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Abstract For extremely large-scale multiple-input multiple-output (XL-MIMO) communications, the ultra-large antenna array results

in excessive channel estimation overhead. Joint spatial division and multiplexing (JSDM) can alleviate this by using prior knowledge of

user groups’ channel spatial covariance to design a pre-beamforming matrix. This allows the system to estimate only the low-dimensional

equivalent channel after pre-beamforming, rather than the full high-dimensional instantaneous channel, thereby significantly reducing

channel estimation overhead. However, the existing JSDM, which relies on the assumptions of a zero-mean channel model, the uniform

plane wave (UPW) model, and identical channel statistics for all users within the same group, is no longer suitable for XL-MIMO

communications due to new channel characteristics, including near-field non-uniform spherical wave (NUSW) and partial array visibility.

Therefore, we propose a near-field JSDM (NF-JSDM) approach for XL-MIMO communications, which leverages the developed near-field

statistical channel state information (CSI), including both channel mean and covariance. Compared to the conventional far-field JSDM

(FF-JSDM), the proposed NF-JSDM considers a more general non-zero-mean channel model and accommodates variations in statistical

CSI among users within the same group. An efficient algorithm for user grouping is also proposed for a more precise division of user groups.

Similar to the FF-JSDM, the proposed NF-JSDM also reduces channel estimation overhead via statistical CSI-based pre-beamforming.

In contrast, the proposed NF-JSDM further exploits both the first-order and second-order near-field statistical CSI, and introduces a

two-stage pre-beamforming scheme that further considers the differences in statistical CSI among intra-group users. Simulation results

validate the effectiveness of the proposed user grouping algorithm, and demonstrate the superiority of the proposed NF-JSDM over the

conventional FF-JSDM for XL-MIMO communications.
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1 Introduction

The evolution of wireless communication systems has been accompanied by the development of advanced antenna
technology. Evolving from single-antenna communications in early days, multiple-input multiple-output (MIMO)
and massive MIMO have emerged as pivotal physical layer technologies for the fourth-generation (4G) and fifth-
generation (5G) mobile communication systems, respectively. Throughout the evolution of antenna technology, the
number of antennas has continued to expand, from the typical 8 antennas used in 4G to 64 antennas in 5G [1].
This expansion has provided new spatial degrees of freedom (DoFs) without consuming additional time-frequency
resources, thereby improving spectral efficiency. To support the ambitious goals of the sixth-generation (6G) mobile
communication networks, such as ultra-high localization accuracy, ultra-high connectivity density, and immersive
communication, the scale of antenna arrays in massive MIMO systems is anticipated to be further increased by at
least one order of magnitude, termed extremely large-scale MIMO (XL-MIMO) [2–12].

However, increasing the antenna size will cause overwhelming channel estimation overhead, particularly in systems
without channel reciprocity, such as frequency division duplexing (FDD) systems. In FDD systems, due to the
absence of channel reciprocity, the downlink channel state information (CSI) can only be obtained by the base
station (BS) sending pilot sequences to user equipments (UEs), which then subsequently perform channel estimation
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and feed the estimated CSI back to the BS. Consequently, the length of the orthogonal pilot sequence is proportional
to the number of antennas at the BS side, which results in considerable pilot overhead and feedback overhead.

Existing work on reducing downlink channel estimation overhead primarily includes the compressive sensing
(CS)-based methods [13,14], channel knowledge map (CKM) [15,16], and the joint spatial division and multiplexing
(JSDM) approach [17,18]. The key to CS-based methods lies in utilizing the sparse characteristic of wireless channels
in the angle domain [13] or time domain [14]. Specifically, in CS-based channel estimation, the unknown CSI is
represented in sparse form either in the time domain or angle domain, and subsequently, the channel estimation
problem is rephrased as the problem of sparse signal recovery. CKM is a channel knowledge database that reflects
the essential characteristics of wireless channels [15, 16], which can provide prior environmental information in
advance, thereby avoiding repeated online estimation or sensing of static environmental elements and reducing
channel estimation overhead. However, the CS-based channel estimation depends on the channel spatial sparsity
assumption, which cannot be guaranteed in some practical communication scenarios [19, 20], while CKM requires
prior channel information for its construction and relies on UE location during its application.

In particular, the JSDM approach has the great potential in reducing downlink channel estimation overhead
[17, 18]. It partitions UEs into multiple groups based on their statistical CSI, by assuming that UEs within the
same group have identical statistical CSI. In [17,18], the prior information of user groups’ statistical CSI is leveraged
to reduce the dimension of the effective channels where instantaneous CSI needs to be estimated. Specifically, the
JSDM approach considers two stages of precoding, expressed as V = BP ∈ CN×K , where B ∈ CN×b and P ∈ Cb×K

are the first- and second-stage precoding, respectively, with K and N denoting the number of UEs and the number
of antennas at the BS end, respectively, and b ∈ [K,N ] being an integer that needs to be determined. The first-stage
precoding is designed to eliminate inter-group interference, which depends on the statistical CSI of multiple groups
only. The second-stage precoding can be designed as the zero-forcing (ZF) precoding for spatial multiplexing,
which depends on the equivalent instantaneous CSI after the first-stage precoding, i.e., Hequ = BHH ∈ Cb×K , with
H ∈ CN×K being the channels of K UEs. Consequently, the JSDM approach reduces the requirement for N ×K-
dimensional complete CSI to b ×K-dimensional equivalent CSI, thereby significantly reducing the CSI estimation
overhead if b ≪ N . Note that in [17, 18], the multiple-input single-output (MISO) channel of UE k in group g,
denoted by hk ∈ CN×1, is modeled as

hk = Θ
1
2
g zk, ∀ k ∈ Kg, (1)

where Θg ∈ CN×N denotes the spatial covariance matrix of group g with rank (Θg) = rg , zk ∈ Crg×1 ∼ NC(0, Irg )
is a circularly symmetric complex Gaussian (CSCG) random vector with zero mean and covariance matrix Irg , and
Kg denotes the UE set in group g. By observing the correlation-based stochastic model (CBSM) in (1), it is found
that the existing JSDM approach is based on three important assumptions.

• Zero-Mean Assumption. The channel mean is equal to zero, i.e., E [hk] = Θ
1
2
g E [zk] = 0.

• UPW Assumption. The channel spatial covariance model is based on the conventional far-field uniform plane
wave (UPW) model. Specifically, the spatial covariance model is derived from the far-field UPW-based steering

vector, given by aUPW = [1, e−j 2πλ d sin θ, . . . , e−j 2πλ (N−1)d sin θ]T ∈ CN×1 [21], where d and θ denote the distance
between adjacent antenna elements and the signal angle, respectively.

• Identical Statistical CSI Assumption. Different UEs in the same group are assumed to have the identical sta-
tistical CSI, i.e., cov(hk) = cov(hk′ ) = Θg, ∀ k, k′ ∈ Kg.

Therefore, the existing JSDM method may not be general enough due to Zero-Mean Assumption and Identical

Statistical CSI Assumption. Specifically, Zero-Mean Assumption makes the existing JSDM unsuitable for the com-
munication scenarios with mixed line-of-sight (LoS) and non-LoS (NLoS) links. Furthermore, the assumption that
UEs in the same group have the identical statistical CSI is rather strong. In addition, the existing JSDM will be
inapplicable to XL-MIMO communications, as UPW Assumption will no longer hold in XL-MIMO communications.
This is because the XL-MIMO communications experience new channel characteristics, i.e., near-field non-uniform
spherical wave (NUSW) propagation and partial array visibility properties [2, 22, 23]. Specifically, for the NUSW
model, the amplitude of each propagation path across array elements is no longer uniform and the phase variation
is generally nonlinear, differing from the UPW model with uniform amplitude and linear phase variation across
array elements. Moreover, regarding partial array visibility, scatterers and/or UEs can only see some portions
of the large-scale array (XL-array), rather than the whole array. Consequently, in XL-MIMO communications,
the statistical CSI model needs to consider the more general near-field NUSW model and partial array visibility,
rather than the conventional UPW-based model in the existing far-field JSDM (FF-JSDM). In addition, due to
these new channel characteristics, there will be differences in the statistical CSI among adjacent UEs in XL-MIMO
communications, even if they are so close to each other that they experience the same set of scatterers. There-
fore, Identical Statistical CSI Assumption does not hold in XL-MIMO communications. In summary, the existing
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FF-JSDM approach is no longer applicable to XL-MIMO communications, which motivates our current work.
In this paper, we propose a near-field JSDM (NF-JSDM) approach for XL-MIMO communications to reduce

channel estimation overhead, particularly in downlink systems without channel reciprocity, where CSI acquisition is
more critical than in the uplink. Although JSDM was originally proposed for downlink, it has also been extended to
uplink scenarios [24,25], where receiver-side beamforming based on user group statistical CSI helps reduce processing
complexity and inter-user interference. Therefore, with appropriate modifications, the proposed NF-JSDM can be
adapted for uplink communications as well. Since the NF-JSDM requires prior knowledge of statistical CSI, we first
develop the near-field first- and second-order statistical CSI models, which are characterized by channel mean and
covariance, respectively. Based on these models, we propose a user grouping strategy that exploits the similarity of
users’ near-field statistical CSI, effectively guiding NF-JSDM precoding design. Building on this, we further develop
a generalized NF-JSDM framework for XL-MIMO communications. Several recent studies have investigated key
aspects of near-field XL-MIMO communications, including channel modeling, precoding, and user grouping. In
terms of channel modeling, Ref. [26] considered the NUSW characteristic but assumed an identical spatial correlation
matrix, thereby neglecting spatial correlation among antenna elements, while Ref. [27] proposed a spatial correlation
model based on visibility regions but neglected NUSW propagation. In precoding, Ref. [28] developed near-field
beam focusing techniques for various antenna architectures, while Ref. [29] introduced triple-polarized precoding for
holographic MIMO. However, both approaches rely on full CSI acquisition, incurring significant estimation overhead
in near-field XL-MIMO communications. For user grouping, Ref. [7] proposed a strategy to enhance sum-rate and
suppress grating lobes, yet without considering spatial non-stationarity. In contrast, our work makes three key
contributions: (i) a near-field statistical CSI model that jointly captures NUSW and spatial non-stationarity; (ii) a
more accurate user grouping strategy based on the similarity of users’ near-field statistical CSI; and (iii) an efficient
NF-JSDM framework that significantly reduces channel estimation overhead while ensuring high performance in
XL-MIMO communications. Our primary contributions are as follows.

