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Appendix A Related work
Appendix A.1 Online learning

Online learning (OL) is a family of stream machine learning algorithms designed to incrementally build models from
sequential data [1]. Existing OL approaches fall into two main categories. The first category refers to conventional OL
algorithms modified from traditional machine learning models. For example, the Hoeffding tree (HT) has been proposed to
construct decision trees online from data streams [2]. Subsequently, an adaptive random forest (ARF) has been developed to
handle concept drift scenarios [3]. Specifically, once concept drift is detected, ARF resets its base trees to adapt to the new
concept. Traditional online machine learning methods also include passive-aggressive (PA) [4], perceptron [5], leveraging
bagging (LB) [6], etc. Despite simplicity, all of them fail to extract effective features and learn complex nonlinear functions
from data streams and thus degrade their accuracy. Moreover, several OL methods based on singular value decomposition
(SVD) have been proposed and gained significant attention in recent years, such as adaptive subgradient method with
diagonal matrix proximal functions (ADA-DIAG) [7], RADAGRAD [8], frequent directions-based sketched online Newton
(FD-SON) [9], adaptive online learning via fast frequent directions (ADA-FFD) [10], Sketchy-ADAGRAD (S-ADA) [11],
and follow the fast sketchy leader (FTEFSL) [12]. Regrettably, these methods cannot address the issue of concept drift.

Inspired by deep learning [13,14], the second one is online deep learning, which aims to learn a deep neural network on
the fly. To be specific, online gradient descent (OGD) has been proposed to update network weights using gradients when
a sample arrives [15]. Since network depth is difficult to determine in advance, [16] proposed the hedge backpropagation
(HBP) to dynamically integrate multiple layers of neural networks, which is of great significance for subsequent research.
Subsequently, [17] proposed an autonomous deep learning (ADL) model that can construct its network structure from
scratch by adjusting its depth and width without an initial one. To solve the online hyperparameter optimization challenge
of neural networks, a continuously adaptive neural network for data streams (CAND) [18] has been proposed, which
chooses the best model from a candidate pool of neural networks trained with different hyperparameter combinations. An
adaptive tree-like neural network (ATNN) has been proposed to mitigate the catastrophic forgetting problem by choosing
suitable positions on the backbone to grow branches for the new concept [19]. To further handle concept drift and sub-
network optimization conflict issues, elastic online deep learning (EODL) has been proposed, including depth adaptation
and parameter adaptation strategies [20]. Despite significant progress, none of them has gotten rid of gradient descent
algorithms. In other words, all of them execute only a single error backpropagation and weight update when a new sample
arrives. These algorithms are far from enough to ensure the optimality of their model weights for future predictions. Hence,
developing an OL framework based on closed-form solutions becomes crucial.

Appendix A.2 Incremental broad learning system

Due to its efficiency and versatility, broad learning system (BLS) has been widely used for a variety of tasks [21-26].
In particular, substantial works have been presented for incremental machine learning tasks. The first data incremental
algorithm for BLS is deduced from Greville’s theory [27], which we refer to incremental BLS (I-BLS) in this study [28].
However, the performance of I-BLS dramatically degrades when learning a new class or task. To this end, the task-
incremental broad learning system (TiBLS) and broad learning system-based class incremental learning (BLS-CIL) have
been proposed based on residual learning and graph regularization, respectively [29,30]. Furthermore, motivated by the
fact that I-BLS still fails to improve accuracy when the size of the training data is not roughly equal for each addition,
Zhong et al. have proposed a robust incremental broad learning system (RI-BLS) [31]. Among them, TiBLS stacks a new
BLS module on the current model whenever a new task arrives. It views each new training sample as a new task in an
online machine learning scenario. Therefore, a new BLS model needs to be learned. Inevitably, it imposes an expensive
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Figure B2 The online learning process of our proposed Online-BLS.

computational overhead and does not meet the requirements for efficient OL. In contrast, the remaining three algorithms
only need to fine-tune their weights based on new arrivals, which is relatively efficient. Despite their feasibility, none of
them can avoid matrix inversion operations. Thus, the defects of matrix inversion still come along with them.

Appendix B Method
Appendix B.1 Problem setting

In this study, we focus on online data stream classification tasks. The input data sequence can be represented as

{sk := (X, ¥K)|k=1,2,--- ,n}, where x;, € R? denotes the k-th sample with d feature values and y; € R? is the one-
hot target. ¢ is the total number of categories. A sequence of models 71,72, -+ , 7, are generated on the given data stream
$1,S2,- -+ ,Sp as shown in Figure B1. The model 7, : R4 — R? depends solely on its previous status m_; and the most

recent data point s;. To be exact, when a sample x;, arrives, the prediction yj is obtained using 7 _ first. Subsequently,
metrics are updated based on y and §,. Lastly, the updated online learning model 7y, is obtained through a single online
update. To accomplish the above tasks, our Online-BLS method proposed in this study contains two main modules: an
effective weight estimation algorithm (EWEA) and an efficient online update strategy (EOUS). The OL process of Online-
BLS is shown in Figure B2. Since EWEA is used to estimate model weights and is an indispensable part of its online weight
update step, while EOUS only aims to improve its online learning efficiency. Following the introduction of our Online-BLS
framework, we detail EWEA before EOUS.

Appendix B.2 Online-BLS framework

In this section, we derive an Online-BLS framework. It provides a closed-form solution for each online update step and
therefore resolves the issue of suboptimal online model weights.

Given the first sample x; € R%, assume there are no feature layers and ny4 enhancement layers. The outputs of the
i-th feature layer (i.e., the i-th group of feature nodes) z; € R™! and the j-th enhancement layer (i.e., the j-th group of
enhancement nodes) h; € R"3 are defined as

ol =o(x[ Wy +6]). =120, (B1)

hj:a(xfwejJrﬁJj), j=1,2,- ,na. (B2)
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Here, Wy, € Réxn1 W, € Rdxn3 By; € R™, and fe; € R™3 are randomly generated weights and biases. ¢(-) and o(-)
are generally a linear transformation and a nonlinear activation, respectively. Through incorporating linear and non-linear
features, the broad feature vector a; is defined as

T T T T T T T
al 2 [z],25, ,2,,,h] ,hy, -+ b |. (B3)

1 fngs

Then, the prediction of x; can be calculated as le = alT(-B(O), where ®(©) is a zero matrix. After y; is revealed, the

2
corresponding optimization problem is formulated as ®(1) = argmin ’a?@ — yﬂ + A |©®|?, where | - | denotes the Ly
)

norm. A is a positive constant. Since it is a convex optimization problem, we derive its gradient with respect to ® and set
it to 0. Then, we have

(:11611r + AI) ©=ayy/. (B4)

When the k-th sample xi(k = 2,3, -+ ,n) arrives, aj is obtained by replacing x; in Eq. (B1) and Eq. (B2) with xg.
Then, its prediction is }7; = a,;r(-)(kfl). Suppose we retrain ©(%) with the first k samples, Eq. (B4) becomes

(lar, - akllar, - vak] T+ A1) © = [ar, - ,ag]lyr, - yel T (B5)
Let K1) = alalT + A, we have K(%) = [ay,--- ,a;][a1, - ,a;] " + AI=K&-1D 4 aka; and
k—1
[ar, - s akllyr, -, yk] T = ZaiyiT +apy, =KFDOE fayl —KHO* 1 —a; (af@*~V —y[). (B
i=1

Substituting Eq. (B6) into Eq. (B5), we have
K®MAae =B®, (B7)

where A® = © — ©F-1 and BK) = a,, (y;r - a;r@(kfl)).

