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Appendix A Preliminaries
A weighted and undirected graph G defined as G = (S,E,A) can be used to describe a MASs with n agents. S = {S1, S2, S3, ..., Sn}
is a set of notes that a note represents an agent. E ∈ S×S is a edge set. If (Si, Sj) ∈ E, it represents that there exists information

transmission between the j-th agent and the i-th agent, where i, j ∈ {1, 2, 3, ..., n}. A = [aij ] ∈ Rn×n is the weighted adjacency

matrix. Especially, [aij ] = [aji] in the undirected graph and [aii] = 0. Let κ = diag{κ1,κ2, ...,κn}, If the i-th follower has access

to the data provided by the leader, bi = 1 if not bi = 0, where bi is the element of diagonal matrix B. The Laplacian matrix is

L = κ − A and H = L+ B.

The operational rules for sign (A) and sat(B) are

sign(A) =


−1, A < 0

0, A = 0

1, A > 0

,

sat(B) =


1, B > 1

B, B ∈ [−1, 1]

−1, B < −1

.

Lemma 1. [1] If the undirected graph G is a connected graph, its Laplacian matrix L is positive semidefinite, and L has

eigenvalues of 0, λ2, . . . , λN , satisfying 0 < λ2 6 · · · 6 λN , what is more IT x = 0, where x = [x1, . . . , xN ]T , then it can be

concluded that

λ2x
T
x 6 x

T
Lx,

and

x
T
Lx =

1

2

N∑
i=1

N∑
j=1

aij(xi − xj)2.

Lemma 2. [2] Let two column vectors g = (g1, g2, ..., gn)T , h = (h1, h2, ..., hn)T ∈ Rn. There exists a set of diagonal matrixs W

with diagonal elements that are exclusively either 0 or 1, and define Wi is the i-th element of W , i = 1, 2, ..., 2n. Let W−i = I−Wi,

where I is a identity matrix, I ∈ Rn×n, evidently W−i ∈ W . If |hi| 6 1, then sat(g) ∈ co{Wig +W−i h : i ∈ {1, 2, ..., 2n}}.

Remark 1. Taking Lemma 2 as an illustration, in the case where n = 2, the matrix W has a dimension of 2, encompassing four

matrix elements:

W1 =

0 0

0 0

 ,W2 =

1 0

0 0

 ,W3 =

0 0

0 1

 ,W4 =

1 0

0 1

 .
When n = 3, W has a dimension of 3, consisting of eight matrix elements:

W1 =


0 0 0

0 0 0

0 0 0

 ,W2 =


1 0 0

0 0 0

0 0 0

 ,W3 =


0 0 0

0 1 0

0 0 0

 ,W4 =


0 0 0

0 0 0

0 0 1

 ,
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W5 =


1 0 0

0 1 0

0 0 0

 ,W6 =


1 0 0

0 0 0

0 0 1

 ,W7 =


0 0 0

0 1 0

0 0 1

 ,W8 =


1 0 0

0 1 0

0 0 1

 .
By extension, this pattern continues accordingly. What is more, one can obtain sat(Mx) ∈ co{WiMx + W−i Sx : i ∈ {1, 2, ..., 2n}}
with the condition of ‖Sx‖∞ 6 1, where x ∈ Rn and M,S ∈ Rn×n. When the following conditions are satisfied,

0 6 fi 6 1∑2n

i=1 fi = 1

sat(Mx) can be further simplified as sat(Mx) =
∑2n

i=1 fi(WiM + W−i S)x.

Lemma 3. [3] Provided that the continuous and non-negative function V (ζ) satisfy the following criteria for all solutions of a

system

V̇ (x(ζ)) 6 −cV α(x(ζ))

where c > 0, 0 < α < 1. The equilibrium point is globally asymptotically stable with a finite-time stability property, and the

stability time T can be deduced that

T 6
V 1−α(x0)

c(1− α)

where V (x0) is the initial value of V (x(ζ)).