• First, we develop the near-field geometry-based stochastic model (GBSM) for multi-user XL-array communica-
tions, considering mixed LoS and NLoS links. The novel near-field GBSM takes into account the NUSW and partial
array visibility characteristics, and further considers the spatial consistency by introducing the visibility region (VR)
at the UE end. Subsequently, we derive the near-field channel mean and covariance from the developed near-field
GBSM. Notably, due to the randomness of partial array visibility, the near-field channel mean does not equal the
channel LoS component as in the far-field UPW-based model. In addition, the developed near-field channel covari-
ance no longer exhibits spatial wide-sense stationarity (SWSS), which is different from the conventional far-field
model. Furthermore, the near-field spatial correlation function (S-CF) of the LoS component exhibits sparsity as
a consequence of partial array visibility. On the other hand, the near-field S-CF of the NLoS component depends
on the scattered power distribution characterized by the power location spectrum (PLS), which differs from the
far-field one that depends on the power angle spectrum (PAS).

• Second, building on the developed near-field statistical CSI as prior knowledge, we propose the NF-JSDM
scheme applicable to XL-MIMO communications. The proposed NF-JSDM method is developed under the as-
sumptions of the non-zero-mean channel, NUSW propagation, and non-identical statistical CSI. To validate that
the Identical Statistical CSI Assumption does not hold in XL-MIMO communications, we first derive the effective
eigenspaces of the developed near-field first- and second-order statistical CSI, and then evaluate the similarity be-
tween the effective eigenspaces of different UEs. Simulation results demonstrate that there are significant differences
in adjacent users’ statistical CSI, even if they experience the same set of scatterers. Based on this observation, we
propose an efficient user grouping algorithm for the NF-JSDM scheme, which leverages the similarity of near-field
effective eigenspaces. Building on this novel user grouping strategy, we further develop a three-stage NF-JSDM
framework. The first- and second-stage precoding depend on the prior knowledge of near-field statistical CSI, while
the third stage depends on the instantaneous equivalent CSI obtained after the first two stages of precoding. Specif-
ically, the first-stage precoding is designed to eliminate inter-group interference, while the second stage aims to
project the eigen-beamforming along the dominant eigenmodes of each UE’s effective channel after the first-stage
precoding. Additionally, the third-stage precoding employs ZF precoding for spatial multiplexing. Consequently,
in the developed NF-JSDM, only the reduced-dimensional instantaneous equivalent CSI needs to be estimated,
thereby significantly reducing CSI estimation overhead.

• Lastly, simulation results validate the proposed user grouping algorithm and the developed NF-JSDM for XL-
MIMO communications. The results demonstrate the effectiveness of the proposed algorithm for user grouping
in multi-user XL-MIMO communications, as evidenced by comparisons with the exhaustive search algorithm and
random grouping algorithm. Furthermore, simulation results demonstrate that the proposed NF-JSDM method
is applicable to XL-MIMO communications, as compared to the ZF precoding that utilizes complete CSI and the
conventional FF-JSDM method.
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Table 1 Mathematical notations.

Symbol Meaning Symbol Meaning Symbol Meaning

C Complex space R Real space (·)T Transpose

(·)H Hermitian transpose (·)∗ Complex conjugate ‖ · ‖ Euclidean norm

‖ · ‖F Frobenius norm E[·] Expectation ◦ Hadamard product

⌈·⌉ Ceiling operation ⌊·⌋ Floor operation det(·) Determinant

rank(·) Rank vec(·) Vectorization Span⊥(X) Orthogonal complement

tr(·) Trace Span(X) Column space dim(X) Dimension of column space

cov(·) Covariance NC(0, σ
2) CSCG distribution

Figure 1 (Color online) A downlink multi-user XL-array communication system in the near-field scattering environment.

The overall structure of this paper is as follows. Section 2 introduces the system model and near-field GBSM.
Section 3 derives the near-field channel mean and covariance, which serve as the prior knowledge for NF-JSDM
design. Section 4 presents the proposed NF-JSDM in three interrelated parts. First, Subsection 4.1 analyzes the
similarity of the effective eigenspace derived from the near-field first- and second-order statistical CSI to verify
that the identical statistical CSI assumption does not hold in XL-MIMO communications. Based on this analysis,
Subsection 4.2 proposes a refined user grouping algorithm based on eigenspace similarity. Building on the previous
analysis and grouping strategy, Subsection 4.3 develops a three-stage NF-JSDM approach. Simulation results are
presented in Section 5. Finally, Section 6 concludes the paper. The mathematical notations are summarized in
Table 1.

2 System model

As shown in Figure 1, a downlink multi-user MISO (MU-MISO) communication system is considered, where a BS
equipped with an XL-array of N ≫ 1 elements communicates with K single-antenna UEs. Let K = {1, 2, . . . ,K}
denote the index set of K UEs. The received signal at UE k, denoted by yk, is expressed as

yk = hH
k

∑

i∈K

viai + nk = hH
k Va+ nk, ∀ k ∈ K, (2)

where hk ∈ CN×1 is the channel vector between UE k and the BS; vi ∈ CN×1 is the precoding vector of UE i with
‖vi‖ = 1, and V = [vi]i∈K ∈ CN×K ; ai is the information-bearing symbol of UE i, which satisfies |ai|2 = P0

K and
E [aia

∗
i′ ] = 0, ∀ i′ 6= i ∈ K, with P0 being the transmit power and a = [ai]i∈K ∈ CK×1; and nk ∼ NC

(
0, σ2

)
is the

noise at UE k following independent and identically distributed (i.i.d.) CSCG distribution with variance σ2. To
guarantee effective communication, the channel of K UEs, i.e., H = [hk]k∈K ∈ CN×K , needs to be obtained first. In
communication systems without channel reciprocity, the downlink channel estimation overhead is proportional to
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the number of antenna elements of the XL-array N . Hence, it is crucial to reduce the channel estimation overhead,
especially in XL-MIMO communications.

However, the conventional FF-JSDM method [17, 18], usually used to reduce channel overhead, may not be
applicable to XL-MIMO communications, as the aforementioned three assumptions may not hold. In addition, the
CBSM in (1) typically adopted by the FF-JSDM method will not be able to characterize XL-MIMO communications
effectively. To model the more general near-field CBSM, we consider the non-zero mean channel by utilizing the
near-field channel mean and covariance, which is modeled as

hk = h̄k +Θ
1
2

k zk, ∀ k ∈ K, (3)

where h̄k ∈ CN×1 and Θk ∈ CN×N are the near-field channel mean and covariance, respectively, with rank (Θk) =
rk; zk ∈ Crk×1 is a random vector with E [zk] = 0 and cov(zk) = Irk . Since the NF-JSDM depends on the prior
knowledge of statistical CSI, it is essential to first develop the near-field channel mean and spatial covariance models.
Consequently, to model the near-field statistical CSI, we first develop the near-field GBSM with mixed LoS and
NLoS links in the following.

2.1 Near-field system model

Figure 1 depicts the scenario of multi-user XL-array communications in the near-field scattering environment. The
basic XL uniform linear array (XL-ULA) is considered, with the separation between adjacent elements represented
by δ. Without loss of generality, the XL-ULA is assumed to lie along the y-axis of the Cartesian coordinate system
with its center aligned with the origin. Thus, the distance between the nth element and the origin is nδ, where
n ∈ N with N = {n : −⌈N−1

2 ⌉ 6 n 6 ⌊N−1
2 ⌋} denoting the set of XL-array elements. The number of scatterers is

denoted as Q. By considering the mixed LoS and NLoS links, the near-field GBSM of UE k is modeled as

hk = hLoS
k + hNLoS

k , (4)

where hLoS
k ∈ CN×1 and hNLoS

k ∈ CN×1 are the near-field LoS and NLoS components, respectively.
In our prior work [22], the near-field GBSM hk in (4) considered the generic NUSW model and partial array

visibility. Within the Rayleigh distance rRayl =
2D2

λ [30, 31], with D denoting the XL-array aperture and λ being
the carrier wavelength, the NUSW model should be considered to accurately capture near-field propagation effects.
In the NUSW model, the exact distances of scatterers and/or UEs to the XL-array are used to accurately model
the signal amplitude and phase across array elements, rather than their first-order Taylor approximation as in the
UPW model. For the partial array visibility, the random binary variables ξ(e) ∈ {0, 1}N×1 are introduced to model
the (in)visibility of array elements to a scatterer or UEs, where the symbol ‘e’ can be replaced by either ‘q’ or ‘k’.
Specifically, ‘e’ = ‘q’ indicates that the array’s (in)visibility to scatterer q for the NLoS links is modeled, whereas ‘e’
= ‘k’ indicates that the array’s (in)visibility to UE k for the LoS link is modeled. In [22], the partial array visibility
was modeled as a two-state Markov process, where the lengths of invisibility and visibility regions over the array
axis before transitioning to the other state are modeled as i.i.d. exponential random variables with transition rates
αi(e) (m−1) and αv(e) (m−1) related to the invisibility state and visibility state, respectively.