Importantly, the right-hand terms of Eq. (B4) and Eq. (B7) are equal when k is equal to 1 (i.e., B() = a1y, ). Thus,
we conclude that the matrix @) solved via Eq. (B4) and Eq. (B7) is equivalent if and only if @) = 0 and K(®) = AI. In
other words, we only need to solve Eq. (B7) to get A@®(F). Then, we have

ok k-1 L A0, k=12 ,n. (B8)

Since Eq. (B7) has a closed-form solution, our Online-BLS framework is completed without a gradient descent step. The
algorithms for accurately and efficiently deriving closed-form solutions to Eq. (B7) will be described in later sections.

Appendix B.3 Effective weight estimation algorithm

To solve A® accurately, we propose an EWEA based on Cholesky factorization and forward-backward substitution. Since
K*) is always a symmetric positive definite matrix, we perform a Cholesky decomposition on K(*) to obtain K() =

<
L&) (L(k)) , where L(%) is a lower triangular matrix with positive diagonal entries.

Proposition B1. Let A > 0. Then, K(*) is a symmetric positive definite matrix.
Proof.

The proof is completed from symmetry and positive definiteness.

1) Symmetry: Clearly, K(©) = AIis symmetric. Assuming K(*=1) is symmetric, we have (K(k>)T = (KUC*I> + aka;)T
=KGE-1) 4 aka};r =K. According to mathematical induction, K(*) is symmetric when k > 0 and k is an integer.

2) Positive definiteness: For any nonzero vector £ € R™, where m represents the broad feature dimension (i.e.,
m =nji Xnz+n3Xng), we have ETKOg = \e¢TIe = A€|% > 0, since A > 0. Thus, K is positive definite. Suppose K(*—1)
is positive definite, that is T K*~1¢ > 0. Then, we have £ TK®)¢ = ¢T (K““’l) +aka,1—) £ =¢TKGE-De 4 (a;f)z.
The first term is strictly positive by the induction hypothesis, and the second term is nonnegative. Hence, ETK(’“)S > 0,
and K®*) is positive definite.

In conclusion, K(¥) is symmetric positive definite, which completes this proof.

Thus, Eq. (B7) can be solved via the following two equations:

L*®C =B® (Forward substitution), (BY9)
T
(L(k>) AOG=C (Backward substitution). (B10)
Here, C is an intermediate variable. Denotes B(¥) = [b1,--- ,bm]T, where m represents the broad feature dimension (i.e.,

m = ni1 X na + n3 X ng), using forward and backward substitution, the solutions of Eq. (B9) and Eq. (B10) are given by
Algorithm B1. Then, our weight matrix ®(*) can be obtained online by Eq. (B8) without resorting to the numerically
unstable matrix inverse operation. The corresponding error bounds are discussed in Appendix B.6.1.
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Algorithm B1 Forward-backward substitution algorithm

Input: Lower triangular matrix L) € R™*™  right-hand term B®*) ¢ R™**,
Output: Incremental weight AOWF),
1: Let lgf) denote the (4, j)-th entry of L),

2: // Step 1. Forward substitution
T T
3: The first row of C: c;r = (byc)) /l;?, where (bgk)) denotes the first row of B,
4: for 1 =2,3,--- ,m do
T - T

5: The i-th row of C: c;r = ((bik)) — E;=11 lf;:%:;) /lif), where (bgk)) denotes the i-th row of B().
6: end for
7: // Step 2. Backward substitution

T
8: The m-th row of A®*); (A(Jgf)) = c;/lgf,)n, where c; denotes the m-th row of C.
9: for j=m—-1,m—-2,---,1do

. ) B\ T ) k DA k .
10: The j-th row of AWK, (A9§ )) = (c]T — :=j+1 l;.d) (AG; >) )/l;j)7 where c; denotes the j-th row of C.
11: end for
" (k)T ®) T T

12: Assemble A@M) = | (a0?) ", (A0V) ", (a00)

Appendix B.4 Efficient online update strategy

To avoid expensive Cholesky decompositions for each online update, we discuss below how to efficiently derive L®) from
T
L*=1 and ay, where K® = LK) (L(k)) . Motivated by the rank-one update strategy [32], we first cascade the k-th

broad feature aj and the previous Cholesky factor L*=1 | forming [ay, L(k_l)]. The core idea for answering the above
question is to construct an orthogonal matrix G that can transform the augmented matrix as follows:

G [ap, LED] " = (0, DT, (B11)

where G is a sequence of orthogonal Givens matrices of the form G = G;,,G,,—1---G;. Here, G; is responsible for
converting the i-th element of aj to 0. Next, we first assume that the orthogonal matrix G satisfying the above requirements
exists to derive our key conclusion. Then, we discuss how to construct the matrix G.

From Eq. (B11), we have

[0,E] [0,.L] ' =LL" = [ax, L& V] G7G [a,, LEV] T =Lt (LED) T fagal =KED yaal,  (B12)

=I

since G is an orthogonal matrix. Thus, L = L*) is the updated Cholesky factor we need. In other words, as long as we find
the orthogonal matrix G and perform the orthogonal transformation in Eq. (B11), we can quickly obtain the new Cholesky
factor L(®) whilst avoiding re-performing the expensive Cholesky decomposition. The improvement in time complexity will
be discussed in Section Appendix B.6.2.