Lemma 4. [4] If k >> 1, then function sign(x) is approximately equal to function tanh(kx).

Lemma 5. [5] If m,n are two odd numbers satisfying n > m > 0, and A(a),B(a) ∈ R, then ones have

∣∣∣∣A(a)
m
n − B(a)

m
n

∣∣∣∣ 6 2
1−m

n

∣∣∣∣A(a)− B(a)

∣∣∣∣mn .
Appendix B Proof of Theorem 1
It is assumed that the state of every agent is right-continuous, which implies xi(ζk) = xi(ζ

−
k ) = lim

ζ→ζ−
k

xi(ζ). The tracking error

exi (ζ) is designed as

exi (ζ) = xi(ζ) + (1− δ(ζ − ζk))

∫ ζ+ν

ζ

ui(s− ν)ds− x0(ζ) (B1)

where exi (ζ) ∈ R. Thus, the error system is described by


ėxi (ζ) = −%1

(∑N
j=1 aij

(
xi(ζie )− xj(ζie )

))m
n − %2sign

(∑N
j=1 aij

(
xi(ζie )− xj(ζie )

))
+ϕi(ζ)− ϕ0(ζ), ζ 6= tk

∆exi (ζk) = sat
(

Kibiexi (ζ
−
k − ν)

)
, ζ = ζk.

(B2)

From lemma 2, (B2) is able to be further simplified as


ėxi (ζ) = −%1

(∑N
j=1 aij

(
xi(ζie )− xj(ζie )

))m
n − %2sign

(∑N
j=1 aij

(
xi(ζie )− xj(ζie )

))
+ϕi(ζ)− ϕ0(ζ), ζ 6= ζk

∆exi (ζk) = Piexi (ζ
−
k − ν), ζ = ζk

(B3)

where P =
∑2N

i=1 fi(WiKB +W−i S) and P = diag[P1,P2, ...,Pn].

Definition 1. Taking control protocol (2) into consideration, it can be reasonably surmised that the FTC of MASs (1) is

achievable if there exists T ∈ (0,+∞) satisfying

 lim
ζ→T

(xi (ζ)− x0 (ζ)) = 0, i = 1, 2, · · · , N.

xi (ζ)− x0 (ζ) = 0, ζ > T.

Construct the Lyapunov functionV (ζ) = 1
2 e
T
x (ζ)Lex(ζ).Denote ex(ζ) = [ex1 (ζ), . . . , exN (ζ)]T , Q(ζ) = [Q1(ζ), . . . , QN (ζ)]T ,

Ti(ζie ) =
∑N
j=1 aij(xi(ζie )− xj(ζie )), T (ζ) = [T1(ζ), . . . , TN (ζ)]T , ϕ(ζ) = [ϕ1(ζ)− ϕ0(ζ), . . . , ϕN (ζ)− ϕ0(ζ)]T , when ζ 6= ζk

V̇ (ζ) = e
T
x (ζ)Lėx(ζ) = e

T
x (ζ)L)

(
ϕ(ζ)− %1T

m
n (ζie )− %2sign

(
T(ζie )

))
= e

T
x (ζ)L

(
ϕ(ζ)−Q(ζ)− %1T

m
n (ζ)− %2sign

(
T(ζ)

))
=

N∑
i=1

Ti(ζ)
(
−Qi(ζ)− %1T

m
n
i (ζ)− %2sign

(
Ti(ζ)

)
+ ϕi − ϕ0

)
. (B4)

According to Assumption 1, ϕi − ϕ0 6 2γ can be obtained. It then follow that

V̇ (ζ) 6 −
N∑
i=1

Ti(ζ)Qi(ζ)− %1
N∑
i=1

T
m
n

+1

i (ζ) +
N∑
i=1

|Ti(ζ)|(−%2 + 2γ)
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6
N∑
i=1

(
− Ti(ζ)Qi(ζ)− %1τ1|Ti(ζ)|T

m
n
xi

(ζ)− %2τ2
∣∣Ti(ζ)∣∣)− (1− τ1)%1

N∑
i=1

T
m+n
n

i (ζ)

