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Abstract High-bandwidth content, particularly video and video-like data, has become increasingly common in recent vehicular net-

works. This encompasses everything from real-time high-resolution maps and sensor data shares to vehicle overtaking videos and info-

tainment streams. However, due to the high mobility of vehicles and the large volume of video data, roadside units encounter challenges

in efficiently disseminating specific video content to multiple vehicles within strict deadlines. To address this issue, we propose the

use of adaptive random network coding (ARNC) for multicasting video content in new radio (NR) vehicle-to-everything (V2X) net-

works to maximize the quality received by target vehicles. However, ARNC requires frequent feedback from vehicles via the physical

sidelink feedback channel, resulting in significant overhead in NR V2X networks. To strike a balance between video quality and feed-

back costs, we introduce a partial feedback ARNC (PARNC)-based scheduling scheme and establish a utility function to evaluate its

performance. We also employ a deep reinforcement learning algorithm to optimize the PARNC design, thereby achieving a locally

optimal solution. Extensive simulations validate the PARNC performance against other benchmarks. The results show that PARNC

outperforms alternative schemes, particularly when the utility function emphasizes transmission performance and when feedback costs are

manageable.
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1 Introduction

As the development of the Internet of Vehicles (IoV) accelerates, an increasing number of vehicles are becoming
interconnected, forming a complex network that is indispensable for advanced traffic management and autonomous
driving [1,2]. However, there are several challenges, such as decreased driving efficiency and elevated accident rates.
From a communication perspective, ensuring highly reliable and low-latency distribution of traffic data to vehicles is
crucial for safe and efficient driving [3]. Numerous IoV applications heavily rely on video data or video-like data to
facilitate real-time decision-making, including real-time traffic monitoring, collision avoidance systems, lane-keeping
assistance, and 3D point cloud high-definition maps [4–6].

The increasing demand for video data in IoV applications highlights the need for efficient communication frame-
works to distribute video data [7, 8]. Unlike conventional data types, video data require high bandwidth, low
latency, and robust connectivity in time-sensitive scenarios. The main challenges in video data transmission within
IoV systems stem from two key factors: the large data volume of video content and the high mobility of connected
vehicles [9–11]. Video files are inherently data-intensive and consume significant network resources, necessitating an
efficient source encoding method [12–14]. Furthermore, vehicles travel at high speeds and traverse varying network
conditions, making it critical to maintain stable communication links and leverage advanced scheduling schemes
for video data distribution [15–18]. The efficient distribution of video data in vehicular networks has attracted
significant attention in both academic and industrial circles.

To address these issues, extensive research has been conducted across the physical and network layers [19–21].
Among the myriad of potential techniques, network coding (NC) is a promising approach to improving transmission
efficiency [22–25]. The essence of NC involves multiplexing content chunks together in the transmission. Instead of
requiring the target vehicle to receive every chunk of the requested content exactly, the original data can be recovered
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Figure 1 (Color online) Applied system model of the cooperative V2I and V2V communication for video dissemination.

as long as a predefined number of NC codes are received. Therefore, the negative impact of intermittent links
and dynamic network topologies can be mitigated by receiving order-independent NC codes, rather than ensuring
the successful reception of each individual content chunk. To date, previous studies have presented various NC
techniques, such as random linear network coding (RLNC) [22], batched-sparse (BATS) coding [24], and adaptive
random linear network coding (ARNC) [26]. In Section 2, we will briefly review these NC technologies, and
readers can refer to the corresponding references for details and application scenarios. Among all NC technologies,
ARNC achieves superior performance in numerous scenarios to enhance transmission efficiency. However, it requires
frequent feedback from the receivers to the transmitter, indicating whether the transmission was successful in the
ARNC design [27]. Depending on the latest 3GPP Release 17 and 18 standardizations, the feedback is sent in
the physical sidelink feedback channel (PSFCH) to improve the reliability of the sidelink (SL) in the new radio
(NR) vehicle-to-everything (NR V2X) networks [1]. However, PSFCH shares scarce time-frequency resources with
the physical sidelink shared channel (PSSCH). Although each feedback message (e.g., an ACK/NACK) is small,
the cumulative overhead from frequent feedback transmissions across a large vehicle population becomes significant.
This consumption of limited radio resources diminishes the available capacity for data transmission, thereby reducing
the overall system throughput. Consequently, frequent feedback poses a critical bottleneck in dense vehicular
networks with high-volume video traffic. This challenge motivated the design of a feedback-efficient NC scheme in
this study.

In this paper, we propose a reconstruction of the conventional ARNC scheme to better facilitate video data
dissemination in NR V2X communications using SL transmission [4,8]. This revised scheme is called partial feedback
ARNC (PARNC). Unlike traditional ARNC, which requires feedback from every receiver in each transmission,
PARNC only requires feedback in specific transmissions. As shown in Figure 1, we consider a scenario where a
roadside unit (RSU) needs to disseminate sensed video content, such as an HD map, to passing vehicles through
vehicle-to-infrastructure (V2I) groupcast transmissions. However, some vehicles may be obstructed from the RSU
due to vehicle mobility and obstacles, resulting in failed or suboptimal V2I transmission. In such instances, vehicles
can relay disseminated data to nearby vehicles via vehicle-to-vehicle (V2V) transmission.

From a content perspective, we employ scalable video coding (SVC) to process the video data for dissemination.
SVC encodes the video into multiple layers, including one base layer (BL) and several enhancement layers (ELs) [14].
BL contains the essential video information and can be decoded independently for basic video quality, whereas ELs
progressively enhance the recovered video quality. In practice, the BL data are often provided with more protection
and resources than the EL data during transmission because the BL data are more important than the EL data
in the video decoding. This approach is called unequal error protection (UEP). By meticulously designing the
ARNC and SVC schemes, vehicles with poor channel conditions can recover lower-quality video, and those with
good channel conditions can retrieve high-quality video during the same multicast process [28]. This feature renders
SVC ideal for data dissemination in diverse and time-varying channel conditions. Based on the SVC and PARNC,
we propose a PARNC-based scheduling scheme which involves the PARNC construction and network resource
allocation. A utility function is established to evaluate the scheduling scheme, measuring the balance between the
quality of the received video and feedback cost. Additionally, an optimization problem is formulated to maximize
the utility function through careful PARNC design, and a deep reinforcement learning (DRL) algorithm is used
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to solve the optimization problem. Extensive simulations are conducted to validate the proposed PARNC and
compare the performance of different schemes across various parameter settings. The results show the superiority
of the proposed approach, especially when the network priorities received video quality in the utility performance.