While the model in [22] laid a solid foundation for capturing near-field channel characteristics, it was limited
to single-user scenarios and did not consider spatial consistency across different user locations. Building upon this
foundation, the current work extends the near-field channel model in [22] to multi-user XL-MIMO communication
scenarios by further considering the spatial consistency to observe the smooth channel variations as users move.
Specifically, the current work introduces the concept of a reference user and incorporates the VR at the user side
to model the spatial consistency of the channel. Therefore, the current model can be viewed as a natural and
comprehensive extension of the channel model in [22], where we not only adapt the original single-user framework
but also expand it to address multi-user scenarios. In particular, the VR at the user end determines the set of
scatterers that are visible to any UE k [32], denoted by Qk, ∀k ∈ K, which is modeled in the time-space domain to
ensure smooth evolution of the channel response as the user moves. Specifically, each VR is defined as an identically
sized circular geographical region on the azimuth plane, which determines the visibility of only one scatterer.
As shown in Figure 1, if UE k is within a VR, the associated scatterer will be visible to that UE. Meanwhile,
if UE k is located within the overlapping area of multiple VRs, it will simultaneously see multiple associated
scatterers. Furthermore, the visibility gain is introduced to smoothly control the visibility level of a scatterer as UE
k approaches the corresponding VR center [32]. This modeling approach has been validated through extensive indoor
and outdoor measurement campaigns [33, 34]. Specifically, Ref. [33] reported 300 MHz outdoor measurements in
which the KPowerMeans algorithm and a Kalman filter were used to identify and track scatterer clusters, confirming
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the spatial consistency of the model. Additionally, indoor measurements in [34] confirmed that VR radii follow a
lognormal distribution, further supporting the modeling validity of the user-side VR concept. The LoS and NLoS
components of the near-field GBSM are modeled as follows.

2.2 LoS component of near-field GBSM

The LoS channel coefficient between UE k and the nth array element is given by the following expression, which
considers the NUSW and partial array visibility [22]

hLoS
k,n =

√

βLoS
k ξn(k)

dk
dk,n

e−j 2πλ dk,n , (5)

where βLoS
k is the LoS path power of UE k at the reference element n = 0, defined as

√

βLoS
k = λ

4πdk
[22]; ξn(k)

denotes the (in)visibility of the nth array element to UE k for the LoS link; and dk,n is the distance from UE k to
the nth array element, which is expressed as

dk,n =

√

d2k + (nδ)
2 − 2nδdk sinϕk, (6)

with dk = dk,0 being the distance of UE k to the origin, and ϕk ∈
[
−π

2 ,
π

2

]
being the angle of UE k with respect to

(w.r.t.) the positive x-axis, as shown in Figure 1.
To observe the smooth change of LoS component power across different user positions, i.e., spatial consistency, we

introduce the reference UE k = 0. Thus,
√

βLoS
k is equivalently expressed as

√

βLoS d
dk
, where βLoS = βLoS

k=0 = ( λ
4πd)

2

is the LoS path power of the reference UE with d = dk=0. As such, h
LoS
k,n in (5) can be equivalently expressed as

hLoS
k,n =

√

βLoSξn(k)
d

dk,n
e−j 2πλ dk,n . (7)

Thus, the LoS component vector hLoS
k ∈ CN×1 containing all the N coefficients hLoS

k,n in (7), is given by

hLoS
k =

√

βLoSξ(k) ◦ aLoSk , (8)

where aLoSk = d
dk

◦ e−j 2πλ dk ∈ CN×1 is the near-field array response vector of UE k with dk = [dk,n]n∈N ∈ RN×1.

Compared with the previous work in [22], the LoS component in (8) further enhances multi-user channel modeling.
Specifically, since the LoS path power βLoS

k depends on the specific position of user k, the previous model in [22]
is unable to characterize the spatial evolution of LoS power across user positions. To overcome this limitation, we
further introduce the reference user, which enables the observation and modeling of the LoS power variation with
respect to user position. This enhancement improves the channel model’s ability to capture spatial consistency in
multi-user communication scenarios.

2.3 NLoS component of near-field GBSM

Based on the prior work [22], the NLoS component further considers the VR at the UE end. Thus, the NLoS
coefficient between UE k and the nth array element, denoted as hNLoS

k,n , can be modeled as

hNLoS
k,n =

√

βNLoS
k

Qk

∑

q∈Qk

gq,kξn(q)
rq
rq,n

e−j 2πλ (tq,k+rq,n)+jωqgVR
q,k , (9)

where βNLoS
k is the sum of the NLoS paths’ power at the reference array element for UE k; Qk = |Qk| is the number

of scatterers visible to UE k; gq,k is a random variable satisfying 1
Qk

∑

q∈Qk
E[g2q,k] = 1 [22], which corresponds to the

signal amplitude at the reference element for UE k, i.e., contributed by scatterer q; ξn(q) denotes the (in)visibility
of the nth array element to scatterer q for the NLoS link; rq,n is the distance from scatterer q to array element n,
which is expressed as

rq,n =
√

r2q + (nδ)2 − 2nδrq sin θq, (10)

with rq = rq,0 being the distance of scatterer q to the origin, and θq ∈ [−π,π] being the angle of scatterer q w.r.t.
the positive x-axis, as shown in Figure 1; tq,k is the distance between UE k and scatterer q; and ωq denotes the
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phase shift due to scatterer q, which is modeled as an i.i.d. random variable with uniform distribution over [−π,π);
gVR
q,k ∈ (0, 1) denotes the visibility gain of scatterer q to UE k, modeled as [32]

gVR
q,k = 0.5− arctan

(

2
√
2
(
LC + dVR

q,k −RC

)
/
√

λLC

)

/π, (11)

with LC being the width of the transition region, dVR
q,k being the distance from UE k to the center of the VR

corresponding to scatterer q, and RC being the VR radius. Particularly, the variables βNLoS
k and gq,k are expressed

as βNLoS
k =

∑

q∈Qk

λ2σq

(4π)3t2q,kr
2
q
and

√
βNLoS
k

Qk
gq,k =

λ
√
σq

(4π)3/2tq,krq
[22], respectively, where σq is the i.i.d. positive random

radar cross section of scatterer q [35].
Similar to the LoS component, the reference UE k = 0 is introduced to model spatial consistency, which is

assumed to see all the scatterers, i.e., |Qk=0| = Q. Thus, the NLoS power and the variable gq = gq,0 for UE k = 0

are expressed as βNLoS =
∑Q

q=1
λ2σq

(4π)3t2qr
2
q
and

√
βNLoS

Q gq =
λ
√
σq

(4π)3/2tqrq
, respectively, with tq = tq,0. Thus, we have

√
βNLoS
k

Qk
gq,k =

√
βNLoS

Q gq
tq
tq,k

. As such, hNLoS
k,n in (9) is equivalently expressed as

hNLoS
k,n =

√

βNLoS

Q

∑

q∈Qk

gqg
VR
q,k ξn(q)

tq
tq,k

rq
rq,n

e−j 2πλ (tq,k+rq,n)+jωq . (12)

The NLoS component vector hNLoS
k ∈ CN×1 containing N coefficients hNLoS

k,n in (12), is written as

hNLoS
k =

√

βNLoS

Q

∑

q∈Qk

gqg
VR
q,k

tq
tq,k

e−j 2πλ tq,k+jωqξ(q) ◦ aNLoS
q , (13)

where aNLoS
q =

rq
rq
◦e−j 2πλ rq ∈ CN×1 is the near-field array response vector for scatterer q, with rq = [rq,n]n∈N ∈ RN×1

being the distance vector for scatterer q, which contains N distances rq,n in (10).

3 Near-field channel mean and covariance

Based on the developed near-field GBSM in (4), we characterize the near-field channel mean vector and covariance

matrix, i.e., h̄k = E [hk] and Θk = E
[
hk (hk)

H ]
−h̄kh̄

H
k .

3.1 Near-field channel mean vector

Since the variable ωq follows an i.i.d. uniform distribution over [−π,π), we have E
[
ejωq

]
= 0. In this case, the

expectation of the NLoS component for UE k in (13) is E
[
hNLoS
k

]
= 0. Therefore, the near-field channel mean h̄k

is expressed as

h̄k = E
[
hLoS
k

]
=

√

β

√

K
K + 1

E
[
ξ(k)

]
◦aLoSk , (14)

where β = βLoS + βNLoS and K = βLoS

βNLoS are the received power and K-factor of the reference UE at the reference
antenna, respectively. It is worth remarking that the conventional far-field channel mean is equal to its LoS
component hUPW LoS

k , which is expressed as [36, 37]

h̄UPW
k = hUPW LoS

k =
√

βk

√

Kk

Kk + 1
aUPW LoS
k , (15)

where βk and Kk are the received power and K-factor of UE k at the reference antenna, respectively, and aUPW LoS
k =

[e−j 2πλ (dk−nδ sinϕk)]∀n∈N is the far-field array response vector of UE k. By comparing the near- and far-field channel
mean, it is found that due to the randomness of partial array visibility, the near-field channel mean is no longer
equal to its LoS component as in the far-field model, i.e., h̄k 6= hLoS

k .
By comparing (14) and (15), we observe that the near-field channel mean model can be viewed as a generalization

of the conventional far-field model, as described below.
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Lemma 1. When αv(k) = 0 and Nδ ≪ dk, indicating that UE k can observe all elements of the XL-array and
that UE k is in the far-field region of the XL-array, we have

h̄k ≈ h̄UPW
k . (16)

Proof. Please refer to Appendix A.
Lemma 1 demonstrates that for the first-order statistical CSI, the near-field model in (14) generalizes the con-

ventional far-field model in (15), as the former includes the latter as a special case.