Next, we consider how to construct the above Givens matrix G. Let our initial augmented matrix Mg be

Qg1 a2 ot Qpm
JE=D =) =)
N Yo gGen
T a - -
Mo = [ak»L(k_l)} - (L(kicl))T = L , (B13)
0 0 ... kD

our aim is to create a series of Givens matrices to eliminate each element in the vector ag. To eliminate a1, we construct
a Givens matrix G and apply it to Mg to produce a new matrix Mj:

! /
a1 ak2  Qkm 0 ay, ceeag

o

cp —s1 0 ---

2 m
_ _ _ 1/ Y Y
e N R ] W e el
k—1 k—1 k—1 k—1
M; =G My= |0 0 1--0 0 l§2 )"'l£n2> = 0 152 )"'linz> , (B14)
k— —
0 0 0---1 0 0 -k 0 0 o 1ED

2 2
where ¢; = lﬁ*l)/ (lﬁ*l)) + azl, s1 = akl/ (l§]§71)) + azl. Analogously, to eliminate ags, we construct a Givens
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Algorithm B2 Online-BLS algorithm

Input: Stream data {sy := (xx,yk) | kK =1,2,- - ,n}, parameters ni, no, ng, ng, and .
Output: Prediction results {§1,92, - ,¥n}-

1: Initialize ®® = 0, L(®) = Chol(AI)

2: for k=1,2,--- ,n do

3: Receive instance: xp

4: Obtain broad feature aj via Eq. (B1), Eq. (B2), and Eq. (B3)

5: Predict §, = a, ©*~1D and then reveal yj,

6: Obtain the updated factor L*) by Eq. (B11)

7:  Obtain ®*) by Algorithm B1 and Eq. (B8).

8: end for

matrix Gg and apply it to M to produce a new matrix May:

[e5 0 =52 0 --- 0]
N 0y - af, 0 0 afy - oaf,
01 0 00 o1y (k=1) (k—1)/ (k=1)! y(k=1)' (k=) (k—1)/
590 ¢3 0 0 111 lz1 lml l11 l " l . lml ”
(k—1) (k—1) k 1 k—1 k—1
M;=GaMi= |, 4 o 1.0 0 Iy SRR A = 0 l( ) éQ DA 15712 ) . (BI5)
I | R I

werees = 8570/ (85) (1), 00 = [ (570) + o)

The above process is repeated m times, yielding G1, My, GQ,MQ, -+, G, My, sequentially, where M,, is our final
matrix as shown in Eq. (B11). Thus, our final Givens matrix is G = G, Gp—1 - -- G1.
Remark 1. The Givens matrices (G1,Ga, -+, Gp,) only alter the elements of specific two rows within the augmented
matrix. Thus, in implementation, it is unnecessary to perform the full matrix multiplication as shown in Eq. (B14) and
Eq. (B15). Instead, it is more efficient to multiply the reduced 2 x 2 Givens matrix by the specific two rows within the
augmented matrix. Thus, the Givens transformations in Eq. (B14) and Eq. (B15) can be rewritten as

c1 —s1 arl  aga o Qkm | 0 al ceeal
Ml[{071}7:]:GIIMO[{Ozl}::]:|: :| |:(k 1) (k 1) (k—1) = (k 1)/ (kk21)/ (kk,qb)/ ) (B16)
S1 A 11 2 by ¥ Iy o
and
Mo[{0,2).:] = GLM, [{0,2).:] = | 2| [0 @2 @ f_ |0 0 i e (B17)
2 5 ;o] = Golvlg 5 = _ _ = 1\ Y ENN7A I
o e ] [0l a0 T o ey g

respectively, where M[{¢, j},: ] denotes extracting rows ¢ and j of matrix M. G; indicates the j-th reduced Givens matrix.

Remark 2. The Cholesky factor requires that the elements on the main diagonal are greater than 0. Thus, if I:jj <0,

we simply filp ¢; < —¢; and s; < —s;. Then, L;; > 0 becomes satisfied.

Remark 3. The function Chol(M) refers to the Cholesky factorization of M and returns its lower triangular factor L.
The Online-BLS algorithm is summarized in Algorithm B2.

Appendix B.5 Handing concept drift

Concept drift is a common challenge in data streams, where the joint distribution of features and labels change over time.
Existing incremental BLS algorithms cannot handle concept drift scenarios in stream learning. Thanks to the flexibility of
our Online-BLS framework, we are able to adopt a simple solution to the concept drift problem, by modifying two lines of
code upon Algorithm B2, which is listed in Algorithm B3. The core idea is that learning the time-varying concept with
new data is better than with old one. Technically, more attention to new data is encouraged by multiplying history by a
decay factor p. Its effectiveness will be verified across four non-stationary datasets.

Appendix B.6 Theoretical analysis
Appendix B.6.1  Error bound analysis

First, we analyze the performance advantages via a discussion of their error bounds. The following lemmas are first
introduced before deriving theoretical errors.

Lemma B1. The solution @ derived via forward substitution satisfies (L +T'1) ® = Y, |T'1| < Crpu|L| + O(u?), where
L € R™X™ js a lower triangular matrix, Cy, denotes a constant positively correlated with m, and O(uz) represents an error
tail term.
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Algorithm B3 Handling concept drift

Input: Stream data {sy := (xx,yk) | kK = 1,2, -+ ,n}, parameters ni, na, ns, na, A, and decay factor pu.
Output: Prediction results {§1,92, - ,¥n}-

1: Initialize ®® =0, P(Y =0

2: for k=1,2,--- ,n do

3: Receive instance: xp

4: Obtain broad feature aj via Eq. (B1), Eq. (B2), and Eq. (B3)

5: Predict §, = a, ©*~1 and then reveal yy,

6: P® = PED Laral L®) = Chol(P® 4 AI)

7:  Obtain ®®) by Algorithm B1 and Eq. (BS8).

8: end for

The detailed proof can be referred to [33]. Lemma B1 states that its solution satisfies a slightly perturbed system. Also,
each entry in the perturbation matrix I'; is much smaller than the corresponding element in L.

Remark 4. Vz € R, its floating-point representation is given by fl(x) = x(1+4+), where 7 is the floating-point error and its
upper bound, unit roundoff u, (i.e., |y| < u) can be defined as u = %X (gap between 1 and next largest floating point number).
To be specific, the unit roundoff for IEEE single format is about 10~7 and for double format is about 10~16.

Lemma B2. The solution ©® derived via backward substitution satisfies (LT + 1"2) 6= Y, |T2| < Cmu|LT| + O(uQ),
where LT is an upper triangular matrix.

The proof also refers to [33].

Recall that the incremental weight A@®(%) in Online-BLS is solved via Eq. (B9) and Eq. (B10). Therefore, its error
bound is given in Theorem B1. For brevity, we omit the superscript (k) in this section.

Theorem B1. Let L be the estimated Cholesky factor L, we have LL.T A® = (LLT +I‘) AO =B with  B-LLT A®| =
T|AB| < CrulL|[LT||AB] + O(u?).