The main contributions of this paper are summarized as follows.
• First, this paper investigates cooperative V2V and V2I communication for video data dissemination. To

quantify the tradeoff between received video quality and the signaling overhead incurred by feedback, a novel utility
function is proposed. This model captures the opportunity cost of feedback, which is often overlooked in content
dissemination design.
• Second, a novel PARNC-based scheduling scheme is proposed to balance the received video quality and incurred

feedback cost. Unlike traditional full-feedback or no-feedback schemes, PARNC operates in a hybrid mode. It
employs a blind, predefined transmission phase with zero feedback overhead to disseminate the most important
video layers, followed by an adaptive feedback-driven phase to efficiently refine the transmission for enhanced
layers. This represents a new point in the design space for adaptive NC. Additionally, a DRL algorithm is employed
to determine the local optimal PARNC design by maximizing the formulated utility function.
• Finally, comprehensive simulations are conducted to validate the effectiveness of the proposed PARNC-based

scheduling scheme under various network conditions. Comparisons with benchmark schemes are also performed.
The results highlight the superiority of the PARNC-based scheduling scheme, particularly in scenarios where feed-
back cost significantly impacts the utility performance. These findings reveal that when feedback cost dominates,
the optimal PARNC strategy involves transmitting predefined packets in each time slot to minimize unnecessary
feedback.

The remainder of this paper is organized as follows. Section 2 reviews related work on data dissemination in
vehicular networks. Section 3 introduces the system model and elaborates on the proposed scheduling scheme.
In Section 4, we define a utility function to evaluate content dissemination performance and formulate a utility
maximization problem. A DRL algorithm is then presented to solve this problem, enabling the derivation of a near-
optimal scheduling scheme. Section 5 presents the simulation results validating the proposed scheme’s performance
and comparing it with benchmark approaches. Finally, Section 6 concludes this paper.

2 Literature review

In this section, we aim to provide a comprehensive literature review on cooperative V2V and V2I communication,
as well as network coding assisted transmission. Additionally, we outline the motivation derived from prior research
in these areas.

2.1 Cooperative V2V and V2I communication

From the perspective of cooperative V2I and V2V transmission, Liu et al. proposed an NC assisted scheduling
scheme in [29] to enhance bandwidth efficiency and data dissemination performance in V2V/V2I cooperative net-
works. This approach involves three types of channels: one control channel and two service channels. The control
channel is dedicated to disseminating management information and control messages, while the two service channels
are used separately for broadcasting V2V and V2I messages. Consequently, V2V and V2I communication operate
in an orthogonal manner, eliminating interference. Similarly, in [11], a collaborative V2V and V2I communication
framework is utilized to offload computational tasks generated by vehicles within a vehicular edge computing net-
work [30]. A joint task offloading and resource allocation scheme is proposed to minimize task processing latency.
Specifically, tasks are profiled and prioritized based on parameters such as size, required computational resources,
latency tolerance, and type, and are optimally offloaded to local nodes via V2V communication or to server nodes
via V2I communication. Like [29], this work assumed orthogonal operation of V2V and V2I transmissions to avoid
interference.

In contrast, several studies consider the co-channel interference between V2V and V2I transmissions due to
spectrum reuse. For instance, Nguyen et al. [16] exploited cooperative V2V and V2I communication to provide
uninterrupted service to passing vehicles. Assuming that V2V and V2I communication share the same service
channels, a joint scheduling and power control scheme is proposed to optimize bandwidth allocation and maximize
vehicle decoding probability. Further extending this work, the authors in [15] proposed a dynamic cooperative
scheme for hybrid V2V/V2I networks. This scheme employs a dynamic forwarder selection strategy to establish
adaptive multi-hop V2V paths, improving system throughput. Analytical results highlight the influence of RSU
intervals, vehicle sharing preferences, and buffer capacity on connection continuity, service resumption time, and
throughput. Similarly, Ref. [10] investigated V2V and V2I cooperation under spectrum reuse to enhance information
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dissemination and sustain vehicle service. The study evaluates throughput performance under additive white
Gaussian noise (AWGN) and Rayleigh fading conditions, employing network coding to mitigate interference between
V2V and V2I links. In another approach, Ref. [31] introduced a probabilistic opportunity channel access scheme
(p-OCAS) to manage shared channels between V2V and V2I communication. By carefully selecting the access
probability p, this scheme significantly reduces interference from RSUs on V2V communication while maintaining
high RSU throughput. In scenarios such as post-disaster recovery, where communication infrastructures may be
partially damaged, He et al. [20] explored cooperative V2V and V2I communication supported by air base stations
(ABS) and non-orthogonal multiple access (NOMA) techniques. By optimizing spectrum reuse strategies, power
control, and channel state information (CSI) latency, the system achieves improved energy efficiency while meeting
reliability and rate requirements.

The aforementioned studies primarily focus on resource allocation for fixed V2V or V2I modes, overlooking the
potential for vehicles to dynamically switch between these modes based on network topology, channel conditions,
and vehicle preferences. Addressing this gap, Zhang et al. [32] proposed a trajectory-driven intelligent scheme to
optimize V2V and V2I cooperation. This approach determines the mode of operation for vehicles and allocates
bandwidth resources based on trajectory data, minimizing feedback overhead and maximizing utility functions
related to data rates.

Despite the extensive research on cooperative V2V and V2I communication, several challenges remain. For
instance, existing studies primarily emphasize connectivity while neglecting the nature of transmitted content and
its impact on connectivity and reception performance. Moreover, the influence of SL feedback, supported since 3GPP
Release 17, is often underestimated. Blind retransmission strategies in SL communication could incur significant
feedback costs, warranting further investigation.

2.2 Network coding assisted data dissemination

From the perspective of NC, various techniques have been explored in the literature. Among these, RLNC is one of
the most widely used methods to enhance reliability and throughput performance. For instance, in [33], Mosavat-
Jahromi et al. proposed a distributed NC-based medium access control (NC-MAC) protocol for vehicular networks
to improve the broadcast reliability of beacon information. In this approach, all bits in the transmitted content are
treated with equal importance, which limits its effectiveness in applications such as scalable video dissemination.

