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Appendix A Methods

Topology bias in GNNs, such as the imbalance of homo/heterogeneous neighbors within a node’s neighborhood, is a
significant cause of unfair embeddings. Determining whether the neighbors of any given node are balanced and mitigating
this phenomenon have become two challenging tasks. Our proposed method consists of two core modules, the sensitivity
operator module and the adaptive message-passing (MP) mechanism module, designed to address the two aforementioned
issues.

Appendix A.1 Sensitivity operator module

We design a neighborhood balance-aware approach that leverages the opposite sensitive attributes. In recent years, many
researchers [1,2] have adopted similar ideas, using counterfactual fairness [3] to evaluate the stability of decisions in response
to changes in the sensitive attribute values within feature. However, they overlook the fact that the sensitive attribute and
other features follow a joint prior distribution (z,s) ~ prior [4]. Merely modifying a single attribute is insufficient to yield
a feature that is the opposite counterpart. Therefore, in this module, we aggregate the complete opposite node features to
obtain counter-sensitive feature = for central node v;:

T; = z; + AGGREGATE({z; : v; € N*(v;), 55 # 8:}), (A1)

where s; and N'¢(v;) represents the sensitive attribute and set of nodes in the t-hop neighborhood of node v;, respectively,
and AGGREGATE function is the aggregation method (e.g., sum, mean, or max).
To formalize the above process, we first perform MP on the original node feature to obtain the initial embedding h;:

hi = MP (z;,{x; : vj € N(vi)}). (A2)

Subsequently, we generate counter-sensitive embedding h; by applying the same MP operation on the modified feature Z;
while preserving the original neighborhood structure:

hi = MP (1, {5 03 € N(03)})- (A3)

To quantify the discrepancy between the two embeddings, we compute fairness sensitivity (FS) through the loga-
rithmic absolute difference (LAd) [5] across all dimensions D of the embeddings:

D

FS; = log (1 + |hia— hial) (A4)
d=1

where h; 4 denotes d-th attribute in the embedding h;.

Due to the superior performance of LAd in amplifying differences, F'S is able to capture the embedding disparities at
the attribute level. Furthermore, FS quantitatively characterizes node susceptibility to sensitive attributes, thereby provid-
ing guidance for the systematic integration of homogeneous and heterogeneous information. To establish methodological
foundations, we formally define the normalized F'S measure as the sensitivity operator S:

S = diag(FS;) - D1 € R™*"™, (A5)

where F'S; constitutes the diagonal elements, D is the degree matrix of A, which is used for normalization.

* Corresponding author (email: jsjxy_yxb@just.edu.cn)
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Appendix A.2 Adaptive message-passing mechanism module

To mitigate topology bias induced by homogeneous-heterogeneous neighbor imbalance, we propose an adaptive heteroge-
neous neighbor integration during message propagation. Formally, FairDHP introduces two supplementary message-passing
mechanisms, local disentangled propagation (LDP) and global heterophily-aware propagation (GHP):

F = Fas ® FLpp ® FGHP, (A6)

where Fpag is the basic MP, and ® denotes the fusion method.

Local disentangled propagation. In undirected graph-based MP systems, information propagates bidirectionally
through edges, analogous to flow in channels [6]. This inherent characteristic exacerbates bias amplification under neigh-
borhood imbalance conditions, where homogeneous node signals overwhelmingly dominate their heterogeneous counterparts.
To address this limitation, we implement an edge disentanglement strategy that decouples undirected connections into in-
flow and out-flow:

& = &in U Eout, (A7)

where &, governs in-flow propagation and Eout regulates out-flow pathways. This architectural innovation strategically
attenuates homogeneous signal transmission while preserving heterogeneous information aggregation.

‘We design a set of message passing strategies to adapt to dual flows. For homogeneous connections, we provide throttling
based on sensitivity operator S. For heterogeneous connections, excessive aggregation should also be regularized to prevent
the introduction of noise.

For this purpose, the adjacency matrix A requires transformation. The in-flow and the out-flow can be achieved by
modifying the edge weights. As a result, the refined adjacency weights are computed through:

A= AOI-J-95)] + AQ[JI-1)-§] ) (A8)
—_———— —_———
Homogeneous throttling Heterogeneous regularization

where I is the homogeneity indicator matrix with I; j = 1 (s; = s;), J denotes the diagonal matrix with J; ; = 1, © represents
Hadamard product.

In practice, the refined adjacency matrix Ais deployed into the GNN framework to generate node embeddings H. For
GCN [7] implementation, the layer-wise propagation rule with LDP constraints at the [-th layer is formulated as:

HHD = Softmax(AHOW®), (A9)

where HO = X,
However, this strategy exhibits limitation: the neighborhood-centric paradigm becomes suboptimal when local hetero-
geneous neighbors are statistically insufficient or entirely absent, potentially compromising bias mitigation efficacy.

Remark 1. The edge disentanglement approach in LDP enhances the MP process by decoupling information flows, a
concept explored in Flow2GNN [6], which uses a two-way flow MP scheme to disentangle topological information in graphs.
By separating edge connections into distinct categories [8] (e.g., homophily and heterophily), LDP ensures that information
flow is more controlled, leading to more robust and interpretable node representations. In previous researches, the disen-
tanglement strategy primarily focus on disentangling features to achieve fairness. For instance, in the researches of [1,9,10],
disentanglement focuses on separating sensitive and non-sensitive features in the latent space, enhancing fairness in repre-
sentation learning. However, compared to LDP’s edge disentanglement strategy, these approaches do not comprehensively
consider the graph’s structural dependencies. By specifically targeting the edges that connect nodes in a graph, LDP offers
a more precise mechanism for ensuring fairness in node representations without relying solely on feature-level disentangle-
ment. This makes it more adaptable to graph-based data, where topology significantly impacts the representation learning
process.