3.2 Near-field channel covariance matrix

Since E
[
hNLoS
k

]
= 0, the near-field NUSW-based covariance matrix Θk is simplified to

Θk = ΘLoS
k +ΘNLoS

k − h̄kh̄
H
k , (17)

where ΘLoS
k = E

[
hLoS
k (hLoS

k )H
]
∈ CN×N and ΘNLoS

k = E
[
hNLoS
k (hNLoS

k )H
]
∈ CN×N denote the near-field S-CF

matrices of LoS and NLoS components, respectively. It is worth noting that the far-field covariance matrix ΘUPW
k

is equal to the far-field NLoS S-CF ΘUPW NLoS
k , i.e., ΘUPW

k = ΘUPW NLoS
k . Next, we characterize the near-field

S-CF matrices ΘLoS
k and ΘNLoS

k separately.

3.2.1 NUSW-based S-CF of LoS component

According to the LoS component hLoS
k in (8), the near-field LoS S-CF is given by

ΘLoS
k = β

K
K + 1

E
[
ξ(k)ξT(k)

]
◦
(
aLoSk (aLoSk )H

)
. (18)

Specifically, the element of the matrix ΘLoS
k in (18) is

[
ΘLoS

k

]

n,m
= β

K
K + 1

d2

dk,ndk,m
e−j 2πλ (dk,n−dk,m)E

[
ξn(k)ξm(k)

]
, (19)

where E[ξn(k)ξm(k)] is the autocorrelation of the two-state discrete Markov process, n > m, which is given by [22]

E [ξn(k)ξm(k)] =

(
αi(k)

α(k)
+

αv(k)

α(k)
e−α(k)(n−m)δ

)

E [ξm(k)] , (20)

with α(k) = αi(k) + αv(k), E[ξm(k)] being the probability of the mth array element visible to UE k, expressed

as E[ξm(k)] = αi(k)
α(k) +

αv(k)
α(k) e

−α(k)|m−n′(k)|δ [22]; the parameter αi(k) denoting the transition rate in the Markov

process from the invisibility state to the visibility state, while the parameter αv(k) denotes the transition rate from
the visibility state to the invisibility state; and n′(k) being the center of visible array elements to UE k satisfying
E[ξn′(k)(k)] = 1, which is uniformly selected from the array elements. If the reference UE is specified as UE k itself,
the near-field LoS S-CF in (19) is rewritten as [22]

[
ΘLoS

k

]

n,m
= βk

Kk

Kk + 1

d2k
dk,ndk,m

e−j 2πλ (dk,n−dk,m)E
[
ξn(k)ξm(k)

]
. (21)

It is worth mentioning that the far-field LoS S-CF is expressed asΘUPW LoS
k = h̄UPW

k

(
h̄UPW
k

)H
due to hUPW LoS

k =
h̄UPW
k . Based on h̄UPW

k in (15), the element of matrix ΘUPW LoS
k is expressed as

[
ΘUPW LoS

k

]

n,m
= βk

Kk

Kk + 1
e−j 2πλ (m−n)δ sinϕk . (22)

By comparing the NUSW- and UPW-based S-CFs of the LoS component in (19) and (22), there are three main
differences between them. Firstly, the NUSW-based model no longer exhibits SWSS as the UPW-based model,
since

[
ΘLoS

k

]

n,m
is dependent on the specific locations of the nth and mth array elements rather than their relative

distance only. Secondly, the NUSW-based model may exhibit sparsity due to the partial array visibility, compared
to the UPW-based model. Thirdly, the developed near-field model exhibits spatial consistency and depends on the
UE’s location, which differs from the far-field model that is independent of the UE’s location.
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Lemma 2. When αv(k) = 0 and Nδ ≪ dk, which means that UE k is guaranteed to see all elements of the
XL-array and to be in the far-field region of the XL-array, we have

ΘLoS
k ≈ ΘUPW LoS

k . (23)

Proof. Please refer to Appendix B.
Lemma 2 shows that for the LoS component, the near-field S-CF in (21) generalizes the conventional far-field

model in (22), as the former includes the latter as a special case.

3.2.2 NUSW-based S-CF of NLoS component

Based on (13), the near-field NUSW-based S-CF of the NLoS component is expressed as

ΘNLoS
k =

β
1

K+ 1

1

Q

∑

q∈Qk

∑

p∈Qk

E [gqgp] g
VR
q,k g

VR
p,k

tqtp
tq,ktp,k

e−j 2πλ (tq,k−tp,k)E[ejωq−jωp ]E
[
ξ(q)ξT(p)

]
◦(aNLoS

q (aNLoS
p )H).

(24)

With ωq following i.i.d. uniform distribution over [−π,π), we have E[ejωq−jωp ] =

{
1, p = q

0, p 6= q
. Hence, the NUSW-

based S-CF of NLoS component in (24) is simplified to

ΘNLoS
k =

β

K + 1

1

Q

∑

q∈Qk

E[g2q ](g
VR
q,k )

2
t2q
t2q,k

E
[
ξ(q)ξT(q)

]
◦
(
aNLoS
q (aNLoS

q )H
)
. (25)

Thus, the element of the matrix ΘNLoS
k in (25) is given by

[
ΘNLoS

k

]

n,m
= β

1

K + 1

1

Q

∑

q∈Qk

E[g2q ](g
VR
q,k )

2
t2q
t2q,k

r2q
rq,nrq,m

e−j 2πλ (rq,n−rq,m)E[ξn(q)ξm(q)], (26)

where the autocorrelation E [ξn(q)ξm(q)] has the similar expression as in (20), with the center of visible array
elements to scatterer q denoted by n′(q), which is chosen uniformly from the array elements.

Similar to the integral-form near-field S-CF in [38], for Q → ∞, Q−1E[g2q ] in (26) is interpreted as the infinitesimal
power at the reference array element, which is contributed by a differential scatterer located around s. Thus, we
have Q−1E[g2q ] = f(s)ds, where f(s) represents the probability density function (PDF) of scatterer location s ∈ S for

the reference UE, with S being the random scatterers’ support of the reference UE. Hence, for Q → ∞,
[
ΘNLoS

k

]

n,m

in (26) can be expressed in an integral form as

[
ΘNLoS

k

]

n,m
= β

1

K + 1

∫

s∈Sk

(gVR
k (s))2

t2(s)

t2k(s)

r2(s)

rn(s)rm(s)
e−j 2πλ (rn(s)−rm(s))E [ξn(s)ξm(s)] f(s)ds, (27)

where Sk is the support of random scatterers of UE k; gVR
k (s) is the visibility gain of scatterer s for UE k; tk(s) is

the distance between scatterer s and UE k, with t(s) = t0(s); rn(s) is the distance between scatterer s and the nth
array element, with r(s) = r0(s); ξn(s) is the (in)visibility of the nth array element to scatterer s. In particular, if
the reference UE is set to UE k itself,

[
ΘNLoS

k

]

n,m
in (27) is rewritten as

[
ΘNLoS

k

]

n,m
= βk

1

Kk + 1

∫

s∈Sk

(gVR
k (s))2

r2(s)

rn(s)rm(s)
e−j 2πλ (rn(s)−rm(s))E [ξn(s)ξm(s)] fk(s)ds, (28)

where fk(s) is the PDF for UE k with fk(s)ds = Q−1
k E[g2q,k], ∀s ∈ Sk. As the integration in (28) needs to be

performed for all (n,m) antenna element pairs, the computational complexity of constructing the matrix ΘNLoS
k

scales as O(N2Sk), where Sk = |Sk| denotes the number of discrete scatterers for user k used in the numerical
integration.

It is worth noting that the conventional far-field UPW-based S-CF of the NLoS component is given by [39]

[
ΘUPW NLoS

k

]

n,m
=

βk

Kk + 1

∫ θmax
k

θmin
k

e−j 2πλ (m−n)δ sin θfk(θ)dθ, (29)
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where θ ∈ [θmin
k , θmax

k ] is the angle of arrival (AoA) of scatterers for UE k, with θmin
k and θmax

k being the minimum
and maximum AoAs of scatterers for UE k, respectively, and fk(θ) is the PAS of UE k.

For the NLoS component, a comparison between the developed near-field S-CF in (27) and the conventional far-
field model in (29) reveals three important differences. First, the near-field S-CF depends on the PLS characterized
by AoA and distances of scatterers, whereas the far-field S-CF depends on the PAS characterized only by the
scatterers’ AoAs. Second, compared to the far-field model, the near-field model no longer exhibits SWSS, since
[
ΘNLoS

k

]

n,m
in (28) depends on the specific array indices n and m, rather than the array index difference m − n.

Lastly, the developed near-field model exhibits spatial consistency and depends on the UE’s location, while the
far-field model is independent of the UE’s location.

Lemma 3. When gVR
k (s) = 1, αv(s) = 0, Nδ ≪ r(s), ∀ s ∈ Sk, which means that UE k is in the VR center

of scatterer s, the probability of array visible to scatterer s is 1, and scatterers are in the far-field region of the
XL-array, we have

ΘNLoS
k ≈ ΘUPW NLoS

k . (30)

Proof. Please refer to Appendix C.

From Lemma 3, it is found that the developed near-field NLoS S-CF in (28) is more general than the far-field
one in (29), since the former includes the latter as a special case.

According to Lemmas 1–3, we observe that the near-field channel covariance model is a generalization of the
conventional far-field model, as shown below.