To address the trade-off between coding cost and system throughput, Yang et al. [23] proposed a BATS coding
scheme, building upon fountain and RLNC codes. In [24], BATS code is applied to cooperative V2I and V2V
information-sharing networks to mitigate challenges posed by intermittent V2V/V2I links and lossy channel con-
ditions. Specifically, during the V2I broadcast phase, the original content is encoded into batches using rateless
fountain coding, with each batch comprising several encoded packets. In the subsequent V2V sharing phase, RLNC
codes are generated from the encoded packets within the same batch and distributed to nearby vehicles. By carefully
designing the BATS codes, the approach minimizes traffic overhead and total transmission delay. However, similar
to RLNC, BATS coding does not provide UEP for video content dissemination, making it unsuitable for scenarios
requiring prioritized delivery of video data.

From the above studies, it is evident that while RLNC does not require feedback and can generate coded packets
akin to fountain codes, it struggles to address the diverse channel conditions of multiple users as it does not account
for user states in its design. In contrast, ARNC generates coded packets while considering the current states of
multiple receivers, which is achieved through frequent feedback from these receivers. However, this approach incurs
significant feedback costs, posing a challenge in bandwidth-constrained environments.

In summary, there remains a pressing need for further research on the adaptive dissemination of video content
in vehicular networks using cooperative V2V and V2I communication. Balancing the trade-off between received
video quality and feedback costs is a key challenge in this domain. Motivated by this gap, we propose the PARNC-
based scheduling scheme and optimize its associated parameters to maximize a formulated utility function that
encapsulates the interplay between video quality and feedback costs.

3 System model

In this section, we elaborate the system model to study the video dissemination process in the NR V2X networks.
Specifically, the network model of the cooperative V2V and V2I communication is firstly given, followed by the
description of the transmission model. Then the ARNC and PARNC designs are stated, and the PARNC-based
video dissemination scheduling scheme is also elaborated in this section.
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3.1 Network model

As shown in Figure 1, we consider a bidirectional 4-lane straight road, and the width of each lane is w meters.
The RSUs are sparsely deployed along the road, and the coverage radius and height of which are denoted by R

and h, respectively. The considered road of interest is with 2D meters and an RSU is deployed at the midpoint
of the considered road (with coordination x = 0). At time slot t = 0, we suppose there are N vehicles requesting
a common location-based video content (such as HD map data) in each lane. The initial locations and moving
speeds of the vehicles are randomly selected following uniform distributions from −D to D and from vmin to vmax,
respectively. Due to the mobility, the locations of these vehicles are dynamic. Specifically, in slot t, the location of
vehicle Ii,j toward the midpoint of the considered road can be expressed as

ri,j(t) =

{

ri,j(0) + vi,jt, i = 1, 2,

ri,j(0)− vi,jt, i = 3, 4.
(1)

In the formulation, i and j, respectively, denote the located lane of a particular vehicle and the corresponding index
in the lane. Furthermore, we adopt a discrete-time system model where time is divided into slots, while the duration
of a time-slot is small enough that the vehicle can be treated as quasi-static and ri,j is fixed in each particular time
slot thereafter.

SVC technique is applied to encode the transmitted video data. Specifically, the original content is encoded
into L layers of data, among which the first layer is called the BL and the other (L − 1) layers of data are called
ELs. The BL contains the basic information of the encoded content, and can be successfully recovered with poor
video quality. Additionally, the other (L − 1) ELs are used to gradually enhance the decoded video quality, but
the decoding needs the help of all the lower layers because they cannot be decoded separately. Therefore, with
SVC different vehicles can flexibly decode a particular number of video layers depending on the suffered channel
condition and the video dissemination policy.

3.2 Transmission model

In the transmission process, we consider the cooperative V2I and V2V communication to combat the vehicles’
mobility. For the V2I transmission, the RSU exploits the V2I multicast to disseminate the requested content to
the vehicles. The V2I links are modeled using a Nakagami-m fading channel with parameter m1 [34, 35]. This
model is chosen for its flexibility and strong empirical basis in vehicular communication studies, as it can accurately
represent a wide range of fading conditions by adjusting the m1 parameter. Therefore, the received signal-to-noise
ratio (SNR) at slot t, denoted by γI

i,j(t), is expressed as

γI
i,j(t) =

PRgi,jd
−α
i,j (t)

PN

, (2)

where i and j, respectively, denote the driving lane of the V2I vehicle and the identification number of the vehicle
in the lane. PR and PN are the transmit powers of the RSU and noise, respectively. di,j(t) is the distance between
the RSU and vehicle Ii,j , and is expressed as

di,j(t) =
√

h2 + (i − 1)2w2 + r2i,j(t). (3)

The channel gain gi,j of the considered Nakagami fading channel follows a gamma distribution with the expression
that

fg(x) =
(m1

Ω

)m1 xm1−1

Γ (m1)
exp

(

−
m1

Ω
x
)

, (4)

where Ω = E(g) is the average power of g. Then, given the decoding threshold θ, the average successful transmission
probability for a signal can be calculated as

pIi,j(t) = P
(

γI
i,j(t) > θ

)

=
1

Γ (m1)
Γ
(

m1,
m1

Ω
A (i, j, t)

)

, (5)

where A(i, j, t) = θ
α

PN

PR
[di,j (t)]

α
. In (5), Γ(x) is the gamma function, and Γ(z, x) denotes the upper incomplete

gamma function. The derivation process of pIi,j can be found in [24]. Similarly, for the V2V transmission, we
also adopt the Nakagami-m fading model with parameter m2 [34, 35]. This model, which is often characterized
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by rapid fluctuations and severe fading resilience, is particularly suitable for V2V scenarios. Thus, the successful
transmission probability of V2V link can be expressed as

pVi,j→i′,j′ (t) =
1

Γ (m2)
Γ
(

m2,
m2

Ω
B (i, j → i′, j′, t)

)

, (6)

where B(i, j → i′, j′, t) = θ
α

PN

PV
[di,j→i′,j′ (t)]

α, and PV denotes the transmit power of a vehicle. In addition, the
distance between the vehicle Ii,j and Ii′,j′ is calculated as

di,j→i′,j′ (t) =

√

(i− i′)
2
w2 + [ri,j (t)− ri′,j′ (t)]

2
. (7)