Algorithm A1l Local Disentangled Propagation

Require: Graph G = (V, ), features X, adjacency matrix A, homogeneous indicator matrix I, sensitiv-
ity operator S, training epochs T
Ensure: Fair embedding matrix H.
1: Initialize: Parameter matrices W.
2: Divide undirected connections into in-flow and out-flow.
3: for epoch =1 to T do
4 Calculate the coefficient of throttling < J —S.
5. Calculate the coefficient of regularization < S.
6:  Modify the edge weights via AO[I-(J—S)]and A [(J-1I)-S].
7. Refine the adjacency matrix via Eq. (A8).
8:  Generate embeddings via Eq. (A9).
9: end for
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Global heterophily-aware propagation. To address the locality constraints of LDP, we propose a novel method,
global heterophily-aware propagation, that extends the receptive field of heterogeneous nodes from local neighborhoods to
the entire graph.

Here, we depart from the conventional graph topology, focusing exclusively on feature-driven approaches to establish
latent neighborhood relationships among nodes. We utilize vector quantization (VQ) technology [11,12] to map nodes
to several Voronoi regions [13], by optimizing the following formula:

min ®(X,P - X), (A10)
PE{O,I}NXP,XERPXk

where P is the projection matrix assigning N nodes to P regions, X is the learnable region feature matrix initialized by
random node features, and ®(-, ) denotes the distance function that measures the dissimilarity between nodes and regions.
The generated Voronoi regions {V }5:1 are formally defined as the partitions of the node space, each corresponding to
a centroid vector in X, such that a node belongs to a region if its distance to that centroid (measured by ®) is minimized
over all regions:
Vp = {vi eV : P(x,%p) = qe{T.i.I.l,P} d (xi,:?;q)} . (A11)
However, Voronoi regions have two characteristics: U§:1 V, € R™ and ﬂ;;l V, = 0. This results in the node being
unable to find neighbors across Voronoi regions. To further expand the receptive field, we employ VQ multiple times
with different similarity metrics (e.g., Euclidean and Cosine) to break down region barriers and achieve cross-region node
connections. For example, a certain node is mapped to Vi and V¢ in multiple VQ, and the information propagates within
the region. Therefore, the node can integrate the information of all nodes in Vi and release it into Vg, achieving cross-region
message passing. We define nodes like this as cross-region nodes.
Let P¢ € {0,1}**P° and P¢ € {0,1}"*P° denote the projection matrices derived from Euclidean and cosine similarity
metrics respectively. And the cross region node awareness is achieved through concatenation. This leaves us with the

following expression: o
Pjoznt _ [Pe II PC} c {07 1}n><(P’+P’). (Al?)

The behavior of searching for neighbors across regions has natural similarities with HGNN. Therefore, we follow its
method and construct a message passing path matrix R, by computing the matrix product of the joint projection matrix
and its transpose:

R = Pjoint ) (Pjoint)T c {0’ 1}n><n’ (A13)

we establish a generalized adjacency structure that inherently records message passing paths within and across regions.
Aligning with LDP in Eq. (A8), we refine the matrix R using the sensitivity operator S. However, in order to supplement
heterogeneous nodes, we only retain the propagation of heterogeneous information:

A=RO[J-T)-5]. (A14)

The global heterophily-aware propagation at layer [ operates as:
HUHD = Softmax(AAHO W), (A15)

where H(O) = X.

Algorithm A2 Global Heterophily-aware Propagation

Require: Graph G = (V,€), features X, adjacency matrix A, homogeneous indicator matrix I, sen-
sitivity operator S, training epochs 7', number of regions with different distance functions P¢ and
Pe.

Ensure: Fair embedding matrix H.

Initialize: Parameter matrices W.

// Establish global latent neighborhood relationships.

Obtain projection matrix P¢ via optimize Eq. (A10) with Euclidean distance and P*.

Obtain projection matrix P¢ via optimize Eq. (A10) with Cosine distance and P°.

Concatenate projection matrices to generate cross-region nodes via Eq. (A12).

Calculate inner product to obtain message passing path via Eq. (A13).

// Propagate heterogeneous information.

for epoch =1 to T do

Calculate the coefficient of regularization < S.
Modify the edge weights via A ® [(J —I) - S].
Retain only heterogeneous edges and refine the adjacency matrix via Eq. (Al14).
Generate embeddings via Eq. (A15).
end for
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According to Eq. (A6), the final embeddings adaptively combine three mechanisms:

HO =g(F-5s)- HD +§- HO +§- HO). (A16)
FBAS FLDP FoHpP

Algorithm A3 Training Framework of FairDHP

Require: Graph G = (V,£), features X, adjacency matrix A, homogeneous indicator matrix I, sensi-
tivity operator S, training epochs T, the number of regions with different distance functions P¢ and
Pe.

Ensure: Fair embedding matrix H.

1: Initialize: Parameter matrices W,W,W.

2: // Preprocessing Phase.

3: for v; €V do

4:  Obtain counter-sensitive feature Z; via Eq. (A1) with ¢.

5. Generate initial embedding h; and counter-sensitive embedding h; via Eq. (A2) and (A3).
6:  Calculate fairness sensitivity via Eq. (A4).

7. end for

8: Get sensitivity operator S via Eq. (Ab).

9: // Refine the adjacency matrices.

10: Refine Adj A for LDP via Eq. (A7) - (A8).

11: Refine Adj A for GHP via Eq. (A10) - (A14).

12: // Training Phase.

13: for epoch =1 to T do

14:  Run parallel message passing:

15: IEI — ]:BAs(é,X,V_Y).

16: H«+ fLDp(A, X,W)

17: I:I — ]:GHP(A,X,W).

18:  H < adaptive fusion (H, H H, S).

19:  Calculate loss.

20:  Update model parameters W, W, W with spectral normalization.