+
(
2γ − (1− τ2)%2

) N∑
i=1

∣∣Ti(ζ)∣∣. (B5)

When event is triggered, one has |Qi(ζ)| − τ1%1
∣∣∣∣∑N

j=1 aij
(
xi(ζ)− xj(ζ)

)∣∣∣∣mn − τ2%2 > 0. The simplification of (B5) gives V̇ (ζ) 6

(2γ − (1− τ2)%2)
∑N
i=1 |Ti(ζ)| − (1− τ1)%1

∑N
i=1 T

2
i (ζ)

m+n
2n . It follow from (8) that

V̇ (ζ) 6 −(1− τ1)%1

N∑
i=1

T
2
i (ζ)

m+n
2n . (B6)

Combined with Assumption 2, a conclusion can be easily drawn that a positive definite matrix G is present, satisfying L = GTG.

Subsequently it can be concluded from Lemma 1 that

N∑
i=1

T
2
i (ζ) = e

T
x (ζ)L

T
Lex(ζ) = e

T
x (ζ)G

T
LGex(ζ) > λmine

T
x (ζ)G

T
Gex(ζ) = 2λminV (ζ)

where λmin is the minimum eigenvalue of L. To proceed, from (B6), ones have

V̇ (ζ) 6 −(1− τ1)%1(2λmin)
m+n
2n V

m+n
2n (ζ) 6 θV (ζ) (B7)

where θ > 1. When ζ = ζk,

V (ζ
+
k ) =

1

2
e
T

(ζ
+
k )Le(ζ

+
k )

=
1

4

N∑
i,j=1

aij
(
ei(ζ

+
k )− ej(ζ+k )

)2
=

1

4

N∑
i,j=1

aij
(

(1 + Pi)
(
ei(ζ

−
k − ν)− ej(ζ−k − ν)

))2
6

1

2
(1 + Pmax)

2
V (ζ

−
k − ν) (B8)

where Pmax = max{P1, . . . , Pn}, which means Pmax is equivalent to taking the maximum value of {P1. . .Pn}. From (B7), obviously

V̇ (ζ) 6 θV (ζ), ζ 6= ζk. Therefore, when ζ ∈ [ζ0, ζ1], clearly V (ζ) 6 eθ(ζ−ζ0)V (ζ0). To proceed, when ζ ∈ (ζk, ζk+1], one has

V (ζ)6eθ(ζ−ζk)
V (ζ

+
k )

6
(1 + Pmax)2

2
e
θ(ζ−ζk)

V (ζ
−
k − ν)

6
(1 + Pmax)2

2
e
θ(ζ−ζk)

e
θ(ζk−ν−ζk−1)

V (ζk−1)

6
(1 + Pmax)2k

2k
e
θ(ζ−ζ0−kν)V (ζ0)

6ek
(
ln

(1+Pmax)2

2
−θν

)
+θ(ζ−ζ0)

V (ζ0)

6e

(
ln

(1+Pmax)2

2
−θν

)
(ζ−ζ0)+θ(ζ−ζ0)

ε e

(
θν−ln (1+Pmax)2

2

)
V (ζ0)

6e
( ln (1+Pmax)2

2
−θν

ε
+θ
)
(ζ−ζ0) 2eθν

(1 + Pmax)2
V (ζ0)

which then ends the proofs.

Remark 2. In the aforementioned proof and lemma 3, it has been demonstrated that the control action triggered by events

can enable the system to achieve FTC. Moreover, the control action governing the follower agents during pulse instants is also

effective. As long as all agents have not yet reached consensus, the event-triggered control during non-pulse instances remains in

effect. Consequently, under the influence of the entire control (2), the MASs (1) can achieve FTC.

