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Graph neural networks (GNNs) have gained significant attention

due to their immense potential in graph-driven applications. How-

ever, GNNs are susceptible to sensitive attributes (e.g., race, gen-

der and religion), which may result in unfair decisions for certain

sensitive groups. Meanwhile, network homophily creates a bi-

ased tendency for nodes to form homogeneous connections (edges

within the same sensitive group), while lacking heterogeneous con-

nections (edges across groups) [1]. This topology imbalance is fur-

ther amplified by GNNs’ message-passing mechanism: aggrega-

tion functions disproportionately reinforce patterns from majority

groups, while minority groups remain underrepresented in learned

node embeddings [2].

Existing debias efforts encompass different stages of GNN train-

ing and can be categorized into pre-processing, in-training, and

post-processing. Pre-processing debiasing of features and topol-

ogy serves as a fundamental approach for enhancing fairness in

GNNs [3]. Actually, more researchers introduce constraints or reg-

ularization terms in the objective function, guiding the model to

learn fair and unbiased embeddings during the training process [4].

Additionally, several approaches leverage the output embeddings

of a graph neural network, incorporating filters or removing in-

formation related to sensitive attributes from these embeddings,

thereby eliminating their biases [5].

Nevertheless, these strategies often neglect the nature of bias

propagation inherent to message-passing mechanisms, and a pre-

liminary experiment further quantified the inherent bias. As

shown in Figure 1(a), topology diversity in neighborhoods (i.e.,

balanced homo/heterogeneous connections) is critical to mitigat-

ing bias propagation. However, standard aggregation functions

fail to take into account such diversity, necessitating a redesigned

message-passing mechanism. Therefore, (i) assessing the balance

of homo/heterogeneous neighbors for nodes, and (ii) designing a

novel message-passing mechanism to address this imbalance, have

become critical challenges. These challenges demand a unified so-

lution that not only quantifies topology bias at the neighborhood

level but also adaptively adjusts aggregation strategies to counter-

act it.

Methods. To tackle these challenges, we propose a novel

framework, FairDHP, that achieves fairness-aware graph learn-

ing. As shown in Figure 1(b), FairDHP consists of two core mod-

ules, the sensitivity operator module to measure the balance of

homo/heterogeneous neighbors and the adaptive message-passing

mechanism module to expand the input of heterogeneous informa-

tion.

Sensitivity operator module. Specifically, the sensitivity op-

erator measures neighborhood balance by comparing the original

and counterfactual embeddings, both of which undergo message

aggregation. The process consists of four steps for each node:

counter-sensitive features are obtained by aggregating all hetero-

geneous node features within its t-hop neighborhood; the orig-

inal and counter-sensitive embeddings are constructed by neigh-

borhood aggregation of the original and counter-sensitive features,

respectively; fairness sensitivity is computed by determining the

logarithmic absolute difference across all dimensions of the two

embeddings, providing measures of both balance and the node’s

susceptibility to sensitive attributes; the sensitivity operator is

generated by diagonalizing the fairness sensitivity and normaliz-

ing with node degree, which guides the integration of homogeneous

and heterogeneous information in subsequent processes.

Adaptive message-passing mechanism module. To mitigate

topology bias, we introduce two supplementary message-passing

mechanisms, local disentangled propagation (LDP) and global

heterophily-aware propagation (GHP).

LDP. In undirected graph-based message-passing systems, in-

formation propagates bidirectionally through edges, amplifying

bias under neighborhood imbalance where homogeneous signals

dominate. To address this, we implement an edge disentangle-

ment strategy that separates undirected connections into in-flow

and out-flow. Additionally, we design a set of message passing

strategies to adapt to these dual flows. For homogeneous connec-

tions, we apply throttling based on the sensitivity operator, while

for heterogeneous connections, we regularize excessive aggregation

to prevent the introduction of noise. These objectives are achieved

by modifying the edge weights in the adjacency matrix.

GHP. Given that the neighborhood-centric paradigm becomes

suboptimal when local heterogeneous neighbors are statistically in-

sufficient or entirely absent, we extend the receptive field of hetero-

geneous nodes from local neighborhoods to the entire graph. For
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Figure 1 (Color online) Preliminary experiment (a) and overall framework (b) of the proposed FairDHP.

this purpose, we utilize feature-driven approaches multiple times

to establish latent neighborhood relationships among nodes. The

resulting projection matrix assigns nodes to multiple sets, with all

nodes within each set having the potential to become neighbors.

By concatenating projection matrices generated at multiple times,

intersections are formed between sets, with shared nodes acting as

bridges to facilitate information flow between sets. To further sup-

plement heterogeneous information, we only retain heterogeneous

nodes as neighbors and reconstruct the adjacency matrix. In prac-

tice, the refined adjacency matrices from LDP and GHP are de-

ployed in the GNN framework to generate node embeddings, with

further details provided in Appendix A.

Theoretical analysis. Under reasonable assumptions of finite-

valued embeddings and connection homophily, we theoretically

prove that the message-passing layer composed of LDP and GHP

can reduce the statistical parity.

Lemma 1. The statistical parity δl+1

h
between the embeddings

of different sensitive groups that are output by the l-th LDP and

GHP, can be upper bounded by

δl+1

h
6 L

(

σmax(W
l) · |(1−α+)(1−η)+(1−min(Rχ

0
, R

χ
1
))ηα+

− (Rχ
0
+R

χ
1
)η′α+|δlh + 2

√
N∆l+1

c + 2
√
N∆l+1

z

)

, (1)

where L is the Lipschitz constant of nonlinear activation, σmax(·)
is the largest singular value of parameter matrix.

The absolute value accumulation term, serving as the disparity

coefficient at the l-th layer, fundamentally governs the propagation

trajectory of disparity metrics at the (l + 1)-th layer.

Theorem 1. Given parameters α+, R
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∈ (0, 1) and η, η′ ∈

(0, 0.5), the absolute value accumulation term is bounded by
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The proofs of Lemma 1 and Theorem 1 are presented in Ap-

pendix B. In addition, the parameter matrices undergo spec-

tral normalization of singular values, formally constrained as

σmax(Wl) 6 1 through singular value truncation. Furthermore,

we integrate Softmax operators into the output layers, thereby

theoretically guaranteeing the boundedness of ∆l+1
c and ∆l+1

z .

Overall, through the analysis of these three items, we can con-

clude that LDP and GHP can effectively reduce statistical parity

between the embeddings of different sensitive groups.

Results. Experiments were conducted on a criminal records

dataset Bail, a social network dataset Pokec, and two banking

financial datasets, Credit and German. On different GNN en-

coders, compared to other baseline methods, our model achieved

the best results in terms of fairness-utility trade-off. In addition,

we conducted ablation and parameter sensitivity experiments to

demonstrate the effectiveness of the model components and their

generalization ability. A dedicated experiment on the message-

passing layer was implemented to further support our theoretical

analysis. Details on these experiments can be found in Appendix

C.

Discussion. The framework we proposed, FairDHP, further pro-

motes the development of GNN in the field of fairness. Compared

to other debiased methods, FairDHP makes two major contribu-

tions: (i) it can work well to measure the balance of the neighbor-

hood; (ii) it can adaptively supplement heterogeneous information

for message aggregation. Overall, FairDHP achieves a trade-off

between fairness and prediction accuracy, and can be regarded as

an end-to-end framework adaptable to various GNN encoders.

There is still room for improvement in the study. In future

research, we intend to explore more robust and stable solutions

within this fairness framework. Specifically, we will investigate ad-

vanced techniques such as generative neighbor synthesis or adap-

tive sampling.
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