Proof.  From Lemmas B1 and B2, we have (L+F1)C =B,|T'1| < Cu|L|+0(u?), (LT—i—I‘g)Aé) = C, |T2| < Cmu|LTH-
O(u?), and thus B = (L +T1) (LT +T2) A® = (LLT 4 LT3 + T1LT + T1T3) A®. Thus, we find (LLT + T)A© = B
with |T| < |L||T2| + [T1]|JLT | + O(u?) < Conu|L||LT | + O(u?) such that |B — LLT A®| = |T'||A®| < CrrulL||LT ||AB| +
O(u?). Thus, we can conclude Theorem B1.

As for the previous I-BLS, BLS-CIL, and RI-BLS, none of them avoids computing the inverse of a large matrix, which
means to obtain A® = fI ((ATA + )\I)_lB) with rounding errors. Then, we have A® = ((ATA +AI) 7 + I‘)B, T <
Cmul(ATA4+AD) " [+0O(u?), and (AT A+AI)AG = B+(ATA+ADTB. Thus, their error bound is [B—(ATA+AI)AB| <
Crul (AT A + AD|[(ATA + AL~} [[B| + O(u?) < Crou[LILT[(AT A + M)~ [[B| + O(u?).

Since A is generally an ill-conditioned matrix for BLS, there exists |A®| < [(AT A + AI)~1||B|. In other words, for a
single model update during online learning tasks, the error bound of our proposed Online-BLS is significantly lower than
that of existing incremental BLS methods.

Appendix B.6.2 Time complexity analysis

In this section, we consider only the multiplication and addition operations in matrix multiplication, while other operations
(e.g., vector subtraction and matrix-scalar multiplication) are omitted. From Algorithm B2, it can be observed that the
primary computational overhead arises in Steps 6 and 7. Specifically, a single Givens transformation in Step 6 requires
approximately 8m floating-point operations (see Eq. (B16) and (B17)). Since a total of m Givens transformations are
required, the total floating-point operations and asymptotic time complexity of Step 6 are 8m? and O(m?), respectively.
Before Step 7, we first compute B(¥) = ay, (y;— - a;r@(k*l)), which requires 4mt floating-point operations with a time

complexity O(mt). Step 7 executes Algorithm B1 to attain A@¥) and derives © (%) using Eq. (B8). The computational cost
of Algorithm B1 lies in Steps 5 and 10, while that of Eq. (B8) is negligible. The total number of floating-point operations
and time complexity for Steps 5 and 10 in Algorithm C1 are 2m?t and O(m?2t), respectively. Thus, our Online-BLS has
a total approximate floating-point operation count and time complexity of 2m?t + 8m?2 + 4mt and O(m2t + m? + mt),
respectively. The time complexities of I-BLS, BLS-CIL, and RI-BLS are O(km + m2 + m? + mt)/O(km + m + mt),
O(m3+m?t+m? +mt+m), and O(m>+m?t+m? +mt), respectively. From these results, several noteworthy observations
can be drawn. First, the time complexity of I-BLS contains the primary term of k. That is, as the number of samples
received by I-BLS increases, its online update time overhead increases linearly. This is quite terrible for online learning
tasks, which tend to have a lot or even an infinite number of samples. Second, both BLS-CIL and RI-BLS eliminate the
dependence on k in their time complexities. However, their complexities are dominated by the O(m3) term. This cubic
complexity arises from the necessity of performing a full matrix inversion or decomposition on an m X m matrix at each
update step, incurring a severe computational bottleneck for large m. Finally, the most remarkable advantage of Online-BLS
is the elimination of the O(m?) term. This is attributed to our EOUS and EWEA methods, which update the Cholesky
factor online and utilize forward-backward substitution to replace matrix inversion, respectively. Thus, our Online-BLS
algorithm is remarkably efficient and well-suited for online machine learning tasks.

Appendix C Experiments

The most common prequential test-then-train experimental paradigm is adopted unless otherwise specified. All experiments
are conducted on a machine running Ubuntu 20.04 with an AMD EPYC 7302 CPU.
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Table C1 Descriptions of datasets. IS: image segment; IA: input attributes; C: classes; DP: data points (train/test).

Dataset 1A C DP Type Dataset IA C DP Type
IS 19 7 2,310 Stationary Gisette 5,000 2 6,000/1,000 Stationary
USPS 256 10 9,298 Stationary Epsilon 2,000 2 400,000/100,000 Stationary
Letter 16 26 20,000 Stationary Hyperplane 20 2 100,000 Concept drift
Adult 14 2 45,222 Stationary SEA 3 2 100,000 Concept drift
Shuttle 8 7 58,000 Stationary Electricity 6 2 45,312 Concept drift
MNIST 784 10 70,000 Stationary CoverType 54 7 581,012 Concept drift

Appendix C.1 Datasets and metrics

A total of 12 streaming datasets are used in this study, as summarized in Table C1. Among them, there are 8 stationary
datasets and 4 non-stationary datasets with concept drift. Next, we introduce them in detail below. Image Segment: The
Image Segment dataset is an image classification benchmark described by 19 high-level numerical attributes. Its samples
are randomly sampled from a dataset containing 7 outdoor images. The images are manually segmented, with each pixel
assigned a class label. Each instance contains a 3 x 3 region, resulting in a total of 2,310 samples distributed across seven
classes brickface, sky, foliage, cement, window, path, and grass. USPS: The USPS dataset is a benchmark for handwritten
digit classification, consisting of 9,298 samples from 10 classes ranging from 0 to 9. Each sample is a 16 x 16 grayscale
image. To facilitate BLS modeling, we flatten each sample into a one-dimensional vector. Letter: The Letter dataset is
a benchmark for capital letter classification in the English alphabet. It contains 20,000 samples. Each sample contains
16 primary numeric attributes (statistical moments and edge counts), which are then scaled to an integer value range of 0
to 15. Adult: The Adult dataset is used for a binary classification task, aiming to predict whether a person earns more
than 50k a year based on 14 attributes. It has both numerical and categorical attributes. We first convert categorical
attributes to integers that the model can handle easily. Then, samples with missing values are removed, and the training
and test sets are merged. Eventually, the Adult dataset has a total of 45,222 samples. Shuttle: The Shuttle dataset is
a seven-class classification dataset, including Rad Flow, Fpv Close, Fpv Open, High, Bypass, Bpv Close, and Bpv Open.
There are 9 numerical attributes, the first of which represents time. Thus, we remove the first column of attributes and
use the remaining 8 attributes to predict one of the seven categories. MINIST: The MNIST dataset is a handwritten digit
recognition benchmark. Each sample is a grayscale image with 28 x 28 pixels. The training and test sets are merged to
yield a dataset containing 70,000 samples uniformly distributed from digits 0 to 9. To adapt this dataset for our model,
each sample is flattened into a vector, and each attribute is normalized to fall within the range [0, 1]. Gisette: The Gisette
dataset is a handwritten digit recognition problem that involves distinguishing between the highly confusable digits 4 and
9. By combining raw pixel values with additional noise features, it reaches a feature dimensionality of 5,000. There are
a total of 6,000 training samples and 1,000 test samples. Epsilon: The Epsilon dataset is a popular binary classification
task, whose features have been suitably preprocessed by its publisher. It contains 400,000 training instances and 100, 000
test instances, each comprising 2, 000 numerical features.