Appendix C Proof of Theorem 2
From (5), one has

|Qi(ζ)| 6 %1

∣∣∣∣∣
(

N∑
j=1

aij
(
xi(ζie )− xj(ζie )

))m
n

−
(

N∑
j=1

aij
(
xi(ζ)− xj(ζ)

))m
n
∣∣∣∣∣

+%2

∣∣∣∣∣sign

(
N∑
j=1

aij
(
xi(ζie )− xj(ζie )

))
− sign

(
N∑
j=1

aij
(
xi(ζ)− xj(ζ)

))∣∣∣∣∣. (C1)
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Being combined with Lemma 4 and Lemma 5, the above inequality (C1) about Qi(t) yields

|Qi(ζ)| 6 2
n−m
n %1

∣∣∣∣∣
∫ ζ

ζie

N∑
j=1

aij
(
ẋi(η)− ẋj(η)

)
dη

∣∣∣∣∣
m
n

+ %2

∣∣∣∣∣tanh

(
k
N∑
j=1

aij
(
xi(ζie )− xj(ζie )

))

−tanh

(
k

N∑
j=1

aij
(
xi(ζ)− xj(ζ)

))∣∣∣∣∣
= 2

n−m
n %1

∣∣∣∣∣
∫ ζ

ζie

N∑
j=1

aij
(
ẋi(η)− ẋj(η)

)
dη

∣∣∣∣∣
m
n

+ %2

∣∣∣∣∣
∫ ζ

ζie

k

N∑
j=1

aij
(
ẋi(η)− ẋj(η)

)
∗

(
1− tanh

2

(
k
N∑
j=1

aij
(
xi(η)− xj(η)

)))
dη

∣∣∣∣∣. (C2)

According to the expression of Ti(ζ), one can give

|Ṫi(ζ)| 6

∣∣∣∣∣
N∑
j=1

aij
(
ui(ζ − ν)− uj(ζ − ν) + ϕi − ϕj

)∣∣∣∣∣ 6
∣∣∣∣∣
N∑
j=1

Lijuj(ζ − ν)

∣∣∣∣∣+ 2ciγ

where ci is the number of the i-th agent’s neighbors. It is concluded from the above that the MASs (1) can achieve FTC.

Consequently, there is a positive numbers ξ1 being the upper bound of |Ṫi(ζ)|, then (C2) gives

|Qi(ζ)| 6
n−m
n

%1

(∫ ζ

ζie

ξ1dη

)m
n

+ k%2

∫ ζ

ζie

ξ1dη = 2
n−m
n %1ξ

m
n
1 (ζ − ζie )

m
n + k%2ξ1(ζ − ζie ).

Due to gi(ζ) > 0 when the event is triggered, there is |Qi(ζ)| > τ2%2, then the following inequality can be obtained at the next

trigger time.

2
n−m
n %1ξ

m
n
1 (ζ − ζie )

m
n + k%2ξ1(ζ − ζie ) > τ2%2. (C3)

Denote ∆1 = 2
n−m
n %1ξ

m
n
1 ,∆2 = k%2ξ1, F (x) = ∆1x

m
n + ∆2x− τ2%2, then the derivation of F (x) can be deduced as

Ḟ (x) =
∆1m

n
x
m−n
n + ∆2 > 0.

If (C3) hold, then F (x) > 0. It can be found that F (0) < 0. Therefore, there exists a unique zero point x0 > 0. In other words,

ζie+1 − ζie > x0 > 0. (C4)

(C4) indicates that the duration between successive event triggers is a positive value, which means that there will be no “Zeno

phenomenon”.

Appendix D Illustrative examples
The following section will present a numerical illustration, which is an empirical demonstration of the efficacy of the designed

consensus control protocol. The communication topology of MAS (1) is is depicted in Fig. D1. It comprises one leader agent

and four follower agents, with their initial state values are setted as x0(0) = 8, x(0) = [5, 3,−10, 14]T respectively, and ϕi =

0.12sin(xi(ζ)) + 0.01sin(ζ), i = 1, 2, 3, 4, ϕ0 = 0.12sin(x0(ζ)) + 0.01sin(ζ), %1 = 5.8, %2 = 0.35, τ1 = 0.78, τ2 = 0.45, K =

diag[−0.8, 0,−0.6,−0.8], B = diag[1, 0, 1, 1] and m = 21, n = 23, ν = 0.03, ε = 0.06.

