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Abstract The wireless communication technologies have fundamentally revolutionized industrial operations. The operation of the

automated equipment is conducted in a closed-loop manner, where the status of devices is collected and sent to the control center through

the uplink channel, and the control center sends the calculated control commands back to the devices via downlink communication.

However, existing studies neglect the interdependent relationship between uplink and downlink communications, and there is an absence

of a unified approach to model the communication, sensing, and control within the loop. This can lead to inaccurate performance

assessments, ultimately hindering the ability to provide guidance for the design of practical systems. Therefore, this paper introduces an

integrated closed-loop model that encompasses sensing, communication, and control functionalities, while addressing the coupling effects

between uplink and downlink communications. Through the analysis of system convergence, an inequality pertaining to the performances

of sensing, communication, and control is derived. Additionally, a joint optimization algorithm for control and resource allocation is

proposed. Simulation results are presented to offer an intuitive understanding of the impact of system parameters. The findings of this

paper unveil the intricate correlation among sensing, communication, and control, providing insights for the optimal design of industrial

closed-loop systems.

Keywords closed-loop system, wireless network, effective-capacity, model predictive control

Citation Meng Z Y, Ma D Y, Wei Z Q, et al. Communication, sensing and control integrated closed-loop system: modeling, control

design and resource allocation. Sci China Inf Sci, 2026, 69(3): 132301, https://doi.org/10.1007/s11432-025-4551-x

1 Introduction

Recently, the rapid progress of wireless communication technologies, particularly 5G and the forthcoming 6G, has
initiated a fundamental change in industrial settings [1, 2]. The wireless network liberates automated equipment
from the constraints of cables, ensuring mobility for devices such as the mobile robotic arm and automated guided
vehicle (AGV). This advancement enables manufacturers to flexibly alter the structure of the production line
and adjust manufacturing processes based on the order demands, thereby enhancing the production efficiency and
reducing manufacturing costs [3, 4].

The operational process of automated equipment with the wireless network is based on the iterative closed-loop
process, as shown in Figure 1.

Specifically, sensors collect the status information of equipment, which is then transmitted to the control center
via uplink wireless channels. The control center generates the control commands based on the sensed data and
then sends these commands back to the controlled equipment through downlink wireless communication. In such a
process, the performance of communication, sensing, and control is closely interrelated. Sensing affects not only the
accuracy of control commands but also the data load in the communication process. In addition, the communication
capability of the system determines whether the control center can receive fresh sensing information in a timely
manner.

These intricate mutual dependencies demonstrate that, in practical industrial closed-loop systems, communica-
tion, sensing, and control are inherently and tightly coupled [5]. Treating them as independent components leads
to several significant drawbacks. Specifically, a separate design may result in sub-optimal system performance and
significant deviations between theoretical analysis and real-world outcomes, as the intricate cross-layer interactions
and trade-offs, such as the impact of communication delays or sensing accuracy on control stability, cannot be fully
captured or balanced. Such neglect often leads to inefficient resource allocation, unnecessary energy or bandwidth
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Figure 1 (Color online) A typical closed-loop process in the typical industry with a wireless network.

consumption, and reduced robustness, since errors or delays in one subsystem may propagate and amplify through-
out the closed-loop system. Moreover, independent treatment of these elements makes it virtually impossible to
quantitatively model or optimize the trade-offs between key system-level objectives, such as delay, stability, and
resource utilization.

Consequently, a unified consideration of communication, sensing, and control is fundamentally required to achieve
optimal system performance. Nevertheless, the joint consideration of communication, sensing, and control also in-
troduces considerable research challenges. The primary difficulty lies in the fact that parameters across these
domains are highly coupled and interact in complex, often nonlinear, ways, making it extremely challenging to
construct unified and tractable mathematical models. Quantifying the relationship between high-level performance
metrics (such as delay and stability) and underlying system parameters (such as bandwidth allocation and conver-
gence rate) are particularly difficult, yet necessary for practical design and optimization. Furthermore, the resulting
cross-domain optimization problems are typically non-convex and involve multiple objectives and constraints, which
significantly increases their complexity. As a result, existing studies have explored different strategies for modeling
and optimizing these systems, which can be broadly classified into two kinds of approaches: control-centric and
communication-centric.

Control-centric approaches are generally based on the dynamic equations of devices under simple conditions.
Specifically, communication performance is simplified as predefined constants [6–8] or bounded random variables
[9, 10], and is then integrated into dynamic equations. Sensing performance, including quantization errors [11] and
estimation errors [12], is also taken into consideration in some research. Subsequently, the stability of the system is
analyzed, and new robust control methods are proposed based on the new dynamic equations. The limitation of this
approach lies in the disparity between theoretical communication models and real-world communication systems.
This gap hinders the achievement of expected control effects and poses challenges in the design of communication
systems. In addition, there is a lack of unified modeling of interactions among communication, sensing, and control.