3.3 PARNC design

In the data dissemination, the NC technique is exploited to improve the transmission efficiency in the presence
of multiple receivers and high mobility. The most commonly used NC technique is the RLNC, which is designed
based on (8). Specifically, the RSU can continuously multicast RLNC packets that mix the total L layers of data
up without the need of feedback from the receivers. Therefore, RLNC is a kind of blind retransmission scheme.
sRLNC, βl,t and xl in (8), respectively, denote the transmitted packet, the NC coefficient for layer l of data in slot t,
and the l-th layer of transmitted content. Each receiver successfully decodes the disseminated content if a sufficient
number of RLNC packets are received, or gets nothing, otherwise.

sRLNC(t) =

L
∑

l=1

βl,txl. (8)

For the ARNC, the RSU does not need to mix up all the L layers of data in one transmission. Instead, a
generation parameter k is introduced and based on which the RSU generates an ARNC packet using the following
formula:

sARNC(t) =

k
∑

l=1

βl,txl. (9)

This encoding scheme directly implements UEP. By controlling the generation parameter k, the transmitter controls
the number of layers included in a packet. Crucially, the BL (l = 1) is included in every transmitted packet (for
any k > 1), ensuring it receives the highest level of protection against packet losses. ELs are included progressively;
for example, layer l = 2 is only included if k > 2, and layer l = 3 only if k > 3. This creates a natural hierarchy
where more important layers are transmitted more frequently, making them more resilient to channel errors. This
inherent UEP property is a key advantage of ARNC over RLNC for scalable video multicast.

According to channel conditions and user preference, the RSU can adaptively determine the generation parameter
k in each transmission. A vehicle n can decode the first l layers of data if the following criteria are met:



















1 [o (n, l)] l
∑

j=1

min (o (n, j) , j) > l,

l+1
∑

j=1

min (o (n, j) , j) < l + 1,

(10)

where 1(·) is the indicator function, while o(n, j) records the number of ARNC packets with generation j in the
decoding process.

Figure 2 shows an example to illustrate the flexibility of ARNC under multiple receiver scenarios, and the
performance of ARNC and RLNC for scalable video transmission is also compared. In the example, the original
video is encoded into L = 4 layers, the latency budget is assumed to be 4 time slots, and the generations are
set to k = 2, 4, 1, 4, respectively. Two vehicles are involved in the data dissemination. Due to the interference
and noise, the second and fourth transmissions to the vehicle 2 are failed, while all the four ARNC packets are
successfully delivered to the vehicle 1. After four time slots, the vehicle 1 can successfully recover the l = 4 layers
of the disseminated video with high quality. Therefore, vehicle 2 receives two ARNC packets with k = 1 and k = 2,
and the first two layers of the video content can be successfully decoded. In conclusion, by carefully designing
the generation k different vehicles can adaptively receive the video layers complying with their suffered channel
conditions. Also, UEP is illustrated in the ARNC design since no matter what generation is selected, the lowest
layer is always involved, thus the lower layers of data are offered with more protection in the transmissions. Figure 2
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Figure 2 (Color online) Comparison of RLNC and ARNC.

also shows the performance of RLNC under the same situation as the ARNC. After four transmissions, the vehicle
1 can decode all the layers, but the vehicle 2 recovers nothing because insufficient RLNC packets are received,
demonstrating the critical advantages of the UEP-enabled ARNC approach. In fact, the RLNC can be seen as a
special kind of ARNC with k = 4.

From the comparison, we can observe that the ARNC performs better than the RLNC in the scalable video data
dissemination, especially when the channel conditions of multiple users are diverse. The price of the performance
superiority is the frequent feedback from receivers in ARNC, which means the vehicles need to send the transmission
result back to the RSU, so that the RSU can update the network state and design the generation parameter k in
the next transmission. We call such a scheme the full-feedback ARNC (FARNC) scheme for illustrative purposes.
The frequent feedback may incur non-negligible signaling overhead, especially when the number of involved vehicles
is huge.

To address the feedback overhead issue, we propose a novel scheme termed PARNC, which incorporates a tunable
parameter p (1 6 p 6 T ) to structure its operation into two consecutive phases, thereby striking an adaptive balance
between transmission performance and feedback cost. In the first phase, spanning slots 1 to p, the RSU or V2V
transmitter operates without any feedback from receivers. Throughout these initial transmissions, the generation
parameter k is predefined in each slot t as k = min(t, L). This means that the first transmission contains only the
BL (k = 1), the second includes both the BL and the first EL (k = 2), with subsequent transmissions following this
pattern. This systematic approach ensures that the most critical video layers are disseminated first, providing a form
of inherent UEP while completely eliminating feedback overhead during this phase. Beginning from slot p+1 until
the deadline T , PARNC transitions to a second phase that operates analogously to conventional FARNC. In this
phase, the transmitter collects feedback from receivers via the PSFCH to ascertain their current decoding states, and
uses this information to adaptively determine the generation parameter k for each subsequent transmission. This
allows the system to maximize the utility of each packet based on real-time network conditions. To further minimize
feedback overhead, we assume that only successfully decoded packets trigger an ACK feedback; no feedback is sent
in case of transmission failure or when a vehicle moves out of coverage.

The key advantage of PARNC lies in its hybrid structure. The initial feedback-free phase significantly reduces
signaling overhead and saves valuable channel resources, which is especially beneficial in dense vehicular networks.
At the same time, the UEP-oriented transmission strategy guarantees that all receivers can decode at least the BL,
ensuring basic video quality regardless of channel variations. The subsequent feedback-assisted phase allows the
system to recover most of the performance gap compared to the FARNC approach, thereby preserving the adaptive
gains of network coding while operating under constrained feedback conditions. This makes PARNC particularly
suitable for NR V2X networks where feedback resources are limited, yet high-quality video dissemination remains
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a priority.