21: end for

Appendix B Theoretical proof
Appendix B.1 Lemma 1

The following assumptions are made for the theoretical findings in this study:

Assumption 1 (Finite-valued embeddings). Hc§.+1 — e < (A(CS))Z'H, Yv; € Sg with g € {0,1}, where AL =
max((A)H, (AL, |25 -2l | <@l v € S with g € {0, 1}, where AL = max((AL) 1, (A)),
Here, max(+,-) outputs the element-wise maximum of the input vectors.

Assumption 2 (Connection Homophily). n and 1’ are the sample mean of heterogeneous neighbors normalized by

N ()NS5 N ()NS5
degree, n = mean (% v; € V) ,n’ = mean (%

in network connectivity patterns [4,14,15], where heterogeneous node counts within neighborhoods are strictly less than
homogeneous ones, 7 and 1’ are theoretically bounded within (0, 0.5).

v; € V), where g = 1 — s;. Owing to the inherent homophily

Based on these, Lemma 1 demonstrates the factors that contribute to the statistical parity (represented by §j) between

the embeddings of different sensitive groups obtained at the I-th F1pp and Fgup. Specifically, Theorem 1 upper bounds
the term 6£L+1 = Hmean(h§+1 | s =0) — mean(h;Jrl | s; = I)HQ.

Lemma 1. The statistical parity 52+1 between the embeddings of different sensitive groups that are output by the I-th
Fipp and Fgup, can be upper bounded by:

5t < L(amaw(Wl) 1 =M@ = n) + (1 — min(RY, RY))na™ — (RY + RY)n'at|s), + 2vV/NALT + zmAljl),

where L is the Lipschitz constant of nonlinear activation o, omaz(-) denotes the largest singular value of the parameter

,|Si<‘ RX .= ‘S())(‘ dat = (FS\ 'EV)
=I5 = |SO‘,an a™ = mean v, .

matrix, RY :
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Proof. Here, without loss of generality, we will consider the I-th Fypp and Fgup, where the input embeddings are
denoted by H! and output embeddings are H!*1. The disparity between the output embeddings follows as:

1+1 1+1 1+1
6h+ = Hmean(hjJr | s; =0) — mean(hj+ | s5 = 1)H2
S D SR DR
[Sol =4, 7 1S1] 4 !
0 v; €S, 2
According to Lemma A.1. in [16], 5?’1 can be upper bounded by the following term:
1 1
R SRS IR 4 D DTS-I Dt [FEVAZ ) P
‘ 0| ’UjESO vj 631 2 |SO| ’UjGSQ vy 631 2
Based on this upper bound, the term ”\Silol Zvjeso ;—H _ ﬁ Zvjesl z5_+1 H2 will be analyzed. We first consider the

1 I+1
terms 157 Zvj es, Z;  and ISO\ Zv €S0 z‘ ! individually.
Let’s re-define aggregated embeddmgs for node 7 at I-th Frpp and Fgup as:

e Qg
A= thzvvzJr 3 ”th’

JEN (i) FEN(4) Di
| S —
FLDP Faup

‘We make cHl

_I+1
Cg

+1

= thl to obtain a simplified form. The sample means of c!t! and z!*! vectors are represented by

= mean(c 1w € Sg) and zH'1 = mean(zé‘*‘1 | v; € Sg) for the nodes in sensitive group Sy for g = 0,1. While

I+1

considering assumption 1, the aggregation of node representations z ;. over set S1 can be written:

Z Zz+1
|

'ug €Sy

1 Qfa 7z+1 Qb 7z+1 Yka_ 141
Sl 20 2 gt 2 w0t X 2 wm®

v €S a€N(k)NSo bEN (k)NS, v €SY aeN (k)NSy

FLDP
1 Qg &t Oka  _1+1 LA
el 2 2 Wt 2 @ e b
v €SY acN (k)NSo ve €Sy a€N(k)NSo

Faup

The aggregation coefficients are defined through the fairness sensitivity FS(-):

ozk =FS (k) if sk # Sa,
g =
k ay =1—FS(k) if sp = sa-

Consequently, ﬁ > zé.'H satisfies:

v; €Sy

1 1+1
i, 2
SEST
1 Y af A 3 oy abty 4 3 > Q chHt
|Sl‘ v €S a€N(k)NSo ‘ ( )| bEN (k)NS ‘N( )| v €SY aeN (k)NSy |N(k)|
" 1 $ Z af g+l o 3 T af ot | 4 ALty
|S1] [NV (k)] i W (k)| ¢

v €ST a€N (k)NSo VR ESY a€N (k)NSo

By further decomposing the neighborhood terms, we obtain the expanded formulation:
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1 [NV (k) N So ateltl [NV (k) NS 7_l+1 V(&) N 51|a7_l+1
2 N ST I+ TN S

vaSi( v, €SY

1 Z |N(k)030\ el Z NG ﬁ<50|0[ Tt | g al+g

k™1
S\, 2 V) S W
X
Let’s define Ry := ‘I‘le ‘I and RY := ‘l&SS' l" where RY = 1— RY, RY =1— R{; a™ is the mean of O‘k , where at =1—a~

Similarly, the proportion of heterogeneous node nelghborhoods on can be measured using the sample mean in the following

viGV),
U¢EV>,

way:

e (@0 S
= (|Nw

W:mm<Wmm@
O]

where g = 1 — s;. The sample mean of homogeneous node is 1 — 7.
So, the equation can be written as:

| Z Zt € Rinatelt + RY(1 —n)a~eft! + RY (1 —m)a~eft! + Rin'ategt! + Ryn'atel™ £ A1
UJES1

Replace Ry, o~ with RX7 at:

1
— Z 2t € Rinatel™ + RY(1—n)(1 —ah)el™ + (1 - BY)(1 —n)(1 — at)eft! + Rin'ateft! + (1 — RY)n'aTeft £ AL,
| 1)3651

c Ri(naJr 1+1 + cl+1 +(—:l1+1 —l+1 + 27704+ ~l+1 + Rx / + l+1 Rxn'oﬁ I+1 + Achrll.