For non-stationary datasets, we choose two synthetic datasets and two real-world datasets. The synthetic datasets,
Hyperplane and SEA, are generated using the River package. The two real-world datasets originate from actual applications
and often exhibit complex and unpredictable concept drift. Hyperplane: The Hyperplane dataset is an artificial binary
classification task. Its task is to divide points in a d-dimensional space into two classes by a (d — 1)-dimensional hyperplane.
A sample is labelled positive if it satisfies 2?21 w;x; > wo and negative if the opposite is true. By smoothly varying
the parameters of the classification hyperplane, concept drift can be added to the generated data stream. Specifically,
following [20], we generate a data stream containing 20 features. Its noise level and drift magnitude are set to 1% and
0.5%, respectively. SEA: The SEA dataset is also a synthetic binary classification benchmark. Each sample contains three
features, of which only the first two are relevant to its label. If the sum of the first two features of a sample exceeds a
certain threshold, then it is a positive example; otherwise, it is a negative example. There are four candidate thresholds.
Concept drift is introduced by switching thresholds at the 25,000-th, 50,000-th, and 75,000-th data points. Moreover,
following [20], the noise level we introduce in the process of data stream generation is 10%. Electricity: The Electricity
dataset is a binary classification benchmark, whose goal is to predict whether the electricity price of Australian New South
Wales will increase or decrease. The prices in this market are dynamic and influenced by supply and demand, with updates
occurring every five minutes. Each sample originally contains 8 attributes. Following [20], we delete the attributes of date
and time located in the first two columns and keep the remaining 6 attributes. This dataset contains 45,312 instances,
and its concepts fluctuate over time. CoverType: The CoverType dataset is used to predict 7 forest cover types from 54
features of each instance. The feature types include integer and category types. First, we convert the categorical type to
an integer for ease of handling. Then, the CoverType dataset has 581,012 instances with unknown concept drift.

Next, we introduce the seven metrics used in this study. Online cumulative accuracy (OCA): The OCA is used
to evaluate the overall performance of online learning models and is defined as OCA = %Zzzl Iig,=y,), where I is
the indicator function. §i and yj represent the prediction and ground truth of the k-th instance, respectively. Online
cumulative error (OCE): The OCE is used to evaluate the overall error rate during the online learning process and
is defined as follows: OCE = %Zzzl I(g#y,)- Note that the sum of the OCA and the OCE at the same time step is
always 1. Balanced accuracy (BACC): The BACC treats all categories equally, making it more reliable for data streams
with imbalanced classes. It is defined as follows: BACCy = (25:1 nZ; /ncl) /¢, where n£ and nc, denote the number
of correctly predicted instances and instances belonging to the i-th class, respectively. c represents the total number of
classes, and k is the current time step. Average balanced accuracy (AVRBACC): The AVRBACC is the average of the
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Table C2 Experimental results (mean+tstandard deviation %) under three metrics of OCA, Macro F1 and MCC on the first six
stationary datasets. Note: Bold indicates the best result, while underlining denotes the second-best result.

Method Metric 1S USPS Letter Adult Shuttle MNIST
OCA (1) 73.6+£19.80 61.1+£40.10 59.4+27.30 71.3+£13.60 86.6+20.10 83.5+24.40

I-BLS Macro F1 (1) 71.6+22.20 58.9+42.00 58.0+28.40 46.7+05.84 37.1+09.73 82.7+26.20
MCC (1) 69.5+23.10 57.4+43.70 57.9+28.40 12.74+04.21 70.2+30.50 81.6+27.00
OCA (1) 83.6+0.423  93.740.239 79.7+0.711 75.4+0.020 95.9+0.299 89.9+0.180

BLS-CIL  Macro F1 (1) 83.0+0.487  93.140.279 79.34+0.753 44.7+0.144 51.4+02.78 89.7+0.189
MCC (1) 81.140.472 93.01+0.268 79.0+0.737 07.6+0.292 88.2+0.872 88.8+0.200
OCA (1) 89.9+0.668 92.8+0.228 87.6+0.541 72.0+0.856 90.2+1.100 89.9+0.246

RI-BLS Macro F1 (1) 90.040.662 92.1+0.240 87.6+0.548  60.740.441 46.3+1.390 89.840.253
MCC (1) 88.2+0.778 91.940.256 87.1+0.562 21.61+1.050 75.3+2.530 88.8+0.273
OCA (1) 90.840.229 93.61+0.386 88.940.137 76.4+0.051 98.240.026 92.510.105

Ours Macro F1 (1)  90.84+0.246  93.0+0.380  88.9+0.132  51.5+0.246  77.74+2.650 92.4+0.107
MCC (1) 89.21+0.268  92.9+0.429  88.51+0.142 18.64+0.375  94.94+0.076 91.7+40.117
1S USPS Letter Adult Shuttle MNIST
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Figure C1 The mean and standard deviation of online update time on the first six stationary datasets.

balanced accuracy over all time steps, reflecting the overall performance of the online learning model throughout the learning
process. It has the following definition: AVRBACC = ZZ=1 BACCy /n, where n is the number of instances received by
the online learning model. Macro F1 score (Macro F1): Since most of the datasets we use are class-balanced, we use
Macro F1, and its definition is Macro F1 = % 25:1 (2 gzigj ), where R; and P; denote the recall and precision of class
i, respectively. Matthews correlation coefficient (MCC): The MCC is generally considered a better metric than F1
score and accuracy. Its essence is a correlation coefficient value between —1 and 1. The coefficients +1, 0, and —1 represent
a perfect prediction, an average random prediction, and an inverse prediction, respectively. Taking binary classification as
an example, its formula is MCC = (TP x TN — FP x FN)/\/(TP + FP)(TP + FN)(TN + FP)(TN + FN), where TP, TN,
FP, and FN denote the number of true positives, ture negatives, false positives, and false negatives, respectively. We call
sklearn’s function to acquire MCC in our experiments. Test accuracy (TA): To compute TA, it is necessary to partition
our dataset into training and test sets. The model is trained on the training set in an online manner, and then its accuracy
on the test set is calculated.

