SCIENCE CHINA
Information Sciences

@ CrossMark
&click for updates

- LETTER -

March 2026, Vol. 69, Iss. 3, 139102:1-139102:2
https://doi.org/10.1007/s11432-025-4722-2

Topology matters: achieving fairness in graph neural
networks through heterophily propagation

Yuge WANG!, Xibei YANG!'", Keyu LIU', Qiguo SUN', Weiping DING? & Yuhua QIAN3

YSchool of Computer, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2School of Information Science and Technology, Nantong University, Nantong 226019, China
3Institute of Big Data Science and Industry, Shanzi University, Taiyuan 030006, China

Received 20 April 2025/Revised 5 October 2025/Accepted 28 November 2025/Published online 15 January 2026

Citation Wang Y G, Yang X B, Liu K Y, et al. Topology matters: achieving fairness in graph neural networks through heterophily
propagation. Sci China Inf Sci, 2026, 69(3): 139102, https://doi.org/10.1007/s11432-025-4722-2

Graph neural networks (GNNs) have gained significant attention
due to their immense potential in graph-driven applications. How-
ever, GNNs are susceptible to sensitive attributes (e.g., race, gen-
der and religion), which may result in unfair decisions for certain
sensitive groups. Meanwhile, network homophily creates a bi-
ased tendency for nodes to form homogeneous connections (edges
within the same sensitive group), while lacking heterogeneous con-
nections (edges across groups) [1]. This topology imbalance is fur-
ther amplified by GNNs’ message-passing mechanism: aggrega-
tion functions disproportionately reinforce patterns from majority
groups, while minority groups remain underrepresented in learned
node embeddings [2].

Existing debias efforts encompass different stages of GNN train-
ing and can be categorized into pre-processing, in-training, and
post-processing. Pre-processing debiasing of features and topol-
ogy serves as a fundamental approach for enhancing fairness in
GNNss [3]. Actually, more researchers introduce constraints or reg-
ularization terms in the objective function, guiding the model to
learn fair and unbiased embeddings during the training process [4].
Additionally, several approaches leverage the output embeddings
of a graph neural network, incorporating filters or removing in-
formation related to sensitive attributes from these embeddings,
thereby eliminating their biases [5].

Nevertheless, these strategies often neglect the nature of bias
propagation inherent to message-passing mechanisms, and a pre-
liminary experiment further quantified the inherent bias. As
shown in Figure 1(a), topology diversity in neighborhoods (i.e.,
balanced homo/heterogeneous connections) is critical to mitigat-
ing bias propagation. However, standard aggregation functions
fail to take into account such diversity, necessitating a redesigned
message-passing mechanism. Therefore, (i) assessing the balance
of homo/heterogeneous neighbors for nodes, and (ii) designing a
novel message-passing mechanism to address this imbalance, have
become critical challenges. These challenges demand a unified so-
lution that not only quantifies topology bias at the neighborhood
level but also adaptively adjusts aggregation strategies to counter-
act it.

Methods. To tackle these challenges, we propose a novel
framework, FairDHP, that achieves fairness-aware graph learn-
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ing. As shown in Figure 1(b), FairDHP consists of two core mod-
ules, the sensitivity operator module to measure the balance of
homo/heterogeneous neighbors and the adaptive message-passing
mechanism module to expand the input of heterogeneous informa-
tion.

Sensitivity operator module. Specifically, the sensitivity op-
erator measures neighborhood balance by comparing the original
and counterfactual embeddings, both of which undergo message
aggregation. The process consists of four steps for each node:
counter-sensitive features are obtained by aggregating all hetero-
geneous node features within its t-hop neighborhood; the orig-
inal and counter-sensitive embeddings are constructed by neigh-
borhood aggregation of the original and counter-sensitive features,
respectively; fairness sensitivity is computed by determining the
logarithmic absolute difference across all dimensions of the two
embeddings, providing measures of both balance and the node’s
susceptibility to sensitive attributes; the sensitivity operator is
generated by diagonalizing the fairness sensitivity and normaliz-
ing with node degree, which guides the integration of homogeneous
and heterogeneous information in subsequent processes.

Adaptive message-passing mechanism module. To mitigate
topology bias, we introduce two supplementary message-passing
mechanisms, local disentangled propagation (LDP) and global
heterophily-aware propagation (GHP).