Remark 1. When gVR
k (s) = 1, αv(s) = 0, and Nδ ≪ r(s), ∀ s ∈ Sk, and αv(k) = 0 and Nδ ≪ dk, which means

that UE k is in the VR center of scatterer s, the probability of the array visible to both scatterer s and UE k is 1,
and scatterers and UE k are in the far-field region of the XL-array, we have

Θk ≈ ΘUPW
k . (31)

Remark 1 demonstrates that the near-field second-order statistical CSI model in (17) is more general than the
conventional far-field model, as it is applicable to mixed far- and near-field communications.

4 Near-field joint spatial-division and multiplexing

The developed near-field first- and second-order statistical CSI in Section 3 serves as crucial prior information in the
NF-JSDM approach. Before designing the NF-JSDM approach, we will conduct an analysis to assess the validity of
Identical Statistical CSI Assumption in XL-MIMO communications. This analysis focuses on comparing the similar-
ity of statistical CSI’s eigenspaces among different UEs, ultimately revealing that Identical Statistical CSI Assumption

does not hold in XL-MIMO communications.

4.1 The similarity of channel eigenspace

In the communications scenarios with mixed LoS and NLoS links, the channel eigenspace cannot be simply equal
to the eigenspace derived from the eigenvalue decomposition (EVD) of the channel covariance matrix, as in the FF-
JSDM method. This distinction arises from the fact that in purely NLoS communication scenarios, statistical CSI
typically involves only the second-order statistics of the channel, i.e., the covariance matrix, whose EVD directly
yields the channel eigenspace. However, in wireless communication scenarios with mixed LoS and NLoS links,
both the first-order and second-order statistics must be considered. As a result, the channel eigenspace in such
scenarios is determined not only by the covariance matrix but also by the channel mean vector. Therefore, before
analyzing channel eigenspace similarity, it is necessary to discuss the effective eigenspace formed by the joint first-
and second-order statistical CSI.

First, the eigenspace of the second-order statistical CSI for UE k, denoted by
{
Uk,Λk

}
, is obtained through the

EVD of the spatial covariance matrix Θk directly, i.e., Θk = UkΛkU
H
k with Uk ∈ CN×rk and Λk ∈ Rrk×rk . Then,

for the first-order statistical CSI, the eigenspace can be regarded as the orthogonal component of the channel mean

vector h̄k in the normal direction of the subspace spanned by the eigenspace Θ
1
2

k = UkΛ
1
2

k , denoted by h̄⊥
k ∈ CN×1,

and is given by

h̄⊥
k = h̄k − h̄

‖
k, (32)
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where h̄
‖
k ∈ CN×1 denotes the projection component of h̄k onto the subspace Θ

1
2

k , which is expressed as

h̄
‖
k = Θ

1
2

k

((
Θ

1
2

k

)H
Θ

1
2

k

)−1 (

Θ
1
2

k

)H

h̄k

︸ ︷︷ ︸

xk

, (33)

where xk is the linear operator between Θ
1
2

k and h̄
‖
k. Thus, hk in (3) can be equivalently expressed as

hk = h̄⊥
k +Θ

1
2

k (xk + zk) = (Θeff
k )

1
2 zeffk , (34)

where Θeff
k = Ueff

k Λeff
k (Ueff

k )H ∈ CN×N is the effective eigenmatrix of UE k, with Ueff
k ∈ CN×reffk and Λeff

k ∈ Rreffk ×reffk

representing the effective unitary eigenvector matrix and effective diagonal eigenvalue matrix, respectively, and

reffk = rank(Θeff
k ); and zeffk ∈ Creffk ×1 is the effective random vector of UE k. The expressions of the effective

eigenspace, denoted by
{
Ueff

k ,Λeff
k

}
, and the effective random vector zeffk need to be discussed separately when

h̄⊥
k = 0 or h̄⊥

k 6= 0. Specifically, if h̄⊥
k = 0, the effective eigenspace and the effective random vector are respectively

expressed as
{
Ueff

k ,Λeff
k

}
=

{
Uk,Λk

}
and zeffk = xk + zk,

with reffk = rk, E
[
zeffk

]
= xk, and cov

(
zeffk

)
= Irk ; otherwise,

{
Ueff

k ,Λeff
k

}
and zeffk are respectively expressed as

Ueff
k =

[
h̄⊥
k /‖h̄⊥

k ‖F ,Uk

]
,Λeff

k = diag
(
‖h̄⊥

k ‖2F , diag(Λk)
)
, and zeffk = [1;xk + zk] ,

with reffk = rk + 1, E
[
zeffk

]
= [1;xk], and cov

(
zeffk

)
= diag (0,1rk). To analyze the similarity between effective

eigenspaces of UEs k and k′, we introduce the variable Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
∈ [0, 1], defined as

Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
=

∑reffk

i=1

∑reff
k′

j=1

∣
∣
∣

([
(Θeff

k )
1
2

]

:,i

)H[
(Θeff

k′ )
1
2

]

:,j

∣
∣
∣

2

∥
∥(Θeff

k )
1
2

∥
∥
2

F

∥
∥(Θeff

k′ )
1
2

∥
∥
2

F

, (35)

where the case of Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
= 1 means that UEs k and k′ have the same effective eigenspace. The similarity

in (35) can be equivalently expressed as

Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
=

∥
∥

(

(Θeff
k )

1
2

)H (
Θeff

k′

) 1
2
∥
∥
2

F

∥
∥
(
Θeff

k

) 1
2
∥
∥
2

F

∥
∥
(
Θeff

k′

) 1
2
∥
∥
2

F

.

According to the Cauchy-Schwarz inequality, we have
∥
∥
(
(Θeff

k )
1
2

)H(
Θeff

k′

) 1
2
∥
∥
2

F
6

∥
∥(Θeff

k )
1
2

∥
∥
2

F

∥
∥
(
Θeff

k′

) 1
2
∥
∥
2

F
. Therefore,

it is evident that the similarity Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
is bounded between 0 and 1. The overall computational com-

plexity for Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
in (35) is O(Nreffk′ reffk + Nreffk′ + Nreffk ), which accounts for reffk′ reffk inner products

between N -dimensional complex vectors, each requiring O(N) operations, as well as the Frobenius norms of two
matrices with dimensions N × reffk′ and N × reffk , respectively.

Next, we provide numerical results of the effective eigenspaces’ similarity among different UEs, based on the
developed near-field and conventional far-field statistical CSI models. The near-field channel mean and covariance
are defined in (14) and (17), respectively, while the far-field ones are defined in (15) and (29), respectively. The
carrier frequency and the number of XL-array elements are set to 3.5 GHz and 512, respectively. It can be calculated
that the XL-array size equals D = (N − 1)δ =21.9 m. According to the definition of the Rayleigh distance, the
near-field region of the XL-array is determined to be within 11191 m. The received power of any UE k, as well
as that of the reference UE is set to 1 for normalization, i.e., β = βk = 1, ∀k. The K-factor of any UE k in the
far-field model is set to be the same as that of the reference UE for simplicity, i.e., Kk = K, ∀k. In addition,
for the partial array visibility characteristic, the transition rates αi(q) and αv(q) of any scatterer q are set to be
identical for simplicity, while for UEs, the parameter αi(k) is set to be the same for all UEs and αv(k) is set
inversely proportional to the distance dk to ensure that UE k farther away from the XL-array is more likely to see
the entire array, i.e., αv(k) ∝ 1

dk
. The specific values of transition rates for scatterers and UEs are set according

to the measurements [40]. Furthermore, each VR’s center is assumed to coincide with its associated scatterer for
simplicity, and the parameters of the VR model refer to the parameters of the COST 273 macrocell scenario [41].
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Table 2 The simulation parameters.

Parameter Value Parameter Value

Carrier frequency 3.5 GHz Wavelength λ 0.086 m

XL-array elements N 512 Element spacing δ λ
2

m

Reference UE location [65, 50]T m VR radius RC 100 m

UE k location region
x ∈ [20, 220] m,

UE k sub-region
x ∈ [55, 75] m,

y ∈ [−100, 100] m y ∈ [40, 60] m

Number of scatterers 20 Transition region width LC 20 m

Partial visibility of scatterer q

αv(q) = 0.9 m−1,

Partial visibility of UE k

αv(k) = 18
dk

m−1,

αi(q) = 0.1 m−1, αi(k) = 0.1 m−1,

n′(q): random n′(k) = −⌈N−1
2

⌉

Scatterer region
x ∈ [10, 16] m,

– –
y ∈ [5, 25] m

Figure 2 (Color online) Υ
(

(Θeff
k )

1
2 , (Θeff

k′ )
1
2

)

based on the near- and far-field statistical CSI models for versus different values of the K-factor.

(a) K = 0.01; (b) K = 1.

The PAS of any UE k for the far-field model and the PLS of the reference UE for the near-field model are assumed
to be uniform. The detailed parameters are defined in Table 2.

Figure 2 presents the numerical results of Υ
(
(Θeff

k )
1
2 , (Θeff

k′ )
1
2

)
in (35) based on near- and far-field models versus

different values of the K-factor, where K = 0.01 and K = 1 are considered. As shown in Figure 2, the location
of UE k′ is set to be fixed and the same as that of the reference UE, while UE k moves within a square with
a step size of 5 m along both the x- and y-axes, as detailed in Table 2. It is observed from Figure 2(a) that
when adjacent UEs are so close to each other that they experience the same set of scatterers, there are significant
differences in their effective eigenspaces for the near-field model. In contrast, for the far-field model, the effective
eigenspaces of adjacent UEs are identical. This is expected since the developed near-field model takes into account
the partial array visibility characteristic and non-uniform received power across array elements. In addition, Figure
2(b) demonstrates that for the near-field model, UEs located within the adjacent angle range of the fixed-position
UE k’s angle ϕk′ exhibit a high degree of similarity in their effective eigenspace. For the UPW-based model, by
observing the sub-region specified in Table 2, which considers a more refined step size of 0.5 m to achieve higher
angular resolution, it is found that only UEs in the direction of ϕk′ have high similarity in their effective eigenspaces,
which is attributed to the high spatial resolution provided by the XL-array. These observations demonstrate that
Identical Statistical CSI Assumption is no longer valid for XL-array communications. Consequently, compared to
the FF-JSDM method, the NF-JSDM requires a more refined user grouping strategy.