3.4 PARNC-based scheduling scheme

In the data dissemination process, the vehicles retrieve content via V2V or V2I transmissions. Specifically, as shown
in Figure 1, when the vehicles move into the RSU coverage, they turn to the V2I mode and receive the ARNC
packets from the serving RSU. On the contrary, when vehicles travel outside of the RSU coverage, they will switch to
V2V mode and retrieve or share contents with peer vehicles. To efficiently manage the V2V communication, in the
system two V2V clusters are applied on the left and right sides of the RSU coverage, respectively. When a vehicle
travels to the left side of the RSU coverage, it switches to the V2V mode, joins the V2V cluster 1 automatically,
and retrieves the ARNC packets from the V2V transmitter (V2V Tx). Otherwise, if the vehicle dwells in the right
side of the RSU coverage, it joins the V2V cluster 2 instead. The scheduling operation in the content dissemination
is responsible for the following issues. First, the RSU needs to design the ARNC packets and select the most
appropriate generation k for every V2I vehicle in the transmission. Second, for the V2V cluster 1 and cluster 2, the
V2V Tx should be selected and the corresponding ARNC packets should be carefully designed. This is a challenging
task since the scheduling decision maker needs to know the exact information of vehicles and their already received
packets. Also, the selected V2V Tx also needs to know the topology of the involved V2V cluster. Due to the
limited computing capacities of the vehicles and their energy-consuming concerns, it is not practical to rely on a
vehicle performing complicated computing operations. Therefore, in the analysis, we prefer to study a simplified
scheduling scheme. Specifically, the vehicle with the most decoding layers (denoted by kmax) is selected as the V2V
Tx, and kmax is chosen as the ARNC packet generation. This can significantly reduce the scheduling complexity of
the vehicles and save the battery consumption. For V2I communication, the PARNC scheduling is applied, and the
scheduling decision maker distributes the ARNC packets with predefined generations in the first p transmissions.
After that the feedback from users is considered in the ARNC packet design like FARNC.

4 Problem formulation and solution

Based on the introduced system model and the PARNC-based scheduling scheme in Section 3.4, in this part we
propose to formulate an optimization problem to evaluate the proposed PANRC scheme and the balance between
the received quality and the feedback cost. Then a DRL algorithm is adopted to solve the formulated problem and
achieve an efficient sub-optimal ARNC design.

4.1 Problem formulation

Suppose the deadline of the content dissemination is T time slots. With the introduced scheduling scheme, the
vehicles can retrieve a particular number of ARNC packets from the serving RSU or V2V Tx. The feedback cost
of the vehicle Ii,j , denoted by Uf

i,j , can be presented as

Uf
i,j = cfn

f
i,j , (11)

where cf is the unit cost per feedback and n
f
i,j is the number of feedbacks in the T transmissions. Also, with

the number of decoded layers ki,j , the transmission performance, i.e., the video-quality-related performance can be
yielded as

U t
i,j =











1
L

ki,j
∑

l=1

(L+ 1− l) , ki,j > 0,

0, ki,j = 0.

(12)

We adopt such a formulation for two reasons. First, this is an increasing function regarding ki,j . Therefore, the
more layers are retrieved and then the higher transmission performance can be enjoyed by the vehicle. Second, with
the growing number of layers in the received data packets, the marginal performance improvement from decoding
one more layer gradually diminishes. This indicates the UEP feature in the video dissemination that the lower
layers of the content are more important in the transmission.

Combining the transmission performance and feedback costs together, we can yield the following utility func-
tion to formulate the average performance of content dissemination with considering cooperative V2I and V2V
communication:

U =
1

N

∑

i,j

(

βtU
t
i,j − βfU

f
i,j

)

, (13)
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where βt and βf denote the coefficients of transmission performance and feedback costs, respectively. The utility
function is mainly affected by the proposed scheduling scheme, especially the ARNC design of the serving RSU. If
we define Π = {a1, a2, · · · , aT } as the applied scheduling scheme and at as the scheduling decision in slot t sampled
under the scheme Π, then we can get the following optimization problem:

max
Π

U (14)

s.t. at = min(t, L) if t 6 p, (15)

at ∈ [1, L] if p < t 6 T. (16)

In the formulation, the constraints (15) and (16) follow the design of PARNC which is elaborated in Section 3.3.
By solving the problem, we can get the optimal scheduling decisions and code design of the proposed PARNC to
maximize the average utility performance of the video dissemination.

4.2 Problem solution

In this subsection, our purpose is to obtain the optimal scheduling policy Π∗ which can maximize the average utility
values of all the vehicles after T transmissions, and Π∗ is formulated in (14). This is a typical Markov decision
process (MDP) problem, and DRL is one of the most commonly used solutions. Among all the available DRL
algorithms, we employ the double deep Q network (DQN) to address the discrete action space and potential high
dimensional state space which will be elaborated later [36].

The essence of Q learning is to carefully learn and update a Q table to present the scheduling policy Π. To be
specific, the Q table records the values of every particular state S and action a, indicating the value of the action a

when the network is in state S. By learning and updating the parameters, the Q table can perfectly approximate
the optimal scheduling policy Π, and the best scheduling decision at can be sampled accordingly. However, the
huge amount of state-action pairs makes it impossible to establish, maintain and train the whole Q table very
well. Instead, we apply a deep neural network with parameters w, i.e., Q(S, a|w), to approximate the Q table,
and the optimal scheduling policy can be sampled by learning the parameters w and getting an optimal Q table.
The pseudo-code of the introduced double DQN algorithm is shown in Algorithm 1. In the following we elaborate
the working mechanism of the double DQN, but before that we need to determine the network state S, scheduling
action a, and reward r used in the model.

Algorithm 1 Training process of the double DQN algorithm.

Input: Initial network state S0; action space A; step size α; decay factor γ; evaluation Q network Q with parameters ω; target Q network Q′

with parameters ω
′; mini-batch size mbatch; greedy epsilon ǫ; latency budget T ; PARNC parameter p;

Output: Local optimal Q network parameters ω
∗;

1: for iteration = 1, 2, · · · do

2: Reset the network state S0;

3: for t = 1, 2, · · · , T do

4: if t 6 p then

5: at = min(t, L);

6: else

7: Insert the network state St into the evaluation network Q, and sample the action at based on the ǫ-greedy strategy which is

calculated in (18);

8: end if

9: Execute the action at to the environment, and observe the next state St+1 as well as the corresponding reward rt which is calculated

in (17);

10: Set the index is end = 1 if St+1 is the terminal state, or is end = 0 otherwise;

11: Store transition (St, at, rt, St+1, is end) in the ERB D;

12: Randomly sample a mini-batch of mbatch transitions from D;

13: Set

yj =











rj , if is end = 1,

rj + γQ
′

(

St+1, argmax
a′

Q
(

St+1, a
′;ω

)

;ω′

)

, if is end = 0;

14: Calculate the loss function

Loss =
1

mbatch

mbatch
∑

j=1

[yj − Q (Sj , aj ;ω)]
2
;

15: Update the parameters ω by performing a gradient descent on ω;

16: Update ω
′ := ω every C steps;

