)EE(C)

Fij(zg, ) <0,

(6)

for all (x),x;) € R" xR™ and k € N,j € N.

Assumption 2. For t € [0,T], k,j € N, frr(z,pr),
Hije (T, Yios ks )s Ght (Ths i) and g (@, pi, 2) are twice dif-
ferentiable in zj,, and the first and second order partial derivatives
satisfy the Lipschitz conditions.

Lemma 1 ([3, Theorem 2.2]). Let (G, A) be a weighted digraph,
where A = (agj)nxn (n > 2). If Q is the set of all spanning uni-
cyclic graphs Q of (G, A), Cg is the cycle of Q, W(Q) is the weight
of Q, and ¢, (k € N) is the cofactor of the kth diagonal element of
the Laplacian matrix L for (G, A). Then, for an arbitrary function
Fij(zg, x;) (k€ N,j € N), it holds that

Z crap Frj(e, ;) = Z wW(Q) Frs(zr, zs).

k,j=1 QeQ

>

(s,r)EE(CQ)

In particular, if (G, A) is strongly connected, then ¢g > 0.

Remark 1. From Assumption 1, for each x,z; and directed
cycle C, Eq. (6) holds. Fj; in Lemma 1 is arbitrary. Therefore,
according to Assumption 1 and Lemma 1, as long as we find a suit-
able F},;, we can solve the problem of coupling terms in stochastic
complex networks.

Lemma 2 (Kunita’s first inequality [4, Theorem 4.4.23]).
any p > 2, there exists a constant C;, > 0 such that
E sup

0<s<t /Os /Z H(r,z)N(dr,dz) !
<cp {]E {(/ot /Z H(r, z)\zu(dz)dq—) %]
+]E/Ot/Z |H (r, Z)|pl/(dz)d7-}'

Theorem 1 (Well-posedness). If Assumption 1 holds, for p > 2
and £ € LP(Q,R%, .%o, P), then DDSCN (5) has a unique solution

and
E| sup [X¢P ] < oo.
te[0,T]

Remark 2. The distribution of the coupling term in stochas-
tic complex networks contains joint distribution, so Theorem 1
generalizes the result of [5, Theorem 3.1] to stochastic complex
networks.

For

(7)

To obtain the convergence rate of the Smoluchowski-Kramers
approximation, we need the following lemmas.
Let (Xt)ycpo,r) and (Xgn)te[o 1) be the solution of
(5) and (4), respectively. If Assumptions 1 and 2 satisfy, then

(1) EOE?ETlXZ"IP < Cp,T,K,n)

P
(2) OittlngE [ X7 = XelP < Cpryic,nm 2.
<t<

Lemma 3.
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Lemma 4. Under Assumptions 1 and 2, the solutions of
DDSCNs (5) and (4) are Malliavin differentiable. Moreover, for
0<r<t<T, weget

2

E HDBX;m — DBXtH < Cp,T,K,nm7 (8)

L2([0,T7)

and

2
E[pV X - DV x| Corknm,  (9)

<
L2([0,T]xRo)

T
where ”f”iz([O,T]XRU) = fo fRo |f (¢, s z)\zu(dz)dt, DPF and
DN F denote the Malliavin derivative of F, respectively.

Lemma 5. Let Assumptions 1 and 2 hold. For 0 < ¢t < T, we
have
EHDBX Hﬁp <C P (10)
t L2((0,7]) X bp, T Kn ’
EHDNX Hfzp <C P (11)
t L2([0,T) xRo) X Lp, T Kn )
and
2 2 4
E [ DEXell (L2 (o.1)02 < Coront’s (12)
2 2 4
E ||DNXtH(L2([O,T]><R0))®2 < Cp,T,K,nt . (13)
Next, we give the main result.
Theorem 2 (Smoluchowski-Kramers approximation). If As-
sumptions 1 and 2 satisfy, then for any 0 < t < T', we get
drv (X[, X¢) < Cprient™Y2mY2, me (0,1). (14)

Remark 3. Theorem 2 gives the convergence rate in total
variation distance of Smoluchowski-Kramers approximation for
DDSCNs with jumps, based on the techniques of Malliavin cal-
culus.

We consider the rate of convergence for the
Smoluchowski-Kramers approximation for DDSCNs with jumps.
In addition, we provide an explicit bound on the total variation
distance for the rate of convergence, based on the techniques of
Malliavin calculus. A similar conclusion can be reached when there
are coupling terms in g and h.

Conclusion.
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