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The Smoluchowski-Kramers approximation originated from the

work of Smoluchowski and Kramers on particle motion. The mo-

tion equation of a particle of mass m in a force field with the

friction proportional to the velocity can be described as

mẌm
t = b (t,Xm

t ) + σ (t, Xm
t ) Ḃt − αẊm

t , (1)

where Xm
0 = x0, Ẋm

0 = y0 ∈ R, b (t,Xm
t ) is the deterministic part

of the force, σ (t, Xm
t ) is the intensity of the noise, αẊm

t describes

the resistance (friction) to the motion, Ḃt is the standard Gaussian

white noise, and the parameters m, α are positive real numbers.

Assume that the friction coefficient α is a fixed positive constant.

Without loss of generality, set α = 1, and for 0 < m ≪ 1, Xm
t

may be approximated by the solution of the equation

Ẋt = b (t, Xt) + σ (t, Xt) Ḃt, X0 = x0 ∈ R. (2)

For any 0 < T < ∞ and ε > 0, when

lim
m→0

P

(

max
06t6T

|Xm
t −Xt| > ε

)

= 0, (3)

let Xt denote Smoluchowski-Kramers approximation of Xm
t .

As we know, Smoluchowski-Kramers approximation has at-

tracted attention of researchers and many qualitative theories have

been obtained. Recently, Son et al. [1] explored the Smoluchowski-

Kramers approximation for second-order mean-field stochastic dif-

ferential systems in Lp distances and in the total variation distance

and gave an explicit rate of convergence. Liu et al. [2] investigated

the rate of convergence based on the total variation distance for

distribution dependent SDEs driven by fractional Brownian mo-

tion.

In this study, we discuss the rate of convergence in total vari-

ation distance for the Smoluchowski-Kramers approximation for

the following distribution dependent stochastic complex networks

(DDSCNs) driven by the Brownian motion and Poisson jumps

with finite intensity measure ν, and Xm
t satisfies































dXm
kt = Y m

kt dt,

mdY m
kt =

[

fkt

(

Xm
kt ,LXm

kt

)

+
n
∑

j=1
Hkjt

(

Xm
kt ,X

m
jt ,

LXm
kt

Xm
jt

)]

dt− Y m
kt dt+ gkt

(

Xm
kt ,LXm

kt

)

dBt

+
∫

R0
hkt(X

m
kt−,LXm

kt−
, z)Ñ(dt, dz).

(4)

Also, Xt satisfies the following DDSCN:

dXkt =
[

fkt
(

Xkt,LXkt

)

+
n
∑

j=1

Hkjt

(

Xkt,Xjt,LXktXjt

)

]

dt

+ gkt
(

Xkt,LXkt

)

dBt

+

∫

R0

hkt

(

Xkt−,LXkt−
, z
)

Ñ(dt, dz), (5)

where Xm
k0 = Xk0 ∈ Lp(Ω,Rdk ,F0, P), Y m

k0 = Yk0 ∈
Lp(Ω,Rdk ,F0,P), Xk0 = ξk, ξ ∈ Lp(Ω,Rd,F0,P), p > 2.

LXkt
:= P ◦ X−1

kt is the law of Xkt, LXktXjt
is the joint dis-

tribution of Xkt and Xjt. fk : [0, T ] × Rdk × P
(

Rdk
)

→ Rdk ,

Hkj : [0, T ]×Rdk ×Rdj ×P
(

Rdk+dj
)

→ Rdk , gk : [0, T ]×Rdk ×
P
(

Rdk
)

→ Rdk ⊗ Rdk , hk : [0, T ]× Rdk × P
(

Rdk
)

× R0 → Rdk

are measurable and
n
∑

k=1
dk = d. k, j ∈ N = {1, 2, · · · , n}. Bt

is one-dimensional Brownian motions on a complete probability

space (Ω,F , {Ft}t>0,P). R0 = R\{0}. The compensated Poisson

random measure is

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt,

where N(dt, dz) is a Poisson counting measure, which is indepen-

dent of Brownian motion Bt, and ν is the intensity measure of N

with ν(R0) < ∞.

To obtain the main results, we need the following assumptions.

Assumption 1. For t ∈ [0, T ], k, j ∈ N ,

(1) fkt (xk, µk), Hkjt

(

xk, yk, µkj

)

, gkt (xk, µk) and hkt(xk, µk ,

z) satisfy the Lipschitz conditions;

*Corresponding author (email: brightry@hotmail.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-025-4729-x&domain=pdf&date_stamp=2026-1-14
https://doi.org/10.1007/s11432-025-4729-x
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-025-4729-x
https://doi.org/10.1007/s11432-025-4729-x


Cheng L J, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 139202:2

(2) there exists a matrix A = (akj )n×n such that the di-

graph (G, A) is strongly connected and for an arbitrary function

Fkj(xk, xj) (k ∈ N , j ∈ N ), along each directed cycle C of the

weighted digraph (G, A), it holds that

∑

(j,k)∈E(C)

Fkj(xk, xj) 6 0, (6)

for all (xk, xj) ∈ Rnk × Rnj and k ∈ N , j ∈ N .