Appendix C.2 Experiments on stationary datasets

Appendix C.2.1  Comparison with incremental BLS methods

In this section, we compare Online-BLS with existing incremental BLS algorithms on the first six stationary datasets. To
ensure fairness, we set the parameters common to all comparison methods and Online-BLS to be the same. Specifically,
ni, ng, n3, and n4 were set to 10, 10, 1,000, and 1, respectively. The regularization parameter A\ was set to le — 8 for
I-BLS, RI-BLS, and Online-BLS. For BLS-CIL, A\; and A2 were set to 1 in its original paper, which is unstable in our online
learning task. Therefore, we tuned both to 0.1 to achieve better performance. To draw credible conclusions, we repeated
each experiment 10 times by changing the order of streaming data and the initialization model parameters.

The mean and standard deviation of the final OCA, Macro F1, and MCC over 10 independent runs are shown in Table C2.
First, our proposed Online-BLS exceeds all baselines on OCA for 5 out of 6 datasets. For the USPS dataset, the OCA
of Online-BLS is also very close to the highest one. Also, our Online-BLS exhibits low standard deviations, indicating
excellent stability across different experimental trials. As for Macro F1 and MCC, we can observe similar experimental
phenomena. To our surprise, our Online-BLS outperforms the second place by 26.3% and 6.7% on the Macro F1 and MCC
metrics of the Shuttle dataset, respectively. To prove the efficiency of Online-BLS from a numerical perspective, we define
the time required for a model to update its parameters after receiving an instance as the online update time. The mean
and standard deviation of the online update time for each method throughout its entire online learning period are shown in
Figure C1. First, our Online-BLS has the shortest online update time, indicating that our method is very efficient. Second,
we find that the standard deviation of the online update time of I-BLS increases as the number of instances grows. These
results are also consistent with the time complexity analysis in Appendix B.6.2. Figure C2 shows the convergence curves
of all the methods. The sum of OCE and OCA is one. Online-BLS consistently converges rapidly and outperforms all
baselines at almost all time steps on these six datasets, further reaffirming the effectiveness of our method. Furthermore,
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Figure C2 The convergence curves of mean and standard deviation of OCE on the first six stationary datasets.

Table C3 The average and standard deviation (%) of TA on the Gisette and Epsilon datasets. Note: The standard deviation is
not available from reference [12].

Dataset ~ADA-DIAG RADAGRAD FD-SON ADA-FFD (M) ADA-FFD (P) S-ADA  FTFSL Ours
Gisette 96.71 96.90 97.14 97.28 97.18 97.40 97.63 98.0010.32
Epsilon 88.89 87.98 88.96 89.03 88.84 89.04 89.23 89.82+40.02

Table C2 and Figure C2 show that I-BLS exhibits a large standard deviation in performance. This instability is because the
online learning algorithm of I-BLS updates its inverse matrix using Greville’s theory, which incurs considerable numerical
error. The multi-step update process of online learning further amplifies this error accumulation, leading to substantial
performance fluctuations across different trials. On the contrary, our Online-BLS avoids matrix inversion via employing
Cholesky factorization and forward-backward substitution, thereby achieving higher numerical stability.

Appendix C.2.2 Comparison with matriz decomposition-based OL methods

In this part, we focused on comparing Online-BLS with SOTA matrix decomposition-based OL methods, including:
ADA-DIAG [7], RADAGRAD (8], FD-SON [9], ADA-FFD (M) [10], ADA-FFD (P) [10], S-ADA [11], and FTFSL [12].
The grid search strategy was employed to determine the optimal network parameters of Online-BLS (n1,n2,n3,n4) on
{10,20,---,50} x{10,20,---,50} x {1000, 2000, - -- ,5000} x {1}. The optimal regularization coefficient was searched from
{le — 2,1e — 4,--- ,1e — 10}. Following FTFSL [12], experiments in this section are conducted on Gisette and Epsilon
datasets. Each dataset was divided into training and test sets. The model was learned from the training set samples in
an online manner, and then its test accuracy was calculated. To eliminate random interference, we independently ran 10
experiments by altering the order of training set samples and model initialization weights. The mean and standard deviation
of TA on the Gisette and Epsilon datasets are reported in Table C3, with results for all comparison methods cited from [12].
From Table C3, we can observe a distinct advantage of Online-BLS over other matrix decomposition-based OL methods,
which again proves the superiority of our Online-BLS approach.

Appendix C.2.3  Universality for other random neural networks

To validate the versatility of our proposed method, we discussed its applicability to other random neural networks. Specif-
ically, we considered two kinds of random networks: random vector functional link neural network (RVFL) and extreme
learning machine (ELM). Four methods, i.e., RVFL (offline) [34], OLRVFL [35], ELM (offline) [36], and OS-RELM [37],
were chosen as comparison methods. The RVFL and ELM incorporating our proposed algorithm were termed Online-RVFL
and Online-ELM, respectively. For fairness, the hyperparameters of all methods were kept consistent. To be specific, the
hidden layer dimension and regularization coefficient for all six methods are set to 1,000 and le — 8, respectively. Note that
RVFL (offline) and ELM (offline) are essentially batch learning algorithms. To conduct the test-then-train experimental
paradigm and compute their OCA, both models first made predictions using their previous models upon the arrival of
a sample, then retrained themselves using all samples that had arrived. Each experimental case was run 10 times with
different sample sequences and initialization parameters to eliminate randomness. The experimental results for RVFL and
ELM are shown in Tables C4 and C5, respectively.

From Tables C4 and C5, several observations can be drawn. First, RVFL (offline) and ELM (offline) are expected to
approximate the performance upper bounds of their online counterparts, as both methods retrain from scratch whenever

Table C4 Experimental results (meantstandard deviation %) of our proposed Online-RVFL on the first six stationary datasets.
OUT is short for online update time (><10_25). Note: Bold indicates the best result.

Method RVFL (offline) OLRVFL Online-RVFL
Dataset OCA (1) OUT ({) OCA (1) ouT ({) OCA (1) OUT ({)
1S 90.740.395 6.4341.380 90.740.389 1.6540.65 90.94-0.329 1.0340.39
USPS 92.740.313 18.948.240 90.3+0.341 2.8740.51 93.31+0.428 1.36+0.37
Letter 88.540.197 23.3410.99 88.040.131 1.9040.51 89.04-0.128 0.9740.38
Adult 77.1+£0.176 45.1422.68 75.540.865 1.8140.45 76.440.051 0.87+0.33
Shuttle 98.740.031 51.34£26.94 96.444.180 1.8640.42 98.240.018 0.9610.30

MNIST 92.440.065 148.44+74.04 92.1+0.126 5.2940.56 93.01+0.096 1.5940.36
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Table C5 Experimental results (meantstandard deviation %) of our proposed Online-ELM on the first six stationary datasets.
OUT is short for online update time (x10~2s). Note: Bold indicates the best result.