17: end for

18: end for
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• Network state S represents the network parameters influencing the inference of scheduling decisions. Con-
sidering the feedback from vehicles, it is practical for the scheduling agent to know the received ARNC packets of
vehicles, and sample the scheduling action based on the received packets. Therefore, the dimension of the network
state S is N × L, and S(n, l) records the number of ARNC packets received by vehicle n with generation l.
• Action a is sampled by the scheduling agent based on the maintained deep Q network and the current network

state. All the potential a’s form the action space A = {1, 2, · · · , L}. It should be mentioned that the V2V scheduling
in the algorithm is simplified. Specifically, in each V2V cluster the vehicle that decodes the maximum number of
layers (denoted as kmax) is selected as the V2V Tx. Notably, kmax corresponds to the designed ARNC generation
parameter. For illustrative purposes, the V2V action is not presented in the DRL learning. Additionally, in the
first p transmissions of every round, the action at is not sampled and is predefined as min(t, L) with 1 6 t 6 p to
comply with the constraints.
• Reward r is the achieved immediate reward when the system is in state S and takes action a. In fact, the

action not only impacts the performance in the current slot, but also has influence on the future scheduling actions
as well as other vehicles. We use the following formulation to model the immediate reward r in time slot t:

rt = ∆U(St, at) = U(St, at)− U(St−1, at−1), (17)

where U(St, at) is given in (13).

At initialization, the algorithm randomly selects parameters for the evaluation network (EN) and the target
network (TN). EN and TN have the same neural structures but different weight parameters, respectively, denoted
by w and w′. The EN is responsible to refer the action and update the Q table, while the TN is to mitigate the
performance degradation caused by bootstrapping and overestimation. Except for the EN and TN, an experience
replay buffer (ERB) is initialized, recording (s, a, r, s , is end) vectors derived from the EN to update the parameters
of EN and TN. s in the ERB is the updated network state when the system takes the action a. Denote by D the
capacity of the ERB, and the oldest record will be covered if the ERB is full and a new record is generated.

At slot t = 0, the locations of N vehicles are reset according to the system model, and every vehicle does not
prefetch any content. The network state S is input to the EN and a scheduling action min(t, L) is generated
complying with the behavior strategy. In this paper, the double DQN applies the following ǫ-greedy strategy:

at =







argmax
a

Q(St, a), with probability 1− ǫ,

random selection, with probability ǫ.
(18)

The strategy indicates that the network randomly selects an available action with probability ǫ or selects the at with
the largest Q value otherwise. The probability ǫ guarantees the system can explore more potential actions so that
the double DQN algorithm can avoid being stuck in the local optimum. After sufficient training and exploration, ǫ
will degrade to a value near 0.

With the state S0 and a0, the RSU produces ARNC packets with generation a0 and multicasts to the vehicles
under its coverage. For the vehicles outside of the RSU coverage, they form different clusters and share RLNC
packets with nearby peers as stated before. After transmission, the locations and held ARNC packets of every
vehicle are updated, and the network state changes from S0 to S1 while the corresponding immediate reward r0
can be calculated from (17) with U(S−1, a−1) , 0. The vector (S0, a0, r0, S1, is end) is stored in the ERB and then
the next slot begins. The process continues T times and a round is finished, after which the network state is reset.

When the system runs enough rounds and sufficient samples are collected, the algorithm begins to update the
EN and TN parameters. To be specific, the agent randomly selects a mini-batch of mbatch vectors to the ERB, and
performs the following operations for every selected vector (Sj , aj , rj , Sj+1, is end).

First of all, the EN and TN perform forward propagation, and respectively yield

qj = Q(Sj , aj |w), (19)

qj+1 = max
aj+1

Q′(sj+1, aj+1|w
′). (20)

Then the temporal difference (TD) target value yj and the corresponding TD error can be calculated as

yj = rj + γqj+1, (21)

δj = qj − yj , (22)
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Table 1 Parameter setting.

Parameter Value

Wide of a lane: w 4 m

Radius of the road: D 500 m

SNR threshold: θ 1

Power of AWGN noise: PN 1 × 10−8 W

SVC layers : L 10

Latency budget: T 10 slots

Pathloss exponent: α 4

Number of vehicles: N 40

Coverage radius and height of RSU: (R, h) (150, 4) m

Minimal and maximal speed: [vmin, vmax] [11.2, 35] m/s

Transmit and feedback coefficient: [βt, βf ] [0.8, 0.2]

Transmit power of a RSU and vehicle: [PR, PV ] [1, 0.2] W

where γ is the decay coefficient, describing the influence of the current action on the future rewards. Then the agent
performs the back propagation (BP) and yields the gradient ∇wQ(Sj , aj |w), based on which the EN parameters w
can be updated as

w ← w − αδj∇wQ(Sj , aj |w), (23)

where α is the chosen learning rate and it is a hyperparameter. Also, the TN parameter w′ is updated after every
C steps,

w′ ← τw. (24)

5 Performance evaluation

In this section, we evaluate and compare the utility performance of different scheduling schemes under various
network conditions using extensive simulations. We also investigate several interesting aspects, including the optimal
selection of the probability parameter p under different scenarios. The parameters used in the simulations are
summarized in Table 1. The road of interest is modeled as a 2D area with a length of D = 1000 m, and the width
of each lane is set to w = 4 m. The coverage radius of the RSU is assumed to be R = 150 m, with a height of h = 4
m. The default number of vehicles is set to N = 40, with 10 vehicles per lane. The initial location of each vehicle
is uniformly distributed within the range [−D,D] m, and its driving velocity is randomly selected from the interval
[vmin, vmax] = [11.2, 35] m/s. For the transmission process, a Rayleigh fading channel is assumed for V2V and V2I
communication, with the fading parameters m1 = m2 = 1 and a path loss factor of α = 4. The decoding threshold
for each transmitted packet is set to θ = 1, and the noise power is defined as PN = 1×10−8 W. The transmit power
of the RSU and each vehicle is PR = 1 W and PV = 0.2 W, respectively. For the content and user preferences,
we assume the disseminated video content is encoded into L = 5 layers. The latency budget for the transmission
is set to T = 10 time slots, with each time slot corresponding to 1 s for the transmission of nonemergency large
packets. In the simulations, we consider the following scheduling schemes to compare their performance under
different scenarios.
• FARNC [22, 26]: At the beginning of each time slot, the RSU selects the ARNC packet depending on the

current network state, and all the successful transmissions of V2I and V2V incur corresponding ACK feedback to
update the network state.
• PARNC: In the first p (p < T ) transmissions, the RSU chooses the predefined ARNC generation, i.e.,