In the same manner, ﬁ > L can be represented by:

!
v;€80 %j
1
—| Z Zl+1 c I-2><’7704+t':lJrl + él1+1 — a+éll+1 — néll+1 + 2770c+éll+1 + Rxn'a+cl+l Rxn'ozJr +1 4 Alc+11.
€S0

41 . 1 4+1 _
Define e+ := S Zvjesl z,

\Sol Zvj €Sy Z j , the following can be written:
et e EH'I(I —at —n+2nat — Rna™ — RXn'a™ — R¥n'a™)

75é+1(17a+ 7RX /4 RX / +)

717+277a+7Ri<170¢+ na n'a

+2AlH,
Merge similar items to obtain:

et e (éll'H — éé"’l) [(1 —aM)(1—n)+nat - (RY + R%)n'oﬁ]

term 1

[ l+1( Rona ) — 66+1(—R¥7]a+)] :|:2Alc+11.

term 1%

We will enlarge term 77 into a form that matches term i. Let’s assume RY < RY, we have cl+1( R¥na™)—c l+1( R¥nat) =
(cl1+1 —6+1)( RY¥nat). Due to symmetry, term 4 can be exchange into:

M (=RXnat) — M (=RYna™) < (@ — &5 (= min(RY, RY)nat).

Therefore, ||/T1||2 can be upper bounded by:

e 2 < lleg™ =i llz - [(1 = a)(1 = m) + (1 — min(RY, RY))ma™ — (RY + RY)n'a’| + 2/ NAL. (B2)
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Furthermore, consider the term ||<:H'1 éll+1||2 where cH' = mean(c?"1 |v; €Ss) and cé.'H = héwl.

1 1 1
I+1 1y, _ Lyl sl
H|SO| 2 oo gy 2 o =gy 2 MW e D W

v; €So v; €S v; €S0 v; €Sy

1 1
:HWZ(@ > hé‘*@ > bj)llz (B3)

v; €So v; €Sy

1
ERIRACPILE

v; €So 1 v; €Sy

< U"maac( )H
where omaz(.) outputs the largest singular value of the input matrix. Based on Eq. (B2) and Eq. (B3), it follows that:

€ 2 < omas (W)
: I(1 —a)(1 =)+ (1 - min(Ry, RY))na™t — (RY + RY)n'a’t|
1
= >_ n- o > hlj2 +2vVNALT

v; €So | I v; €Sy

(B4)
IS |

Finally, combining the results in Eq. (B1l) and Eq. (B4), deviation between the output representations from different
sensitive groups can be upper bounded by:

1 l+1 Z I+1
S 2 b hj
|SO| v €So v]€$1 2

<L<amax<wl>}(1—a+)<1—n>+(1—min(Ra<,Ri<>)na — (R§ + R)n'a*| |50| Zs Eh lL Z
v €S0 E

+2VNALH 4 NﬁAl;l). (B5)

Appendix B.2 Theorem 1

Theorem 1. Given parameters o™, R}, RY € (0,1) and 7,7’ € (0,0.5), the absolute value accumulation term is bounded
by:
(1= a)(1 =) +[1 — min(RY, RY)Jnat —(RY + RY)'at | € [0,1], (B6)

term 4 term 7% term iid
Proof.  To rigorously characterize its bounding mechanism, we initiate our analysis by formally defining the formula of
the following expression:

C=(1-a")(1—mn)+[1 - min(Ry, RY)lna™ — (Rf + RY)n'a™. (B7)

It is evident that the formula for C is continuous, which facilitates the determination of its extremum.
[Upper bound] The supremum occurs when:

term i = 1 (@™ = 0, n — 0)
term it — 0 (@™ — 0)
term i35 — 0 (o™ — 0)

= supC = 1.
[Lower bound] The infimum occurs when:

term i — 0 (ot — 1)

term 4 — 0 (min(RY, RY) — 1)

term iii — —1 (Ry, — 1, ' = 0.5, ™ = 1)
= infC = —

The complete domain can be derived as C € [—1,1]. Therefore, confirmed by extremum theorems, the strict boundary
of the absolute value term can be derived as |C| € [0, 1].
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Furthermore, we consider the rationale behind the values of each parameter. Notably, Ré, Ri‘ and 7 are related to the
neighborhood balance parameter at, which follows the relationships: at — 1 = Ré‘, R)f — 1, n — 0.5, and conversely,
at - 0= Ré, Ri‘ — 0, 7 — 0. On the other hand, 1’ represents the proportion of heterogeneous nodes reconstructed by
the GHP module, which requires to be considered separately.

In the derivation of the upper bound, the core assumption is that ot — 0, indicating that the neighborhood balance is
broken and the nodes in the neighborhood tend to be homogeneous (R())(, Ri( — 0, 7 — 0). Therefore, all parameter values
in the upper bound inference are reasonable.

In the derivation of the lower bound, the assumption is the opposite: at — 1 implies RX,RT — 1 and n — 0.5.
In this case, term ¢ and term i — 0, and we need to analyze the value of n’, which influences term iii. If the topology
reconstructed by the GHP module exhibits high heterophily, then term éi¢ — —1; otherwise, term ¢is — 0. Based on this
analysis, we conclude that these boundary conditions are practically feasible.

By inspecting equation (B6), we interpret the roles of Fr,pp and Fgup. FLpp incorporates the throttling of homogeneous
nodes and the regularization of heterogeneous nodes, which correspond to the first two additive terms in the expression.
In term 4, (1 — at) and (1 — 7) represent the aggregation coefficient of homogeneous nodes and the average number of
homogeneous neighbors, respectively, explicitly capturing the influence of homogeneous nodes on the results. Term ¢
reflects the role of heterogeneous nodes through nat, which is further regularized by [1 — min(Ré, Ri‘)} Term 472 integrates
subtractive components associated with heterogeneous nodes, counterbalancing the first two terms to effectively reduce bias.
This aligns precisely with the objective of Fgup, which aims to mitigate neighborhood imbalance by introducing additional
heterogeneous nodes.