To facilitate a clearer understanding of the proposed NF-JSDM approach, we briefly summarize the three key
assumptions adopted in the NF-JSDM method, which are reflected in the near-field CBSM expression in (3), as
follows.

• Non-zero Mean Assumption. The channel mean is no longer equal to zero, i.e., E [hk] = h̄k 6= 0.

• NUSW Assumption. The developed near-field first- and second-order statistical CSI model in (3) captures the
near-field NUSW propagation characteristic, which differs from the far-field UPW assumption in the conventional
FF-JSDM method.

• Non-identical Statistical CSI Assumption. Simulation results reveal that even adjacent UEs exhibit significantly
different effective eigenspaces, resulting in heterogeneous effective eigenspaces among UEs, i.e.,

(
Θeff

k

)
6=

(
Θeff

k′

)
,
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∀ k, k′ ∈ Kg.

4.2 User grouping for near-field XL-MIMO communications

The similarity analysis of channel eigenspaces in Subsection 4.1 reveals the necessity for an effective user grouping
scheme in multi-user XL-MIMO communications. Specifically, UEs that have highly similar effective eigenspaces
among each other will be grouped together. Let G < K denote the number of user groups, and the group set is
denoted by G = {1, 2, . . . , G}. A binary variable matrix X = [xg,k]g∈G,k∈K ∈ {0, 1}G×K is introduced, where

xg,k =

{

1, UE k is partitioned into group g,

0, otherwise.
(36)

Accordingly, the UE set of group g is denoted by Kg = {k : xg,k = 1, ∀ k ∈ K}, with |Kg| = Kg. The similarity
of effective eigenspaces among UEs in group g is defined as

Υgroup(Kg) =

∑Kg

i=1

∑Kg

j=i Υ(Kg(i),Kg(j))

(Kg + 1)/2
, (37)

which is normalized by (Kg+1)/2 to ensure that it falls within the interval [1,Kg]. Then, the similarity sum among
all the UEs all the UEs is defined as

Υsum(X) =
∑

g∈G

Υgroup(Kg). (38)

By optimizing the user grouping index matrix X, the problem of maximizing the sum similarity Υsum(X) can be
formulated as

Υmax = max
X

Υsum(X)

s.t. C1 :
∑

g∈G

xg,k = 1, ∀ k ∈ K,

C2 :
∑

k∈K

xg,k > 1, ∀ g ∈ G,

C3 : xg,k ∈ {0, 1}, ∀ k ∈ K, g ∈ G,

(39)

where constraint C1 ensures that each UE is partitioned into only one group, and constraint C2 specifies that each
group must contain at least one UE.

Problem (39) is a mixed-integer non-convex optimization problem, which is challenging to obtain its globally
optimal solution efficiently. Therefore, we propose an efficient greedy algorithm, as summarized in Algorithm 1,
which comprises two stages. In Stage 1, G UEs with the least mutual similarity in their effective eigenspaces are
first selected, and each is assigned to a distinct group. Then, in Stage 2, the remaining K −G UEs are sequentially
assigned to the group whose eigenspace is most similar to theirs. To improve clarity, a more detailed explanation of
the algorithm’s procedure has also been included. Specifically, we first initialize the assigned UE index set denoted
by Tass, as an empty set, and the unassigned UE index set denoted by Tuna, as the complete set of UEs from 1 to K.
The UE set for each group g is initialized as empty, i.e., Kg = ∅, ∀ g. During Stage 1, if no UE has yet been assigned
to any group, a random UE is selected from the unassigned set Tuna to serve as the first group representative, and
is regarded as the optimal UE k∗, as shown in Step 4. Otherwise, for each unassigned UE k ∈ Tuna, we evaluate
the similarity metric Υgroup(Tass ∪ {k}) in (37), as shown in Step 8. The UE that minimizes this similarity is then
selected as the optimal UE k∗ and assigned to a new group, as described in Steps 9 and 10. This process repeats
until one UE has been assigned to each of the G groups. In Stage 2, the remaining K − G UEs are assigned to
groups one by one. For each UE, a candidate is first randomly selected from the unassigned set Tuna, as described
in Step 17. Then, the sum similarity Υsum in (38) between this UE and the users already assigned to each group
is evaluated, as shown in Step 20. The UE is subsequently assigned to the group that yields the maximum sum
similarity metric, as indicated in Steps 21 and 22. This process is repeated until all the remaining K −G UEs have
been grouped.

Unlike exhaustive search-based grouping, which incurs prohibitive complexity with
∑G

i=1(−1)i (G−i)K

i!(G−i)! calcula-

tions, i.e., the second-kind Stirling number [42], our proposed greedy algorithm significantly reduces the computa-
tional complexity, achieving a complexity order of O(GK). Furthermore, by grouping users based on the similarity
of their statistical CSI eigenspaces, the proposed Algorithm 1 enables a more refined user grouping scheme for the
following NF-JSDM framework.
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Algorithm 1 An efficient user grouping algorithm.

1: Initialize Tuna = {1, 2, . . . ,K}, Tass = ∅, and Kg = ∅, ∀ g;

2: For g ∈ G

3: If Tass = ∅
4: Randomly pick a UE k∗ from Tuna;

5: Else

6: Let Υmin = +∞;

7: For k ∈ Tuna

8: Calculate Υgroup′ = Υgroup(Tass ∪ {k});
9: If Υmin > Υgroup′

10: Update Υmin = Υgroup′ and k∗ = k;

11: End

12: End

13: End

14: Update Kg = {k∗}, Tuna = Tuna/{k∗} and Tass = Tass ∪ {k∗};
15: End

16: While Tuna 6= ∅ do

17: Randomly pick a UE k from Tuna;

18: Let Υmax = −∞;

19: For g ∈ G

20: Calculate Υsum =
∑

i∈G,i6=g

Υgroup(Ki) + Υgroup(Kg ∪ {k});

21: If Υmax < Υsum

22: Update Υmax = Υsum and g∗ = g;

23: End

24: End

25: Update Kg∗ = Kg∗ ∪ {k} and Tuna = Tuna/{k};
26: End

27: Output Υmax and Kg , ∀g ∈ G.

4.3 Three-stage NF-JSDM

According to the proposed user grouping scheme in Section 4.2, we propose the NF-JSDM for XL-MIMO communi-
cations. The NF-JSDM method takes into account the general near-field NUSW-based channel with non-zero mean,
as well as the differences in statistical CSI among UEs within the same group. First, based on (2), the received
signal of group g, denoted by yg = [yk]k∈Kg ∈ CKg×1, is expressed as

yg = HH
g Va+ ng = HH

g Vgag +
∑

g′ 6=g

HH
g Vg′ag′

︸ ︷︷ ︸

inter-group interference

+ng,

(40)

where Hg = [hk]k∈Kg ∈ CN×Kg is the channel matrix of group g, with hk defined in (34); Vg = [vk]k∈Kg ∈ CN×Kg is
the precoding matrix of group g; ag = [ak]k∈Kg ∈ CKg×1 is the symbol vector of group g; and ng = [nk]k∈Kg ∈ CKg×1

is the noise vector at group g, ∀ g ∈ G.
Since Identical Statistical CSI Assumption is invalid in XL-MIMO communications, UEs in the same group are

considered to have similar but not identical effective eigenspaces, i.e., Θeff
k ≈ Θeff

k′ , ∀ k, k′ ∈ Kg and k 6= k′. Therefore,
unlike the two-stage FF-JSDM, the NF-JSDM is designed as a three-stage precoding with an additional stage for
aligning the dominant channel directions of each UE, which is expressed as

Vg = BgWgPg, (41)

where Bg ∈ CN×bg is the first-stage precoding for group g, with bg being an integer variable that needs to be
determined; Wg = [Wk]k∈Kg ∈ Cbg×wg is the second-stage precoding for group g, with Wk ∈ Cbg×wk being the
second-stage precoding of UE k, and wk denoting the number of dominant eigenmodes of UE k after the first-stage
precoding, satisfying wg =

∑

k∈Kg
wk; Pg = [pk]k∈Kg

∈ Cwg×Kg is the third-stage precoding for group g, with

pk ∈ Cwg×1 being the third-stage precoding of UE k, satisfying wg > Kg.
The first-stage precoding Bg depends on the statistical CSI, and is intended to eliminate inter-group interference,

so that
HH

g Bg′ ≈ 0, ∀ g′ 6= g. (42)

Moreover, the second-stage precoding Wk also leverages the statistical CSI, and aims to align eigen-beamforming
along the dominant eigenmodes of UE k’s equivalent channel after precoding Bg, denoted by h

equ
k = BH

g hk ∈ Cbg×1,
∀k ∈ Kg. Furthermore, the third-stage precoding Pg is designed to exploit the spatial multiplexing of group g,
relying on the instantaneous effective channel after the first two stages, denoted by Hins

g = WH
g B

H
g Hg ∈ Cwg×Kg .
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Thus, the instantaneous effective CSI required for NF-JSDM is denoted by Hins = diag
([

Hins
g

]

∀ g

)

∈ CW×K , with

W =
∑G

g=1 wg and W ≪ N . The specific design of the developed three-stage NF-JSDM is as follows.