Method ELM (offline) OS-RELM Online-ELM

Dataset OCA (1) OUT ({) OCA (1) OUT ({) OCA (1) OUT ({)
IS 90.840.308 6.11£2.350 90.940.339 1.7240.44 90.910.334 0.75+0.24
USPS 93.140.208 14.046.030 91.040.263 1.71£0.45 93.740.274 0.7940.29
Letter 88.440.115 20.449.230 87.940.152 1.6440.47 88.940.178 0.95+0.35
Adult 77.1+£0.046 40.1£19.86 76.440.076 1.38+0.42 76.440.051 0.5540.27
Shuttle 98.740.029 47.8425.51 98.24:0.031 1.4340.46 98.240.019 0.94+0.36
MNIST 90.64-0.109 71.64+38.53 90.64-0.128 1.6740.45 92.440.127 0.75+0.28

Table C6 Experimental results (meantstandard deviation %) on the Hyperplane dataset. OUT is short for online update time
(><10_2s). The ni, n2, ng and A of our method are 10, 10, 100 and 0.01, respectively. Note: Bold indicates the best result, while
underlining denotes the second-best result. The standard deviation is not available from reference [20].

Method OCA (1) BACC (1) AVRBACC (1) OUT ({)
HT 85.1 86.7 85.4 3.5942.54
ARF 76.8 76.2 76.2 4.3243.09
HBP 87.0 91.0 86.6 4.9640.56
ADL 77.3 80.7 77.2 5.9843.54
CAND 88.1 89.8 87.9 -

EODL 89.5 90.5 89.2 18.58£17.55
Ours (Adaptive) 92.6+0.062 92.610.062 91.740.074 0.36+0.73

a new sample arrives. However, to our surprise, our proposed Online-RVFL and Online-ELM outperform their offline
counterparts on most datasets, which is attributed to our method providing more favorable error bounds. For the Adult
and Shuttle datasets, Online-RVFL and Online-ELM also surpass or match OLRVFL and OS-RELM, respectively. Second,
Online-RVFL and Online-ELM are the most efficient against all comparison methods, since both methods achieve the lowest
online update time. This efficiency is primarily attributed to our EOUS.

Appendix C.3 Experiments on concept drift datasets

In this section, the effectiveness and efficiency of our Online-BLS were validated in the concept drift scenario. To learn
non-stationary data streams, we adopted a forgetting factor to force our Online-BLS to assign smaller weights to historical
memory. Specifically, we simply set it to 0.99 for all datasets. We compared our method with two classes of baselines
used for data stream classification with concept drift. The first category was online machine learning algorithms, including
HT [2] and ARF [3]. The second one was SOTA online deep learning models such as HBP [16], ADL [17], CAND [18],
ATNN [19], and EODL [20]. Beyond OCA, four other metrics were considered: BACC, AVRBACC, Macro F1, and MCC.
It is worth noting that all of the above metrics, except OCE, are such that larger values represent better model performance.
Furthermore, we also report the average online update time to validate the efficiency of our approach. Tables C6, C7, C8,
and C9 demonstrate the final results on the Hyperplane, SEA, Electricity, and CoverType datasets, respectively.

To make the experimental conclusions more reliable, experimental results of all baseline methods were directly cited from
the corresponding papers, while those of Online-BLS with forgetting factor (denoted with Adaptive) were averaged over
10 independent experiments. For a fair comparison of online update time, we executed the comparison methods on our
computing platform using an open-source code repository, with parameter settings identical to those reported in the original
papers. First, ours (Adaptive) surpasses typical online machine learning algorithms with a large gap, which benefits from
the random feature mapping of BLS that can extract effective broad features. Additionally, ours (Adaptive) outperforms
existing online deep learning methods across almost all metrics. We conjecture that this is because the derivation of our

Table C7 Experimental results (mean+standard deviation %) on the SEA dataset. OUT is short for online update time (x1072s).
The ni, na, ng and A of our method are 5, 5, 50 and 0.01, respectively. Note: Bold indicates the best result, while underlining
denotes the second-best result. The standard deviation is not available from reference [20].

Method OCA (1) BACC (1) AVRBACC (1) OUT()
HT 81.1 82.0 79.4 2.92+1.84
ARF 83.8 86.5 81.5 3.03+1.82
HBP 82.1 82.5 78.7 6.23+1.44
ADL 60.1 49.8 49.9 4.21+£29.31
CAND 79.7 82.8 76.7 -
EODL 82.5 83.2 79.4 23.47£17.61

Ours (Adaptive) 85.2140.156 83.3£0.180 82.61+0.183 0.17+0.16
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Table C8 Experimental results (meantstandard deviation %) on the Electricity dataset. OUT is short for online update time
(><1072$). The n1, na2, ng and A of our method are 10, 10, 100 and le — 8, respectively. Note: Bold indicates the best result, while
underlining denotes the second-best result. The standard deviation is not available from references [19] and [20].

Method OCA (1)/MCC (1) BACC (1)/Macro F1 (1) AVRBACC (1) OouT ({)
HT 77.0/- 74.3/- 74.7 1.14+£0.68
ARF 72.8/- 76.1/- 69.3 1.30£0.71
HBP 74.8/- 79.6/- 70.3 4.51+0.49
ADL 74.9/- 81.6/- 70.7 2.484+1.80
CAND 78.5/- 83.7/- 76.4 -
ATNN 83.6/66.0 -/83.0 - 1.68+£1.56
EODL 78.0/- 83.5/- 76.2 8.99+4.80
Ours (Adaptive) 86.84+0.038/72.91+0.079 86.24+0.047/86.41+0.041 86.940.059 0.2510.28

Table C9 Experimental results (meantstandard deviation %) on the CoverType dataset. OUT is short for online update time
(><1()_2s). The n1, na, ng and A of our method are 10, 10, 400 and le — 8, respectively. Note: Bold indicates the best result, while
underlining denotes the second-best result. The standard deviation is not available from references [19] and [20].

Method OCA (1)/MCC (1) BACC (1)/Macro F1 (1) AVRBACC (1) OuUT (})
HT 80.1/- 73.0/- 70.4 33.12422.05
ARF 83.7/- 80.9/- 64.2 36.06126.81
HBP 91.2/- 82.5/- 74.7 7.2541.54
ADL 90.5/- 86.7/- 76.8 60.44437.00
CAND 92.8/- 85.4/- 79.2 -
ATNN 92.7/89.0 -/87.0 - 2.9142.72
EODL 93.5/- 90.0/- 81.0 125.54471.75
Ours (Adaptive) 94.340.011/90.940.019 89.74+0.040/90.0+0.030 88.24+0.045 0.56+0.47

method is based on a closed-form solution, which provides a strong guarantee of the optimality of the solution updated
online. Finally, the OUT of our method is much smaller than that of the comparison method, which indicates that our
method requires lower computational overhead and is time-efficient.