In conclusion, through the analysis of these three terms, we establish that both Fr,pp and Fggp can effectively reduce
statistical parity d; between the embeddings of different sensitive groups.

At this stage, we quantitatively study the debaising capability of our proposed MP layer (FLpp + Faup). Specifically,
we train a standard GNN on four public datasets and report the impact of using different numbers of MP layers on fairness.
As shown in Figure C1 (a), compared to using standard message aggregation function (0 MP layer), statistical parity is
significantly reduced with only 1 to 2 MP layers. In addition, when a large number of MP layers are stacked, fairness can
also be guaranteed without the occurrence of over-smoothing phenomenon like classification accuracy. This provides strong
experimental evidence for our theoretical proof.

Appendix C Experiments

We conduct experiments on four real-world datasets to evaluate the performance of FairDHP, particularly focusing on
accuracy and fairness. Codes can be found at GitHub ). We aim to address the following research questions through
empirical investigations:

RQ1: How effectively can FairDHP achieve fair node classification while optimizing the fairness-utility trade-off?

RQ2: Are the components of FairDHP essential for enhancing model performance?

RQ3: Can FairDHP maintain stable performance under varying parameter configurations?

Appendix C.1 Datasets

e Bail dataset originates from U.S. criminal justice records, containing demographic attributes (race, gender), criminal
history, and bail decision outcomes for 100, 000" defendants [17]. Race and bail decision were selected as sensitive attributes
and classification labels, respectively.

e Credit dataset comes from an important bank credit data in Hong Kong, China, including 30000 credit card holders,
with 13 attributes covering payment history, credit utilization, and debt and income indicators [18]. It is mainly used for
predicting future default and supports the classification research of fairness perception by combining sensitive attributes
such as age.

e German dataset has 1000 nodes representing customers of a German bank, who are connected based on the similarity
of their credit accounts [19]. Its task is to classify customers into good credit risk and bad credit risk based on their gender
sensitive attribute.

e Pokec_n dataset is from the Pokec social network in Slovakia, including user profiles, friendship relationships, and
interaction timestamps [20]. It is a normalized version of its religion with anonymous sensitive attributes, used for predicting
working fields.

Appendix C.2 Baselines

e FairGNN [21] (2021, WSDM): The FairGNN develops an adversarial debiasing framework, which leverages limited
partial sensitive and topology-aware data augmentation to eliminate biased correlations.

e EDITS [22] (2022, WWW): The EDITS mitigates data bias by jointly optimizing attribute distribution alignment
and structural fairness regularization through trainable adjustments to both adjacency matrix and node features.

e NIFTY [23] (2021, UAI): The NIFTY establishes a unified paradigm through adversarial debiasing modules and graph
augmentation techniques that enhance both counterfactual fairness and robustness against structural perturbations.

e FairVGNN [24] (2022, KDD): The FairVGNN mitigates discrimination by automatically masking sensitive-correlated
features through adaptive view generation and encoder weight clamping, achieving enhanced fairness-utility trade-offs.

1) https://github.com/Wangshiyil116 /FairDHP
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Table C1 Statistics of four datasets.

Dataset Bail Credit German Pokec.n

# Nodes 18,876 30,000 1,000 66,569

# Edges 321,308 1,436,858 22,242 729,129

# Features 18 13 27 59
Sensitive Attribute Race Age Gender Region
Label Bail decision Future default Credit status Working field
Avg. Degree 34.04 95.79 44.48 16.53
Avg. Hete Degree 15.79 3.83 8.49 0.73

# w/o Hete Neighbors 32 16,738 30 46,134

e FairSIN [4] (2024, AAAT): The FairSIN proposes a neutralization-based paradigm that can debias sensitive attributes
and provide additional non-sensitive information for learning fair GNNs.

e FairGT [25] (2024, IJCAI): The FairGT incorporates a meticulous structural feature selection strategy and a multi-hop
node feature integration method, ensuring independence of sensitive features and bolstering fairness considerations.

e FDGNN [1] (2025, NN): The FDGNN designs a counterfactual augmentation strategy for constructing instances with
varying sensitive values while preserving the same adjacency matrices, thereby balancing the distribution of sensitive values
across different groups.

Appendix C.3 GNN backbones

In our experiments, three efficient and stable GNN backbones are employed as basic encoders: GCN [7], GIN [26] and
GraphSAGE [27]. The superior performance of these encoders has been proven in previous works [28-31].

Appendix C.4 Fairness metrics

Following the existing works [1,16,32], we utilize y; € {0,1} as ground-truth label. At the same time, in order to simplify
the expression, sensitive attribute is represented as s; € {0,1} for v; € V.
Definition 1. Statistical Parity (SP)

Statistical parity [33] (also called demographic parity) requires that the predicted outcomes of a model are statistically
independent of sensitive attributes. Formally, for a binary classifier with prediction y; and sensitive attribute s;, statistical
parity denotes as:

ASP = |P(3; =18 =1) —P(y; = 1] s; = 0)], (C1)

where s; = 1 denote distinct groups.
Definition 2. Equal Opportunity (EO)

Equal opportunity [34] is a fairness criterion that requires true positive rates to be equal across protected groups.
Formally, for ground-truth label y;, equal opportunity denotes as:

AEO=|P(y;=1|y;=1,8=1) =Py =1]y; = 1,5, = 0)|, (C2)

Appendix C.5 Implementation details

We employ a five-fold cross-validation methodology for each experiment to ensure the validity of the experimental results.
Our FairDHP architecture was developed within PyTorch, leveraging 100 GB VRAM NVIDIA A100 for all computational
experiments.