k = min(t, L), and the feedback from the V2I transmissions is not needed. After the p transmissions, the RSU
designs the ARNC packets in the same way as the FARNC. In the simulations, we set p = 5 by default.
• No-feedback ARNC scheme (NARNC) [5]: In the t-th transmission (1 6 t 6 T ), the ARNC generation

from the RSU is predefined as k = min(t, L). NARNC is a special PARNC with p = T .
• RLNC [37]: In the t-th transmission (1 6 t 6 T ), the transmitted ARNC packet has generation of k = L.
Before conducting the detailed performance evaluations, we first examine the effect of the learning rate to ensure

that the proposed double DQN model is properly trained and behaves as expected. Figure 3 shows the variation
in the episode reward under four different learning rates. The results show that an excessively small learning rate
(1×10−7) leads to slow or low convergence, where the reward remains almost unchanged due to minimal parameter
updates, whereas an overly large learning rate (0.1) causes pronounced oscillations and unstable learning. In
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Figure 3 (Color online) Reward variation with training episodes under different learning rates. Moderate learning rates (1×10−5 and 1×10−3)

yield stable convergence, whereas too small (1 × 10−7) or too large (0.1) rates result in poor performance.

contrast, moderate learning rates (1 × 10−5 and 1 × 10−3) enable faster and more stable convergence with the
highest rewards. These observations indicate that the proposed model exhibits normal learning behavior and
achieves reliable convergence within a reasonable range of learning rates.

5.1 Impact of latency constraint T

In this subsection, we investigate and compare the utility performance of different scheduling schemes as the latency
budget increases from 5 to 19 time slots. Figure 4(a) shows the utility performance of all the compared scheduling
schemes in the scenario where the network prioritizes transmission utility, with parameters βf = 0.2 and βt = 0.8.
From the figure, the following observations can be made.

First, the utility performance of all four scheduling schemes increases with the latency constraint T . This is
intuitive, as a larger latency budget allows the RSU and V2V transmitters in each cluster to disseminate more
network-coded packets, providing vehicles with a higher chance of receiving more video layers, which leads to an
overall increase in utility performance.

When comparing the utility performance across different schemes, we observe that the proposed PARNC scheme
outperforms the others, while the RLNC scheme achieves the worst performance. The FARNC and NARNC
schemes fall between RLNC and PARNC. When T < 8 slots, NARNC performs better than FARNC, but beyond
this threshold, FARNC achieves higher utility performance. These results show that PARNC is the best choice
when transmission dominates the utility performance. When T is small, the network has limited opportunities to
disseminate ARNC packets to vehicles, leading NARNC and FARNC to prioritize sending lower layers, resulting in
comparable transmission performance for both schemes. Since FARNC requires frequent feedback, NARNC slightly
outperforms FARNC in this range. As T increases, the RSU is required to transmit ARNC packets with k = L, but
FARNC can still distribute packets with smaller k values, depending on network conditions. Due to user mobility
and UEP, FARNC gradually outperforms NARNC as T increases.

Figure 4(b) shows the performance of the different schemes when the network prioritizes feedback cost, with
βf = 0.8 and βt = 0.2. Several distinct observations emerge from this figure. For example, the FARNC scheme
exhibits a decrease in utility, whereas NARNC shows a decreasing trend initially, followed by a gradual increase
with T . This behavior can be explained as follows. When the feedback cost dominates the total utility, each
received packet incurs a feedback cost. As the latency budget becomes more relaxed, the system generates more
feedback from V2V and V2I dissemination, which increases the overall cost. The transmission utility is only realized
after receiving the necessary packets, as defined by (10). Therefore, the FARNC scheme degrades as T increases.
Although the NARNC scheme does not require feedback for V2I transmission, V2V transmissions still incur feedback
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Figure 4 (Color online) Utility performance comparison of different schemes under various latency budgets T ’s.

costs when vehicles decoding the initial layers of content enter a V2V cluster and are selected as V2V transmitters.
As a result, the utility performance of NARNC initially decreases with T . However, as T increases, more vehicles
can receive higher layers of content without additional feedback, leading to a slight increase in utility. Similarly,
RLNC shows zero utility when T < L, as no vehicle can decode any content, but utility improves as more layers are
decoded and no feedback costs are incurred. The proposed PARNC shows a performance trend similar to that of
conventional NARNC, which is attributed to the two-phase design of PARNC. In the first phase (t 6 p), the ARNC
operates with a generation parameter k = min(t, L) without relying on feedback information, thus incurring no
feedback overhead. This design principle aligns with that of NARNC. In the second phase, the ARNC constructs
its codewords in each time slot based on user feedback, which is consistent with traditional FARNC. When feedback
overhead dominates the utility function, the PARNC scheme tends to mitigate the impact of feedback overhead on
utility performance. As a result, the duration of the first phase is extended. As shown in Figure 4(c), the optimal
p is essentially equal to T , meaning the first phase occupies all time slots without requiring feedback to guide
the PARNC design. In this case, PARNC effectively degenerates into the NARNC scheme, leading to identical
performance trends between the two schemes. Figure 4(b) shows that PARNC, NARNC and RLNC are suitable
choices when the latency budget is either limited or relaxed, whereas the feedback-dependent scheme, like FARNC,
performs poorly in these scenarios.

Given the flexibility of selecting various values for p in the PARNC scheme, we examine the performance of
different p values under varying latency budgets and identify the optimal value of p (Figure 4(c)). The figure shows
that the optimal p increases with T when transmission performance dominates the utility. In feedback-dominated
scenarios, the optimal p satisfies p = T for almost all T , meaning the optimal PARNC scheme converges to NARNC
under these conditions, which is consistent with the findings from Figure 4(b).
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Figure 5 (Color online) Utility performance comparison of different schemes under various lowest velocity vmin’s.

5.2 Impact of vehicle mobility vmin

In this subsection, we examine the impact of vehicle mobility on the final utility performance by varying the
minimum velocity vmin from 7 to 35 m/s. A higher value of vmin indicates stronger vehicle mobility, leading to
more frequent transitions between V2V/V2I and V2I/V2V modes. Since the FARNC and PARNC schemes are
more flexible in designing ARNC packets and can exclusively disseminate packets involving lower layers of content
(i.e., smaller values of k), the performance of these two schemes improves slightly as vmin increases (Figure 5(a)).
This improvement is because FARNC and PARNC apply smaller values of k, making it more likely for V2I vehicles
to decode the initial layers of content and then share them with surrounding V2V peers when they switch to V2V
mode.