Fig. D2 and Fig. D3 illustrate the state and error of the leader and four followers, while Fig. D4 portrays the variation of the

control protocol u. Additionally, Fig. D5 depicts the event-triggered instances for the four follower. Evidently, as inferred from the

aforementioned numerical simulations. Thus a conclusion is drawn that the MASs (1), under the influence of the design consensus

control protocol (2), is capable of achieving FTC.

Figure D1 Communication topology
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Figure D4 The variations curve of

consensus control protocol
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Figure D5 Event-triggered instances

of the four followers
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triggered strategy

Table D1 Number of triggers of each follower agent

Method Agent1 Agent2 Agent3 Agent4

Without impulsive 38 27 55 227

This paper 93 118 104 266

Table D2 The mean interval between each trigger event

Method Agent1 Agent2 Agent3 Agent4

Without impulsive 0.0231 0.0325 0.0160 0.0039

This paper 0.0110 0.0086 0.0099 0.0038

Remark 3. Table D1 and Table D2 compare the proposed control protocol and the event-triggered control protocol without

impulsive control. In accordance with the data presented in the tables, the proposed control protocol has more event triggers and

shorter average trigger time, which also indicates that the control protocol (2) can reduce resource consumption more effectively

and faster response speed.

Remark 4. Fig. D6 and Fig. D7 portray the state plot and the errors of agents under the influence of the traditional control

protocol respectively, without considering time delays and input saturation. When compared to Fig. D2, it becomes evident

that the proposed consensus control protocol exhibits stability and rapid response even when considering time delays and input

saturation. Simultaneously, it significantly reduces the number of communications between followers and the leader, as precisely

demonstrated in Fig. D8. The bar chart on the left side of Fig. D8 illustrates the communication frequency between followers and

the leader for control protocol (2), while the bar chart on the right side depicts the communication frequency for the traditional

control protocol.
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ers without input saturation

Remark 5. To further illustrate the performance of our proposed method in reducing communication frequency and energy

consumption, we conducted a comparative analysis of simulation experiments under different communication environments. With

the initial values and controller parameters held constant, Fig. D9, Fig. D10 and Fig. D11 present the experimental results without

input saturation constraints. As can be observed from these figures, the convergence rate of the system is significantly faster than

that in the case with input saturation.

Assuming the circuit structure of every agent in system (1) is a classical Chua’s system, as shown in Fig. D12. Its dynamical
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Figure D11 The variations curve of

consensus control protocol without in-
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Figure D12 The circuit of the Chua’s

agents

equations are as follows, 
dU1
dt =

U2
RC1

− U1
RC1

+
iL
C1

dU2
dt =

U1
RC2

− U2
RC2

− f(U2)
C2

diL
dt = −U1

L

where U1, U2, and iL are the voltage across the energy storage component capacitor terminals C1, C2, and the current through

the inductor terminal L respectively. Rn is a nonlinear resistor, and its current iR = f(U2) depending on the voltage U2. R = 1Ω,

L = 13.45mH, C1 = 20mF , C2 = 200mF , and f(U2) = −0.68U2 − 0.259(|U2 + 1| − |U2 − 1|). When no control is applied, the

system is in a chaotic state, as shown in Fig. D13. After applying the proposed consensus control protocol, the states of U1, U2,

and iL successfully follow the leader agent within finite-time, as shown in Fig. D14, and the error relative to the leader agent is

depicted in Fig. D15.

Figure D13 The circuit trace of the

Chua’s agents

Figure D14 States of the Chua’s a-

gents

Figure D15 Errors of the Chua’s a-

gents
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