Appendix C.6 RQ1: Results on node classification

To validate the effectiveness of FairDHP, we compare our method with SOTA methods on node classification task. As
demonstrated in Table C2, classification accuracy, SP, and EO metrics are reported, along with the fairness-utility trade-off
values (the pink column) calculated as follow:

ATO = ACC — A\(ASP + AEO), (C3)

where A = 1.

Cross-architecture evaluations reveal that FairDHP achieves a great improvement of fairness metrics compared to baseline
methods, while retaining a high classification accuracy across GNN backbones and four datasets. Specifically, FairDHP
obtains optimal fairness metrics reductions in SP and EO on both the Bail and Pokec_n datasets, surpassing contemporary
fairness-aware graph learning methods. Concurrently, it maintains competitive classification accuracy with a improvement
over vanilla GNN backbones.

However, we observe that FairDHP exhibits suboptimal performance on the Credit dataset, particularly when compared
with FairSIN. This performance discrepancy manifests in two critical aspects: (1) a 6.17 average reduction in trade-off; (2)
significantly higher variance (£1.51%) across repeated trials compared to FairSIN’s stable performance (£0.70%). According
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Table C2 Comparison of model performance (mean + standard deviation). (bold: best)

German Credit Bail Pokec_n
ACC (1) ASP(1) AEO()  ATO() | Acc(h) ASP(}) AEO() ATO() | Acc(h) ASP(1) AEO() | ATO(M) | Acc () ASP(}) AEO(}) | ATO(1)

Encoder | Method

vanilla T22841.52 324341029  24.69+7.74 15.16 74.1340.04 12.4440.06  10.2440.09 51.45 87.5540.54 6.8540.47
FairGNN 69.68+£0.30 3494215  3.4042.15 62.79 73414124 12644211 10.4142.03  50.36 82.94£1.67  6.90£0.17
EDITS 71.60£0.89 4.05+4.48 3.8944.23 63.66 73.51£0.30 10.90+£1.22 8.75%1.21 53.86 84.49+2.27  6.64£0.39
NIFTY 69.924+1.14 5.7345.25 5.0844.29 59.11 73.4540.06 11.68+0.07 9.3940.07 52.38 82.36+3.91 5.78
GCN | FairVGNN | 70.16+0.86  1.71£1.68  0.88+0.58 67.57 | 78.04+0.33  5.02+5.22  3.60+4.31 69.42 84.73+0.46  6.53

75.44 68.5540.51 3.7540.94  2.93+1.15 61.87
71.39 67.36+2.06  3.29+2.95  2.46+2.64 61.61
70.34 OOM OOM OOM -

71.86 67.2440.49 1.2240.94  2.79+1.24 63.23
73.25 66.10+£1.45  1.69+0.79  L78+0.70 = 62.63

FairSIN 70.08+0.16 0.2240.43 0.0240.04 69.84 T7.8740.01 0.50+0.70  0.25+0.34 77.12 87.67+0.26 4.56£0.75 80.32 0.57+0.19  0.4340.41 68.34
FairGT 69.9940.11 0.1340.24 0.0940.19 69.77 74.6442.86 6.2943.21 4.4342.31 63.92 91.52+0.19 1.740.53 88.15 1.040.31 1.07+1.15 64.30
FDGNN 69.6+1.01 0.3940.51 0.2940.37 68.92 75.14+2.9 5.6+4.11 4.5143.77 65.03 92.73+0.08  0.74+0.39 90.22 0OM 0OOM

88.74 69.35+0.77  0.58+0.3  0.3840.31  68.39

OURS 70.08+0.16  0.13+0.26 0.04+0.0 69.95 77.9540.72 4.1241.51 2.8840.97 70.95 92.74+0.1 2.940.08

vanilla 72.96+1.14  13.94£6.81  9.0846.04 49.94 77.3941.00  5.66+1.82  3.47+1.72 68.26 83.5240.87 69.80 69.25£1.75  3.7141.20 52 | 62.99

FairGNN 72.24%1.44 6.88+4.42 2.06+1.46 63.30 70.3345.50 4.67£3.06 3.94+1.49 61.72 77.90£2.21 66.83 67.10£3.25  3.824£2.44  3.62+2.78 59.66
61.05 OOM OOM OOM -

EDITS 72.0840.66 0.8640.76 1.7241.14 69.50 T4.07£0.98  14.11+14.45 15.40+15.76 44.56 73.7445.12

NIFTY 69.9243.64  5.2643.24 5.3445.67 59.32 7094462 6.2243.26 62.28 74.46+9.98 65.48 66.37+£1.51  3.84+1.05  3.24+£1.60 ~ 59.29
GIN FairVGNN | 70.16+0.32 0.43£0.54 0.3440.41 69.39 78.1840.20 2.85+2.01 1.72+1.80 73.61 83.86+1.57 72.42 68.37+0.97 1.88+0.99  1.24+1.06 65.25
FairSIN 70.4040.80 0.3040.29 0.1940.33 69.91 T7.8840.12 0.36+0.72 0.2340.45 7729 4.1740.96 78.00 69.58+0.57 1.1140.31  0.9740.59 67.50
70.8+0.43 0.38+0.39 0.63+0.21 69.79 77.9£0.81 0.73£0.52 1.25£0.75 75.92 4.18£2.71 68.85 69.55+0.45 1.0+£0.98  0.77+0.37 67.78

69.8440.19 0.2740.31 0.3440.41 69.23 78.58+0.7 1.07+0.41 0.9540.95 76.56 85.74+1.27  3.59+0.82 78.80 OOM OOM OOM -
< 72.084£0.93  0.1840.32  0.174£0.23  71.73 | 79.0+0.43  0.3+0.24  0.61+0.36 78.09 | 86.7+0.28 3.44+1.68 80.38 | 69.6+0.35 0.72+£0.31 0.85+0.97  68.03
vanilla 72124176 20.33+£11.82  14.86+10.96 36.93 76.77+0.68 14.31+£6.55 11.78+£5.71 50.68 88.13£1.12 1.13+0.48 84.39 69.03£0.77  3.09£1.29  2.21£1.60 63.73
FairGNN 70.6440.74 7.6548.07 4.184+4.86 58.81 75.2941.62 6.1745.57 5.0644.46 64.06 87.68+0.73 84.02 67.03+2.61 2.97+1.28  2.06+3.02 62.00