Appendix C.4 Ablation study

Our framework has two main parts, EWEA and EOUS. Amongst them, EWEA is an inseparable part of Online-BLS.
Thus, we first examined the validity of EOUS in this section. The results of ablation experiments are shown in Table C10.
From Table C10, we can find that EOUS can significantly reduce online update time while maintaining model performance.
Hence, we can conclude that EOUS is an efficient algorithm that can significantly reduce the online update overhead of
Online-BLS. To verify the effectiveness of our proposed adaptive mechanism, we eliminated the forgetting factor from our
approach and conducted experiments on four non-stationary datasets. The hyperparameters and experimental settings were
consistent with Section Appendix C.3. Figure C3 shows the convergence curves of Online-BLS with and without forgetting
factors. From Figure C3, we find that the average OCE of Online-BLS increases significantly as concept drift occurs, while
ours (Adaptive) can maintain a low error rate. Thus, we conclude that by adding a forgetting factor to the historical data,
our framework can handle the non-stationary data stream classification task well.

Appendix C.5 Parameter sensitivity analysis

Online-BLS involves several tuning parameters, including n1, na, n3, n4, A, and pu. Typically, setting ng = 1 is sufficient.
The remaining 5 parameters were divided into four groups to investigate their impact on model performance. For ni, na,

Table C10 Experimental results (mean#standard deviation %) of ablation study. OUT: online update time (x10~?s). Note:
Bold indicates the best result

Method Metric IS USPS Letter Adult Shuttle MNIST
OCA (1) 90.84+0.229 93.64+0.386 88.940.137 76.44£0.051 98.240.026 92.540.105
OI;I‘S Macro F1 (1) 90.84+0.246 93.01+0.380 88.94+0.132 51.54+0.246 77.7£2.650 92.440.107
w/o
EOUS MCC (1) 89.240.268 92.940.429 88.51+0.142 18.6+£0.375 94.940.076 91.740.117
OouT ({) 2.844+2.410 2.70+2.610 2.461+2.460 2.671+2.540 2.671+2.640 2.8042.700
OCA (1) 90.84+0.229 93.61+0.386 88.94+0.137 76.440.051 98.240.026 92.54+0.105
o Macro F1 (1) 90.84+0.246 93.01+0.380 88.94+0.132 51.54+0.246 77.7£2.650 92.440.107
urs
MCC (1) 89.24+0.268 92.940.429 88.51+0.142 18.6+0.375 94.940.076 91.740.117

OouT (4) 0.914+0.130 0.89+0.140 0.97+0.330 1.07+0.660 1.05+0.320 1.1040.390




Sci China Inf Sci 12

Hyperplane 25 SEA 40 Electricity 40 CoverType
w0 T Ours (Adaptive) = Ours (Adaptive) — Ours (Adaptive) = Ours (Adaptive)
;\? — Ours 20f — Ours 30 —— Ours 30l —— Ours
=
20M 20
820 15@7—4 \,J/
W
10 10
10

20000 50000 80000 20000 50000 80000 20000 40000 200000 400000
DP DP DP DP

Figure C3 The mean and standard deviation of convergence curves of Online-BLS with and without forgetting factor on non-
stationary datasets.
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Figure C4 The mean of OCE under different ng values.

n3, and A, when examining the sensitivity of a specific parameter, the remaining 3 parameters were kept consistent with
those in Appendix C.2. When investigating p, the remaining 4 parameters (i.e., n1, n2, n3, and \) were kept the same as
those in Appendix C.3.

The impact of different ng on the average OCE is first shown in Figure C4. Our method consistently achieves the lowest
average OCE compared to all baselines on all n3g cases across the six datasets. Then, we find that the average OCE of
I-BLS changes significantly with different nz. This is because in our experiments, we found that I-BLS is very unstable.
That is, the accuracy of I-BLS in some trials is close to that of random guessing cases. Based on the above results, we can
safely conclude that Online-BLS is robust to changes of n3. Hence, we set n3 to 1,000 on all datasets and did not adjust it
for different datasets. Subsequently, we investigated the impact of different n1 and n2 values on model performance, with
the experimental results shown in Figure C5. From Figure C5, we can observe that the performance of Online-BLS remains
quite stable across a wide range of n; and ng values. In other words, as long as n1 and na are not extremely large or small,
Online-BLS can achieve good performance. Thus, both n1 and ng in the three incremental BLS algorithms and Online-BLS
were set to 10 for simplicity. Third, the impact of different A values on model performance is provided in Table C11. When
A is adjusted within a given interval, the range of variation for model performance is from 0.1% to 4.4%. Although the
optimal \ varies across different datasets, we chose to fix A to le — 8 because it delivers relatively good performance across
all datasets. Finally, we discussed the sensitivity of parameter p across four non-stationary datasets. Table C12 shows the
mean and standard deviation of OCA for our method when p varies across {0.80,0.85,0.90,0.95,0.99}. From Table C12, we
observe that when the forgetting factor u is insufficiently large, the model rapidly forgets past valuable knowledge, leading
to a degradation in its performance. On the contrary, as shown in Figure C3, we conclude that the model’s performance
remains terrible with a forgetting factor of 1. Thus, we set u = 0.99 here, which is suitable for most datasets.
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Table C11 The mean and standard deviation (%) of OCA under different A values.

A le — 3 le — 4 le—5 le — 6 le—7 le — 8 le—9 le — 10

IN] 86.5+0.36 87.6+0.29  88.9£0.28  90.0%+0.31 90.740.18 90.84+0.23  90.64+0.43 90.1+0.53
USPS 94.61+0.20 94.1+0.29  93.9+0.37  93.740.38 93.7+0.38 93.6+0.39 93.6+0.39 93.6+0.38
Letter 84.6+0.16 87.3+0.09  88.24+0.08  88.7+0.10 89.0+0.11 88.91+0.14 88.6+0.11 88.24+0.12
Adult 75.5+0.03 75.6+0.03  75.7+0.03  75.940.04 76.14+0.06 76.410.05 76.8+0.07  77.240.06
Shuttle 95.240.03 95.840.02  96.3£0.03  97.3+0.05 97.940.04 98.24+0.03 98.44+0.04 98.5+0.03
MNIST 92.6+0.10 92.54+0.10 92.54+0.10 92.540.10 92.54+0.10 92.5+0.11 92.54+0.11 92.5+0.11

Table C12 The mean and standard deviation (%) of OCA under different p values.
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