4.3.1 First-stage precoding

The inter-group interference can be eliminated exactly when Span(Ueff
g ) ⊆ Span⊥({Ueff

g′ : ∀ g′ 6= g}), where Ueff
g ∈

CN×reffg is the maximal linearly independent system of the matrix
[
Ueff

k

]

k∈Kg
with reffg = rank

([
Ueff

k

]

k∈Kg

)
, ∀ g.

Thus, the spatial DoF of group g, denoted by Sg, is required to satisfy

Sg = dim
(
Span(Ueff

g ) ∩ Span⊥({Ueff
g′ : ∀ g′ 6= g})

)
> Kg. (43)

Due to the difference in effective eigenspaces among adjacent UEs in XL-MIMO communications, even the UEs
that experience the same scatterer set may be divided into multiple groups. In this case, the spatial DoF of these
groups will be limited. For example, consider a scenario where UEs experiencing the same scatterer set are divided
into two groups, namely g = 1 and g = 2. Consequently, the number of effective eigenspaces shared by the two
groups is greater than 0, i.e., dim

(
Span(Ueff

g=1) ∩ Span(Ueff
g=2)

)
> 0. Hence, when the exact inter-group interference

elimination is enforced, the spatial DoF of group g = 1 is Sg=1 = reffg=1 − dim
(
Span(Ueff

g=1) ∩ Span(Ueff
g=2)

)
, which

is limited by the number of shared eigenspaces. To relax the spatial DoF limitation, we first determine the set of
groups with similar effective eigenspaces to group g, denoted by Tg, according to the following criteria

Tg =
{
g′ : Υ

(
Ueff

g ,Ueff
g′

)
∈ (εmin, εmax), ∀ g′ 6= g

}
, (44)

where the interval (εmin, εmax) is the judgment threshold. The case of Υ
(
Ueff

g ,Ueff
g′

)
> εmax is considered as excessive

grouping, implying that groups g and g′ share approximately identical eigenspaces.
Subsequently, we utilize the approximate inter-group interference elimination to design the first-stage precoding.

This involves selecting reff∗g′ eigenmodes from the effective eigenspaces of group g′ that are least similar to the

effective eigenspaces of group g, denoted by Ueff∗
g′ ∈ C

N×reff∗
g′ , ∀ g′ ∈ Tg. Thus, the constraint in (43) is relaxed to

S∗
g = dim

(
Span(Ueff

g ) ∩ Span⊥
(
Ueff∗

Tg
∪Ueff

T′
g

))
> Kg, (45)

where Ueff∗
Tg

=
[
Ueff∗

g′

]

g′∈Tg
∈ C

N×reff∗
Tg and Ueff

T′
g
=

[
Ueff

g′

]

g′∈T′
g
∈ C

N×reff
T′g , with reff∗Tg

=
∑

g′∈Tg
reff∗g′ , reffT′

g
=

∑

g′∈T′
g
reffg′ ,

and T′
g = {g′ : ∀g′ 6= g and g′ /∈ Tg} denoting the set of groups excluding group g and group set Tg. The selection of

parameter reff⋆g′ depends on the tolerable signal power outside the subspace spanned by the corresponding dominant
eigenmodes, ∀ g′ ∈ Tg.

First, we define the eigenmodes composed of groups except group g, denoted as Ξ−g, which are formulated as

Ξ−g =
[
Ueff∗

Tg
,Ueff

T′
g

]
∈ C

N×
(
reff∗
Tg

+reff
T′g

)

. To eliminate inter-group interference, Bg needs to lie in the null space of the

matrix Ξ−g. The singular value decomposition (SVD) of Ξ−g is given by

Ξ−g =
[
Enon-null

−g ,Enull
−g

]
Σ−gF

H
−g, (46)

where Enon-null
−g ∈ CN×rank(Ξ−g) represents the non-null space spanned by the non-zero singular values of Ξ−g, and

Enull
−g ∈ CN×(N−rank(Ξ−g)) corresponds to the desired null space spanned by the zero singular values. As a result,

the precoding Bg is expressed as follows, with bg = N − rank (Ξ−g)

Bg = Enull
−g . (47)

4.3.2 Second-stage precoding

After the first-stage precoding, the received signal yg in (40) is expressed as

yg ≈ HH
g Vgag + ng. (48)

The second-stage precoding Wk is obtained by projecting the eigen-beamforming along the dominant eigenmodes
of the equivalent channel’s correlation matrix, i.e., Ck = E

[
h
equ
k (hequ

k )H
]
∈ Cbg×bg , ∀ k ∈ Kg. Thus, the SVD of

the correlation matrix Ck is given by

Ck = BH
g U

eff
k (Λeff

k )
1
2E

[
zeffk (zeffk )H

]
(Λeff

k )
1
2 (Ueff

k )HBg = ÛkΛ̂kÛ
H
k , (49)
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Table 3 Location regions of UEs and scatterer clusters.

UE index Location region (m) Cluster index Location region (m)

1–5 x ∈ [20, 25], y ∈ [20, 25]
2 x ∈ [80, 90], y ∈ [−110,−100]

6–10 x ∈ [45, 50], y ∈ [55, 60]

11–15 x ∈ [70, 85], y ∈ [−90,−80]
3 x ∈ [220, 230], y ∈ [0, 10]

16–20 x ∈ [150, 160], y ∈ [0, 15]

where Ûk =
[
Ûnon-null

k , Ûnull
k

]
∈ Cbg×bg and Λ̂k ∈ Cbg×bg denote the unitary eigenvector matrix and the diagonal

eigenvalue matrix ofCk, respectively, with Ûnon-null
k ∈ Cbg×wk being the non-null space, which contains wk dominant

eigenmodes, and wk = rank(Ck) 6 min{bg, reffk }. Thus, Wk is expressed as

Wk = Ûnon-null
k , ∀ k ∈ Kg. (50)

For the NF-JSDM, the number of equivalent eigenspaces of UE k equals rank(E
[
(hH

k BgWk)
HhH

k BgWk

]
) after the

first two stages of precoding, whereas for the conventional FF-JSDM, that number equals rank(E
[
(hH

k Bg)
HhH

k Bg

]
)

with this Bg representing the first-stage precoding of the FF-JSDM.

4.3.3 Third-stage precoding

The ZF precoding is introduced as the third-stage precoding Pg for spatial multiplexing, given by

Pg = Hins
g

((
Hins

g

)H
Hins

g

)−1
. (51)

Therefore, the precoding of UE k in group g is given by

vk =
BgWgpk

‖BgWgpk‖
, k ∈ Kg. (52)

Subsequently, the signal-to-interference-plus-noise ratio (SINR) of UE k is expressed as

γk =
ρ|hH

k vk|2
1 + ρ

∑

i∈K/{k} |hH
k vi|2

, (53)

where ρ = P0

Kσ2 is the transmit signal-to-noise ratio (SNR). The sum rate of K UEs in bps/Hz is

R =
∑

k∈K

log2(1 + γk). (54)

5 Simulation

Unless otherwise stated, the simulation parameters are defined in Table 2, and K = 0.01 is considered. Besides
the scatterer cluster considered in Table 2, namely cluster 1, two additional clusters are taken into account, whose
location regions are defined in Table 3. The number of UEs is set to K = 20, and their randomly distributed
locations are also defined in Table 3. The positions of UEs and scatterers in Table 3 are carefully designed to
ensure that all users and scatterers are located within the near-field region of the XL-array, thereby capturing key
channel characteristics of practical near-field communication environments. It is noted that an eigenvalue smaller
than 0.1% of the total sum of eigenvalues is considered to be negligible. The judgment threshold (εmin, εmax) is set
to (0.2, 0.9). In addition, the number of selected eigenmodes reff⋆g′ for any group g′ is set to be equal, where ∀ g′ ∈ Tg

and ∀ g ∈ G.
Figure 3 shows the relationship between the number of groups G and the maximum sum similarity Υmax in

(39) obtained through the proposed Algorithm 1, the exhaustive searching algorithm and the random grouping
algorithm, where the developed near-field model is considered. To ensure computational feasibility and a fair
performance comparison, the number of UEs is uniformly set to K = 7 for the proposed Algorithm 1, exhaustive
search, and random grouping, since the computational complexity of exhaustive search becomes prohibitive for
larger K. The number of random realizations for UE locations is set to 30. From Figure 3, it can be observed that
the proposed Algorithm 1 exhibits a maximum performance loss of less than 7% when G = 3, compared to the
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Figure 3 (Color online) The number of groups G versus the maxi-

mum sum similarity Υmax obtained through the proposed Algorithm

1, exhaustive searching, and random grouping, where the developed

near-field model is considered and K = 7.

Figure 4 (Color online) The number of equivalent eigenspaces for

each UE (a) the conventional FF-JSDM and (b) the proposed NF-

JSDM with reff⋆
g′

= 20, ∀g′ ∈ Tg and ∀g, where the ground-truth near-

field channel model is considered and G = 2, 3, 4, 5 are considered.

exhaustive searching algorithm. Although the random grouping method has the lowest computational complexity,
it incurs the highest performance loss. It is also observed that for the three methods, Υmax increases as the number
of groups G grows when G is less than K. This is expected, as the larger G is, the less likely it is that UEs with
significantly different statistical CSI will be grouped together. These results validate that the proposed Algorithm
1 is effective for user grouping in XL-MIMO communications.