LDP. In undirected graph-based message-passing systems, in-
formation propagates bidirectionally through edges, amplifying
bias under neighborhood imbalance where homogeneous signals
dominate. To address this, we implement an edge disentangle-
ment strategy that separates undirected connections into in-flow
and out-flow. Additionally, we design a set of message passing
strategies to adapt to these dual flows. For homogeneous connec-
tions, we apply throttling based on the sensitivity operator, while
for heterogeneous connections, we regularize excessive aggregation
to prevent the introduction of noise. These objectives are achieved
by modifying the edge weights in the adjacency matrix.

GHP. Given that the neighborhood-centric paradigm becomes
suboptimal when local heterogeneous neighbors are statistically in-
sufficient or entirely absent, we extend the receptive field of hetero-
geneous nodes from local neighborhoods to the entire graph. For
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Figure 1

this purpose, we utilize feature-driven approaches multiple times
to establish latent neighborhood relationships among nodes. The
resulting projection matrix assigns nodes to multiple sets, with all
nodes within each set having the potential to become neighbors.
By concatenating projection matrices generated at multiple times,
intersections are formed between sets, with shared nodes acting as
bridges to facilitate information flow between sets. To further sup-
plement heterogeneous information, we only retain heterogeneous
nodes as neighbors and reconstruct the adjacency matrix. In prac-
tice, the refined adjacency matrices from LDP and GHP are de-
ployed in the GNN framework to generate node embeddings, with
further details provided in Appendix A.

Theoretical analysis. Under reasonable assumptions of finite-
valued embeddings and connection homophily, we theoretically
prove that the message-passing layer composed of LDP and GHP
can reduce the statistical parity.

Lemma 1. The statistical parity 6?1 between the embeddings
of different sensitive groups that are output by the [-th LDP and
GHP, can be upper bounded by

st < L(Umaz(wl) (1 =a™)(1=n) + (1 - min(RY, RY))nat
— (RX + RY)n'at|sh + 2V NALH! 4 2\/NNZ+1), (1)
where L is the Lipschitz constant of nonlinear activation, omaz(+)

is the largest singular value of parameter matrix.
The absolute value accumulation term, serving as the disparity
coefficient at the [-th layer, fundamentally governs the propagation
trajectory of disparity metrics at the (I + 1)-th layer.
Given parameters o™, RY, RY € (0,1) and n,n’ €
(0,0.5), the absolute value accumulation term is bounded by
(1 —a™)(1 —n) + [1 — min(RF, RY)]na™
— (R§ + BY)n'a*| € [0,1].

Theorem 1.

(2)

The proofs of Lemma 1 and Theorem 1 are presented in Ap-
pendix B. In addition, the parameter matrices undergo spec-
tral normalization of singular values, formally constrained as
Umax(Wl) < 1 through singular value truncation. Furthermore,
we integrate Softmax operators into the output layers, thereby
theoretically guaranteeing the boundedness of A?rl and Aljl.
Overall, through the analysis of these three items, we can con-
clude that LDP and GHP can effectively reduce statistical parity
between the embeddings of different sensitive groups.

(Color online) Preliminary experiment (a) and overall framework (b) of the proposed FairDHP.

Results. Experiments were conducted on a criminal records
dataset Bail, a social network dataset Pokec, and two banking
financial datasets, Credit and German. On different GNN en-
coders, compared to other baseline methods, our model achieved
the best results in terms of fairness-utility trade-off. In addition,
we conducted ablation and parameter sensitivity experiments to
demonstrate the effectiveness of the model components and their
generalization ability. A dedicated experiment on the message-
passing layer was implemented to further support our theoretical
analysis. Details on these experiments can be found in Appendix
C.

Discussion. The framework we proposed, FairDHP, further pro-
motes the development of GNN in the field of fairness. Compared
to other debiased methods, FairDHP makes two major contribu-
tions: (i) it can work well to measure the balance of the neighbor-
hood; (ii) it can adaptively supplement heterogeneous information
for message aggregation. Overall, FairDHP achieves a trade-off
between fairness and prediction accuracy, and can be regarded as
an end-to-end framework adaptable to various GNN encoders.

There is still room for improvement in the study. In future
research, we intend to explore more robust and stable solutions
within this fairness framework. Specifically, we will investigate ad-
vanced techniques such as generative neighbor synthesis or adap-
tive sampling.
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