Assumption 2. For t ∈ [0, T ], k, j ∈ N , fkt (xk, µk),

Hkjt

(

xk, yk, µkj

)

, gkt (xk, µk) and hkt (xk, µk, z) are twice dif-

ferentiable in xk, and the first and second order partial derivatives

satisfy the Lipschitz conditions.

Lemma 1 ([3, Theorem 2.2]). Let (G, A) be a weighted digraph,

where A = (akj)n×n (n > 2). If Q is the set of all spanning uni-

cyclic graphs Q of (G, A), CQ is the cycle of Q, W (Q) is the weight

of Q, and ck (k ∈ N ) is the cofactor of the kth diagonal element of

the Laplacian matrix L for (G, A). Then, for an arbitrary function

Fkj(xk, xj) (k ∈ N , j ∈ N ), it holds that

n
∑

k,j=1

ckakjFkj(xk, xj) =
∑

Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs(xr , xs).

In particular, if (G, A) is strongly connected, then ck > 0.

Remark 1. From Assumption 1, for each xk, xj and directed

cycle C, Eq. (6) holds. Fkj in Lemma 1 is arbitrary. Therefore,

according to Assumption 1 and Lemma 1, as long as we find a suit-

able Fkj , we can solve the problem of coupling terms in stochastic

complex networks.

Lemma 2 (Kunita’s first inequality [4, Theorem 4.4.23]). For

any p > 2, there exists a constant CL > 0 such that

E sup
06s6t

∣

∣

∣

∣

∫ s

0

∫

Z
H(τ, z)Ñ(dτ, dz)

∣

∣

∣

∣

p

6 CL

{

E

[

(
∫ t

0

∫

Z
|H(τ, z)|2ν(dz)dτ

)

p
2

]

+E

∫ t

0

∫

Z
|H(τ, z)|pν(dz)dτ

}

. (7)

Theorem 1 (Well-posedness). If Assumption 1 holds, for p > 2

and ξ ∈ Lp(Ω,Rd,F0, P), then DDSCN (5) has a unique solution

and

E

(

sup
t∈[0,T ]

|Xt|
p

)

< ∞.

Remark 2. The distribution of the coupling term in stochas-

tic complex networks contains joint distribution, so Theorem 1

generalizes the result of [5, Theorem 3.1] to stochastic complex

networks.

To obtain the convergence rate of the Smoluchowski-Kramers

approximation, we need the following lemmas.

Lemma 3. Let (Xt)t∈[0,T ] and (Xm
t )t∈[0,T ] be the solution of

(5) and (4), respectively. If Assumptions 1 and 2 satisfy, then

(1) E sup
06t6T

|Xm
t |p 6 Cp,T,K,n,

(2) sup
06t6T

E |Xm
t −Xt|

p
6 Cp,T,K,nm

p
2 .

Lemma 4. Under Assumptions 1 and 2, the solutions of

DDSCNs (5) and (4) are Malliavin differentiable. Moreover, for

0 6 r 6 t 6 T , we get

E

∥

∥

∥
DBXm

t −DBXt

∥

∥

∥

2

L2([0,T ])
6 Cp,T,K,nm, (8)

and

E

∥

∥

∥
DNXm

t −DNXt

∥

∥

∥

2

L2([0,T ]×R0)
6 Cp,T,K,nm, (9)

where ‖f‖2
L2([0,T ]×R0)

=
∫ T
0

∫

R0
|f(t, µ, z)|2ν(dz)dt, DBF and

DNF denote the Malliavin derivative of F , respectively.

Lemma 5. Let Assumptions 1 and 2 hold. For 0 6 t 6 T , we

have

E

∥

∥

∥
DBXt

∥

∥

∥

−2p

L2([0,T ])
6 Cp,T,K,nt

−p, (10)

E

∥

∥

∥
DNXt

∥

∥

∥

−2p

L2([0,T ]×R0)
6 Cp,T,K,nt

−p; (11)

and

E
∥

∥D2
BXt

∥

∥

2

(L2([0,T ]))⊗2 6 Cp,T,K,nt
4, (12)

E
∥

∥D2
NXt

∥

∥

2

(L2([0,T ]×R0))⊗2 6 Cp,T,K,nt
4. (13)

Next, we give the main result.

Theorem 2 (Smoluchowski-Kramers approximation). If As-

sumptions 1 and 2 satisfy, then for any 0 < t 6 T , we get

dTV (Xm
t ,Xt) 6 Cp,T,K,nt

−1/2m1/2, m ∈ (0, 1). (14)

Remark 3. Theorem 2 gives the convergence rate in total

variation distance of Smoluchowski-Kramers approximation for

DDSCNs with jumps, based on the techniques of Malliavin cal-

culus.

Conclusion. We consider the rate of convergence for the

Smoluchowski-Kramers approximation for DDSCNs with jumps.

In addition, we provide an explicit bound on the total variation

distance for the rate of convergence, based on the techniques of

Malliavin calculus. A similar conclusion can be reached when there

are coupling terms in g and h.
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