Figure 4 shows the number of equivalent eigenspaces for each UE by considering the conventional FF-JSDM in
Figure 4(a) and the proposed NF-JSDM with reff⋆g′ set to 20 in Figure 4(b), ∀ g′ ∈ Tg and ∀ g, where the ground-truth
near-field channel model is considered and different numbers of user groups (G = 2, 3, 4, 5) are considered based on
Algorithm 1. It is observed from Figure 4 that in the FF-JSDM scheme, all UEs achieve the maximum equivalent
eigenspaces only when G = 3, whereas in the proposed NF-JSDM, this maximum is achieved for G = 2, 3, and 4.
This is because when G = 2, this limitation in FF-JSDM arises due to the assumption of identical statistical CSI
within the same group, which prevents effective alignment of channel eigenspaces for UEs experiencing different
scatterer clusters but assigned to the same group. On the other hand, when G = 4 or 5, the reduced equivalent
eigenspaces in FF-JSDM result from excessive grouping, which leads to a decrease in the spatial DoFs available
to each group. In addition, as shown in Figure 4, when G = 3, there is a significant difference in the number
of equivalent eigenspaces for UEs 6–10 between the FF- and NF-JSDM methods. This is because UEs 1–10 are
grouped together, and the FF-JSDM fails to align the channel eigenspaces of UEs 6–10 due to the assumption of
identical statistical CSI. Furthermore, Figure 4 shows that the number of equivalent eigenspaces for UEs 11–15 in
the developed NF-JSDM decreases when G = 5. This is because UEs 11–15, which experience similar scattering
environments, are partitioned into two separate groups, thereby reducing the spatial DoFs available to these two
groups. These results verify the assumption of non-identical statistical CSI in the NF-JSDM and highlight the
importance of choosing an appropriate number of user groups in the developed NF-JSDM method.

Figure 5 gives a comparison of the sum rate obtained through the ZF precoding utilizing full CSI, the conventional
FF-JSDM [17, 18], and the proposed NF-JSDM with reff⋆g′ = 20, ∀ g′ ∈ Tg and ∀ g ∈ G, under different numbers of
user groups based on Algorithm 1, where both the far- and near-field channel models are considered. It is observed
from Figure 5 that in the far-field scenario, when G = 2, the sum rate of the NF-JSDM is higher than that of the
FF-JSDM, and when G > 3, the curves of the proposed NF-JSDM and FF-JSDM perfectly overlap. Especially
when G = 3, the FF- and NF-JSDM can achieve approximately the same performance as that of the ZF precoding.
This indicates that the proposed NF-JSDM is applicable to the far-field communications, and its performance is
superior to that of the FF-JSDM when the number of groups is insufficient. Additionally, Figure 5 shows that in
the near-field scenario, the NF-JSDM can achieve approximately the same performance as ZF when G = 4, whereas
there is a notable performance gap between the FF-JSDM and ZF precoding. The performance loss of the FF-JSDM
is caused by the reduction of equivalent eigenspaces, which corresponds to the results in Figure 4. Compared to ZF
precoding, the proposed NF-JSDM can achieve comparable performance while significantly reducing the channel
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Figure 5 (Color online) The sum rate R versus the different num-

bers of user groups under the ZF precoding, the conventional FF-

JSDM [17,18], and the proposed NF-JSDM with reff⋆
g′

= 20, ∀ g′ ∈ Tg

and ∀ g ∈ G, where both the near- and far-field channel models are

considered.

Figure 6 (Color online) The sum rate versus the number of selected

eigenmodes reff⋆
g′

in the proposed NF-JSDM, ∀ g′ ∈ Tg and ∀g ∈ G,

where the ground-truth near-field channel model is considered and

G = 4, 5, 6, 7 are considered.

estimation overhead, as it reduces the required instantaneous CSI dimensionality from N × K to W × K, where
W ≪ N . As shown in Figure 5, the sum rates of both NF-JSDM and FF-JSDM first increase and then decrease
with the number of groups G. When G is small, users with similar eigenspaces tend to be grouped together, and
eliminating intra-group interference for any user k may reduce its available spatial DoF, leading to performance loss.
As G becomes too large, users with similar eigenmodes may be assigned to different groups, limiting the spatial
DoF available for inter-group interference suppression, which can also be observed in Figure 4. These observations
demonstrate that the proposed NF-JSDM is applicable to XL-MIMO communications, and it is more general than
the conventional FF-JSDM.

Figure 6 shows the sum rate versus the number of selected eigenmodes reff⋆g′ in the proposed NF-JSDM, ∀ g′ ∈ Tg,
∀ g ∈ G, where the ground-truth near-field channel model is considered and different numbers of user groups
(G = 4, 5, 6, 7) are considered based on Algorithm 1. The variable reff⋆g′ ranges from 6 to 51 with a step size of 3.
It is observed from Figure 6 that the sum rates decrease as the number of selected eigenmodes increases. This is
because the increase in eigenmodes reduces the DoF available to group g for the first-stage precoding design, thereby
increasing inter-group interference and ultimately leading to a reduced sum rate. It is worth noting, however, that
the reduction in DoF also results in a lower dimension for the first-stage precoding matrix, which helps to reduce
computational complexity. This highlights a trade-off between performance and complexity in selecting the number
of eigenmodes. Moreover, Figure 6 also shows that, for a given number of selected eigenmodes reff⋆g′ , increasing
the number of user groups leads to a more rapid decline in the sum rate. This is because excessive grouping
imposes stricter spatial DoF constraints on each group, thereby reducing the equivalent eigenspaces available to
more UEs. The above results offer useful guidelines for determining the number of eigenmodes to maximize the
sum rate. In particular, by selecting the most appropriate number of user groups, it is possible to choose the largest
feasible number of eigenmodes reff⋆g′ within an acceptable performance degradation threshold, to effectively reduce
computational complexity.

6 Conclusion

This paper investigated the NF-JSDM for multi-user XL-MIMO communications with mixed LoS and NLoS links,
which is based on the proposed user grouping algorithm according to the similarity of the developed near-field
statistical CSI. In the developed NF-JSDM, the prior knowledge of near-field statistical CSI is modeled by taking
into account the NUSW, partial array visibility, and spatial consistency. Based on the similarity of the effective
eigenspace in near-field statistical CSI, an efficient algorithm was proposed to achieve precise user grouping. Ac-
cording to the proposed user grouping scheme, the more general NF-JSDM was developed, which is not limited to
the assumption of zero channel mean, and considers the differences in statistical CSI of UEs within the same group
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and near-field channel characteristics. Simulation results validated the effectiveness of the proposed user grouping
algorithm, and demonstrated that the developed NF-JSDM is applicable to XL-array communications. In the fu-
ture, we will further extend the proposed NF-JSDM precoding framework to support multi-stream transmission per
user and adapt it to hybrid digital-analog architectures, which are more practical for XL-MIMO implementations.
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Appendix A

When αv(k) = 0, we have E[ξn(k)] = 1, ∀n. Then, by setting reference UE as UE k itself,
[

h̄k

]

n
in (14) reduces to

[

h̄k

]

n
= βk

Kk

Kk + 1

dk

dk,n
e−j 2π

λ
dk,n . (A1)

When Nδ ≪ dk, the distance dk,n in (6) is approximated as

dk,n ≈ dk
√

1− 2nδ sinϕk/dk
(a)
≈ dk − nδ sinϕk, (A2)

where (a) holds based on the first-order Taylor approximation. By substituting (A2) into (A1),
[

h̄k

]

n
reduces to

[

h̄k

]

n
= βkKk/(Kk + 1) · e−j 2π

λ
(dk−nδ sinϕk). (A3)

The proof of Lemma 1 is thus completed.

Appendix B

When αv(k) = 0, we have E[ξn(k)ξm(k)] = 1, ∀n,m. Then,
[

ΘLoS
k

]

n,m
in (21) reduces to

[

Θ
LoS
k

]

n,m
= βk

Kk

Kk + 1

d2k
dk,ndk,m

e−j 2π
λ

(dk,n−dk,m). (B1)

When Nδ ≪ dk, dk,n in (6) can be approximated as (A2). By substituting (A2) into (B1),
[

ΘLoS
k

]

n,m
reduces to

[

Θ
LoS
k

]

n,m
= βkKk/(Kk + 1) · e−j 2π

λ
(m−n)δ sinϕk . (B2)

The proof of Lemma 2 is thus completed.

Appendix C

When gVR
k (s) = 1,

[

Θ
NLoS
k

]

n,m
in (28) is simplified to

[

Θ
NLoS
k

]

n,m
= βk

1

Kk + 1

∫

s∈Sk

r2(s)

rn(s)rm(s)
e−j 2π

λ
(rn(s)−rm(s))E [ξn(s)ξm(s)] fk(s)ds. (C1)

When αi(s) = 0, ∀ s ∈ Sk , we get E[ξn(s)ξm(s)] = 1, ∀n,m. Therefore,
[

Θ
NLoS
k

]

n,m
in (C1) is further simplified to

[

Θ
NLoS
k

]

n,m
= βk

1

Kk + 1

∫

s∈Sk

r2(s)

rn(s)rm(s)
e−j 2π

λ
(rn(s)−rm(s))fk(s)ds. (C2)

When Nδ ≪ r(s), ∀s ∈ Sk , the distance rn(s) in (C2) is approximated as

rn(s) ≈ r(s)
√

1− 2nδ sin θ(s)/r(s)
(a)
≈ r(s)− nδ sin θ(s), (C3)

where (a) holds based on the first-order Taylor approximation, and θ(s) is the AoA of scatterer s w.r.t. the positive x-axis. By

substituting (C3) into (C2),
[

Θ
NLoS
k

]

n,m
reduces to

[

Θ
NLoS
k

]

n,m
≈ βk

1

Kk + 1

∫

s∈Sk

e−j 2π
λ

(m−n)δ sin θ(s)fk(s)ds. (C4)

As a result, the integral function in (C4) which is only related to θ(s), can be expressed as

[

Θ
NLoS
k

]

n,m
≈ βk

1

Kk + 1

∫ θmax
k

θmin
k

e−j 2π
λ

(m−n)δ sin θfk(θ)dθ. (C5)

Thus, the proof of Lemma 3 is completed.
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