Although NARNC and RLNC may achieve higher transmission utility by including higher layers of content in the
coded packets, higher mobility hinders vehicles from successfully decoding the disseminated packets or sharing them
with others. As a result, the total utilities of both NARNC and RLNC decrease with increasing vmin. Figure 5(c)
shows a similar trend in the transmission-dominated scenario that the optimal value of p decreases as vmin increases.
This suggests that when vehicle mobility is high, the RSU prefers to disseminate lower layers of content.

Additionally, in Figure 5(b), we compare the performance of different schemes under the system parameters
βf = 0.8 and βt = 0.2. The results in this figure align with those observed in Figure 4(b), where the feedback-
dependent FARNC scheme performs the worst, whereas the other feedback-independent schemes like PARNC,
NARNC and RLNC perform similarly. The trend in Figure 5(c) under the feedback dominated scenario indicates
that the optimal PARNC scheme degrades to NARNC as mobility increases, which complies with the results shown
in Figure 5(b).
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Figure 6 (Color online) Utility performance comparison of different schemes under various RSU coverage R.

5.3 Impact of RSU coverage R

In this subsection, we analyze the impact of RSU coverage on the performance of different schemes by varying the
coverage radius R from 50 to 250 m. Clearly, the value of R affects the mode selection of vehicles. Specifically, a
larger R increases the likelihood that vehicles remain within RSU coverage and operate in the V2I mode, allowing
them to receive more information from the RSU. In contrast, while vehicles in V2V mode can only share the layers
they have already decoded, the ARNC design in the V2I mode is more flexible, improving transmission utility.
However, if R becomes too large, the channel conditions between the RSU and the vehicle deteriorate, which may
result in vehicles receiving little or no data from the RSU. In such cases, V2V transmission might be a better option
for content retrieval.

As shown in Figure 6(a), the total utility of all the schemes initially increases with R and then begins to decrease
slightly. This is because, at first, a larger R enhances the probability that vehicles can stay within the RSU coverage
and receive more content. However, once R exceeds a certain threshold, the degradation in channel quality leads to
diminishing returns in utility. From Figure 6(c), we observe that the optimal value of p increases with R under the
transmission-dominated scenario, indicating that expanding RSU coverage positively impacts content dissemination
and allows the RSU to transmit higher layers of data. When R > 150 m, the decrease in p reflects the fact that
the RSU prefers to disseminate lower layers of content to mitigate the effects of deteriorating channel conditions,
particularly for multiple vehicles. A comparison of the performance of different schemes in Figure 6(a) clearly shows
the superiority of PARNC, with the performance gap between PARNC and FARNC widening as R increases.

Similarly, as shown in Figure 6(b), when βf = 0.8 and βt = 0.2, the growth of the utility function reaches a
turning point, shifting from increasing to decreasing with R. This change is due to the increasing feedback costs,
which make the feedback-dependent schemes less effective. As shown in Figure 6(c), the optimal PARNC scheme
degrades to NARNC, which performs the best in this scenario, especially when R is large.
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Figure 7 (Color online) Utility performance comparison of different schemes under various vehicle numbers N .

5.4 Impact of number of vehicles N

In Figure 7, we study the utility performance of different schemes as the number of vehicles N increases. In fact,
the increase in vehicle density may lead to the following effects. First, the total number of data packets transmitted
and received in the system increases. As shown in Figure 7, the utility performance of most schemes improves
with larger N . However, the FARNC scheme in Figure 7(b) is an exception whose performance decreases as N

increases. This is because the system is more sensitive to feedback overhead under the parameter setting βf = 0.8
and βt = 0.2. Since each user may send feedback in every time slot in FARNC, the overall feedback cost increases
significantly with the number of users, leading to a decline in utility performance. This can also be confirmed from
Figure 7(c) that when the system prioritizes feedback cost, the optimal parameter p in the PARNC algorithm tends
toward the total number of slots T , indicating a preference for operating without feedback.

An increase in vehicle number also complicates the transmission environment, leading to greater diversity in the
combinations of packets received by users. This diversity raises the complexity of PARNC code design and challenges
system performance optimization, potentially affecting the stability of the final utility function. Furthermore,
experimental results indicate that the proposed PARNC scheme outperforms other compared schemes when βf =
0.2, whereas PARNC performance approaches that of the optimal NARNC scheme when βf = 0.8. The reasons for
these phenomena have been discussed in Sections 5.1 and 5.2 and are not repeated here.

In summary, extensive simulations were conducted to compare the utility performance of the different scheduling
schemes. The simulation results demonstrate that FARNC and RLNC are generally not suitable choices in coop-
erative V2V and V2I transmission-enabled vehicular networks. In cases where the network prioritizes transmission
utility, PARNC outperforms all other schemes. However, when the feedback cost becomes dominant, the optimal
PARNC scheme degrades to NARNC, which then provides superior performance compared to the other schemes.
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6 Conclusion and future work

In this paper, we addressed the video content dissemination problem in NR V2X networks employing SL links,
i.e., cooperative V2V and V2I transmissions. To enhance transmission efficiency and minimize feedback costs, we
employed NC and SVC techniques and proposed a PARNC-based content scheduling scheme. We also introduced a
utility function to evaluate the transmission performance and corresponding feedback costs, which are significantly
influenced by the proposed scheduling scheme. Then, a DRL algorithm was applied to optimize the scheduling
scheme and maximize the overall utility. Finally, extensive simulations were conducted to demonstrate the superi-
ority of the proposed PARNC-based scheduling scheme across various scenarios, particularly when the transmission
performance dominates the utility function and feedback costs are manageable.

Our analysis has identified several aspects that warrant further investigation, which we defer to future work.
First, while the proposed PARNC scheme primarily addresses the tradeoff between transmission performance and
feedback overhead, it does not consider decoding complexity. Thus, an ANRC scheme that balances decoding
complexity and coding gain is required to reduce decoding latency. Second, although this study emphasizes the
design and comparison of scheduling schemes, a thorough comparison of different DRL algorithms to determine
optimal scheduling policies remains important. Further research is required to identify the most suitable DRL
approach. Finally, this paper employs a simplified V2V cluster selection algorithm as an initial step. A more
comprehensive and practical V2V transmitter selection mechanism should be developed to enhance the content
dissemination efficiency of PARNC schemes.
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