EDITS TL68+1.25 8424735  5.6942.16 57.57 74.13+0.59  11.34£6.36  9.38+5.39 53.41 84.4242.87 76.22 0OOM 00M 00M -
NIFTY 69.6041.50 7.74£7.80 5.1742.38 56.69 74.3941.35 10.65£1.65 8.10£1.91 55.64 84.11+£5.49 5.74£0.38 74.30 68.48+1.11 3.84+1.05  3.904+2.18 60.74
SAGE | FairVGNN | 70.004+0.25 1.36+1.90 1.2241.49 67.42 79.9440.30 4.9441.10 2.3940.71 72.61 88.41+1.29 1.14+0.67 85.58 68.50+0.71 1124098  1.13+1.02 66.25
FairSIN 70.40£0.62 0.32+0.25 0.08+0.33 70.00 78.91£0.61 1.38£1.71 0.79+0.94 76.74 88.74+0.42 0.58+0.60 1.49£0.34 86.67 69.12+1.16 1.04£0.83 1.04+0.42 67.04
6840.11 0.2540.22 0.3140.37 67.44 78.5240.53 2.39+1.94 1.34+1.11 74.79 87.9240.47  0.88+0.79 1.44+0.88 85.60 66.80+1.28  0.74+0.65 1.3640.79 64.79

70.0040.44 0.34+0.37 0.46+0.25 69.20 78.5441.06 0.744+0.63 0.924+0.64 76.88 86.43+0.24 0.59+0.71 1.54+1.07 84.30 OOM OOM OOM -

72.56+£0.54 0.17+0.34 0.1940.38 72.20 79.98£0.52 1.46+1.16 0.7240.85 77.80 90.76:1.01 0.4:0.3 1.4£0.96 88.96 69.41+0.81 0.61+0.81 0.87+0.56  67.93

OOM: Out of memory.

to Table C1, we note that the Credit dataset has an astonishing proportion of homo/heterogeneous neighbors (reach to
24:1). This makes it difficult for both LDP and GHP to find suitable heterogeneous neighbors for a node with imbalance
neighborhood. In contrast, FairSIN adopts a generative approach, not only allowing nodes rich in heterogeneous neighbors
to transfer their knowledge to other nodes but also increasing the stability of the model.

Appendix C.7 RQ2: Ablation study

Table C3 Comparison of variants performance (mean + standard deviation). (bold: best).

Encoder | Method | SOT LDP GHP German Credit Bail Pokec.n
ACC (1) ASP(}) AEO(1) ACC (1) ASP(l) AEO(}) ACC (1) ASP(l) AEO(}) ACC (1) ASP(]) AEO(!)
w/o-S v ' 70.02+0.64 0.81+£1.61 0.17+0.34 72.49+4.12 5.29+3.73 3.59+3.29 87.47+0.28 5.5242.5 65.542.06 0.9440.52 1.25+0.89
GCN w/o-D v ' 70.24+0.48 1.06+2.13 0.71+1.43 71.93+3.45 7.3243.68 5.2643.44 85.07+0.68 4.91+1.35 66.85+0.8 2.74+0.32 1.99+0.6
w/o-H v v 70.08+0.53 1.40+0.80 0.38+0.42 76.34+2.46 5.79+2.31 4.8142.26 90.15+0.19 3.44+1.3 4.19+1.87 66.09+0.75 0.93+0.72 1.76+£1.16
FairDHP v v v 70.08+0.16 0.13+0.26 0.0+0.0 77.95+0.72 4.12+1.51 2.88+0.97 | 92.74+0.1 2.90+0.08 1.1+0.18 | 69.35+0.77 0.58+0.30 0.38+0.31
w/o-S ' v 70.88+0.12 0.43+0.85 0.36+0.71 78.33+£1.44 2.31+2.05 1.71£1.28 86.37£1.09  3.23+0.82  3.3542.49 69.46+£0.38 1.0+0.88 0.79+0.32
GIN w/o-D v ' 70.00£0.9 0.85+0.7 0.71+0.43 T7.11+1.37 2.24+1.17 1.84+1.02 82.02+0.66 4.40+2.05 4.86+2.56 68.97+0.91 1.90£1.13 1.03+0.8
w/o-H v v 69.92+0.16 0.64+1.27 0.57+1.13 72.93+£1.7 1.2240.61 0.93+0.46 82.11£0.28 3.84+1.34 2.9+1.29 67.55+0.24 0.92+0.76  0.78+0.62
FairDHP | v v v | 72.0840.93 0.18+0.32 0.17+0.23 | 79.0£0.43 0.30+0.24 0.61+0.36 | 86.70+0.28 3.44=1.68 2.88+1.32 | 69.6£0.35 0.72+0.31 0.85+0.97
w/o-S v v 70.16+0.2 0.5140.64 0.36+0.71 75.834+3.24 4.92: 35 +2.94 90.10£0.41 1.41+0.91 69.240.52 2.194+0.57 0.9740.54
SAGE w/o-D v v 69.76+0.48 0.97£1.95 0.78+1.55 78.5240.53 2.39+1.94 1.34£1.11 88.15+0.34 2.7240.63 67.51£0.36 0.78+0.2 2.1440.69
w/o-H v v 69.92+0.16 0.64+0.85 0.71+0.87 77.92+0.31 3.94+2.4 2.6642.05 88.61+0.74 0.80=0. 3.474+2.23 69.41+£0.93 1.65£0.57  0.67+0.38
FairDHP v ' ' 72.56+0.54 0.17+0.34 0.19+0.38 | 79.98+0.52 1.46+1.16 0.72+0.85 | 90.76+1.01 0.40+0.30 1.40+0.96 | 69.41+0.81 0.61+0.81 0.87£0.56

In order to better demonstrate the role of each component in FairDHP, we conduct ablation experiments. Specifically,
we design three ablated models by removing individual modules:

e w/0-S: FairDHP without sensitive operator;

e w/0-D: FairDHP without local disentangled propagation;

e w/o-H: FairDHP without global heterophily-aware propagation.

To ensure experimental feasibility, the w/o-S utilizes the identity matrix E in place of SOT. Ablation results are shown
in Table C3. We have the following observations.

(1) The accuracy and fairness indicators of w/o-S show significant declines across three GNN backbones and four datasets.
Taking GCN encoder as an example, a 6.0% degradation in classification accuracy can be observed on the Credit dataset,
while the Bail dataset exhibits 1.3 and 4.4 improvements in SP and EO metrics respectively. This is due to the sensitive
operator is extremely important for our method, as it not only assists in the generation of LDP and GHP adjacency matrices,
but also guides the fusion of subsequent fair embeddings.

(2) Similar to the above, the w/o-D and the w/o-H cannot fully complete the task for debiasing. The LDP and the GHP
constitute dual pillars of FairDHP’s fairness-aware MP framework, collaboratively addressing bias mitigation. Losing either
of these two MPs, variants naturally reduce the ability of mitigating the harm caused by sensitive attributes.

In addition, we design some comparison methods for replaceable technologies within component.

Effectiveness analysis of LAd. In Eq. (A4), LAd is utilized to calculate the discrepancy between embeddings h
and h. Here, we replace it with cosine similarity and Euclidean distance. As shown in Figure C1 (b), these two methods
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Figure C1 Experiments for FairDHP: (a) the experimental support theoretical proof, (b) ablation study for fairness sensitivity
with different metrics, (c) ablation study for fairness sensitivity with different calculation formulas, (d) the impact of number of
t-hop neighborhood, (e) the impact of number of regions on fairness, and (f) the impact of number of regions on accuracy.

can only achieve a coarse-grained comparison between embeddings. However, LAd enables fine-grained comparisons across
different nodes, thereby revealing the neighborhood balance properties of distinct nodes.

Effectiveness analysis of counter-sensitive feature. Furthermore, we broke through the framework of embedding
comparison and focus on directly using metrics that characterize neighborhood properties to measure the balance of node
neighborhood. Specifically, we use 1 / degree and 1 / pagerank as alternative for fairness sensitivity and sample subgraphs with
relatively balanced and imbalanced neighborhoods for experimentation. As shown in Figure C1 (c), the two replacement
methods have significant differences in their effectiveness under different neighborhood conditions. Our proposed FS can
better adapt to imbalanced neighborhoods.

Appendix C.8 RQ3: Parameter sensitivity study

To comprehensively evaluate FairDHP’s performance, we investigate the impact of three crucial parameters: the number
of neighbor order ¢, the number of regions P¢ and P¢. In addition, we present the optimal hyperparameters used in the
classification experiment in Table C4.

We conduct comprehensive experiments across four datasets (Pokec_n, German, Credit, Bail) using GCN as the backbone
architecture, with neighborhood orders varied within the range [1, 2, 3, 4]. As quantified in Figure C1 (d), the fairness
curves for Pokec_n, German, and Bail exhibit marginal sensitivity to neighborhood depth, achieving peak fairness at 3-
hop neighborhoods. Notably, the Credit dataset demonstrates distinct behavior: optimal performance emerges at 2-hop



Sct China Inf Sci 12

Table C4 Hyperparameters by encoder and dataset.

Encoder epochs 1r MP hidden t P PC

F GCN 50 0.001 1 32 2 50 60
g

G H GIN 50 0.01 1 32 2 60 60
4}

SAGE 100 0.001 2 32 3 40 40

. GCN 100 0.01 2 64 3 60 70
3

5 H GIN 100 0.01 2 64 3 60 60

SAGE 100 0.01 2 32 3 60 60

GCN 50 0.01 1 32 2 50 50
3

o GIN 50 0.01 1 32 2 40 40

SAGE 50 0.01 1 32 2 50 60

5 GCN 100 0.001 1 64 2 60 60
H

3 GIN 200 0.001 2 32 3 60 40
[

H SAGE 100 0.001 1 64 2 70 70

(ASP = 4.69), while 4-hop configurations induce significant degradation (ASP = 5.9). This phenomenon is attributed to
Credit’s high edge density, where 3-hop neighborhoods already encompass the entire graph, so higher-order neighborhood
would not bring more heterogeneous nodes.

To investigate the synergistic effects of hyperparameters P¢ and P¢ on FairDHP, we conduct experiments on the Bail
dataset using GCN as the backbone architecture. Both P¢ and P¢ are selected from the set [10, 20, 30, 40, 50, 60, 70 ,80].
As depicted in Figure C1 (e) and (f), we analyze the impact of the number of region on both accuracy and statistical parity.

In order to better compare the impact of different numbers of regions on fairness, we present statistical parity in reciprocal
form. From (e), we observe that our FairDHP has a sensitive range for the number of regions. It is worth noting that
larger or smaller P¢ and P¢ values are not suitable for our method. This phenomenon can be attributed to the interaction
mechanism between region granularity and information propagation. When employing smaller P¢ and P€ values, nodes are
clustered into coarser regions containing substantial heterogeneous neighbors, inevitably introducing noise during message
passing. Meanwhile, larger parameter values can lead to excessive homophily within class clusters, making it difficult to
generate cross-region shared nodes and resulting in insufficient heterophily propagation. From (f), the selection of these
values also has an impact on producing high-quality embeddings of downstream tasks. The sensitivity of fairness and
classification performance to the number of regions is basically consistent, which proves that our proposed FairDHP can
achieve the fairness-utility trade-off.
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