Communication-centric approaches employ parameters such as linear quadratic regulator (LQR) cost [13, 14]
and convergence rate [15, 16] to model the efficiency of control systems. These parameters are integrated with
the metrics of communication performance, such as mutual information [13, 14] and channel capacity [17–20], to
establish a unified performance index or to derive an optimal design for the communication system. The limitation
of this approach is that the uplink and downlink communications are modeled independently, which contradicts
the characteristic of control loops where the data carried by the downlink are closely related to the uplink sensing
data. Additionally, preset control parameters make it difficult for the system to achieve globally optimal control
effects. Furthermore, few studies consider the impact of sensing errors on system performance, which may lead to
deviations in performance when communication designs are applied in practical systems.

To address the above shortcomings, we establish a sensing-communication-control integrated closed-loop model
to address the aforementioned shortcomings, and propose a joint optimization method for control and resource allo-
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cation. Specifically, to address the issue of the separation between uplink and downlink models of communication-
centric approaches, we develop an uplink-downlink coupled communication model based on the effective capacity
theory, which establishes a correlation between the network performance and communication resources. On this
basis, closed-form expressions for closed-loop delay and packet loss rate are derived to quantitatively describe the
key communication indicators that influence control performances, thereby resolving the problem of over-simplified
communication metrics in control-centric approaches.

Furthermore, in order to describe the interaction of communication, sensing, and control processes, we develop
a control model that accounts for delay, packet loss, and estimation error. Additionally, we formulate a sensing-
estimation model to derive the boundary of the estimation error. To clarify the complex relationship among com-
munication, sensing, and control parameters, an inequality involving convergence rate, bandwidth, and quantization
level is derived by applying Lyapunov stability theory [21] based on the proposed model.

Finally, to provide guidance for both communication and control within the closed-loop system, a joint op-
timization problem for control and resource allocation is proposed, which is highly non-convex. To address this
optimization challenge, a differential evolution (DE)-based optimization algorithm [22] is employed to acquire global
optimum solutions. The simulation demonstrates the nonlinear effect of parameters such as closed-loop delay, con-
vergence rate, and quantization level, whose excessively high or low values will adversely impact the accomplishment
of control tasks due to the coupling relationship among communication, sensing, and control. These phenomena
have not yet been explored in existing research.

The main contributions are summarized as follows.

• Based on the effective capacity theory, a joint modeling of the uplink and downlink communication processes
is conducted. From this model, closed-form expressions for closed-loop delay and packet loss rate are derived,
establishing a relationship between the closed-loop performance and network resources.

• An inequality for the system convergence rate is derived by incorporating the effects of three aspects: sens-
ing, communication, and control, which characterizes the complex constraining relationship among these three
functionalities.

• A joint optimization algorithm is proposed, achieving efficient utilization of communication resources while
ensuring control effectiveness. The global optimal solution for this problem is obtained based on a heuristic method.

The rest of this article is organized as follows. In Section 2, the system model of the wireless closed-loop control
system is established, which provides the main analytical results of this article. In Section 3, the joint optimization
of sensing, control, and communication is carried out, where a heuristic method is applied to solve the non-convex
problem. In Section 4, simulation results are provided for both the result of the optimization problem and the
control strategy proposed in the system model. Finally, concluding remarks are provided in Section 5 and the
potential research directions for the future work are provided in Section 6.

2 System model

The system model of a wireless closed-loop system is shown in Figure 2, which is composed of the actuator, the
digital sensor, two wireless channels, and a control center [23–25]. The closed-loop process starts from the digital
sensor, which perceives the state information of the actuator and quantifies it into quantized values. These quantized
states are then transmitted to the control center through the wireless uplink channel, and processed to acquire the
estimated state to recover the state of the actuator. Subsequently, the controller at the control center generates
control commands with the estimated state and transmits them to the actuator through the wireless downlink
channel. The commands are then executed on the actuator, so that the closed-loop process is completed. In the
sequel, the system model is introduced separately from the perspectives of communication, control, and sensing.
The coupling inequality among the performances of these three functions is derived from the viewpoint of system
convergence.

2.1 Communication model

In a closed-loop system, the wireless communication primarily handles the uploading of sensing data and the
dispatching of control instructions. Therefore, a closed-loop communication model is constructed in this section
with uplink-downlink tandem queues. The performance of the communication system is measured by two typical
indicators, i.e., the closed-loop delay Dc and the packet loss rate ǫc. The closed-loop delay Dc represents the total
time from the transmission of sensing packets to the reception of the corresponding control instructions. Excessive
closed-loop delay can lead to imprecise control instructions, thereby affecting the control effectiveness. Besides, the
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Figure 2 System model of a wireless closed-loop control system.

packet loss rate ǫc reflects the probability of data packets being discarded due to factors such as timeouts during
the entire communication process, which results in reduced system robustness and lower convergence ability.

In the following analysis, we first establish a model of a single queue. The closed-form expression for the effective
capacity of a single queue under Rayleigh fading channels, as well as the limitations of the arrival rate, is derived.
On the basis of these results, the properties of the closed-loop delay, the packet loss rate, and the maximum arrival
rate in tandem queues are derived, and the closed-form results are presented to better assist in system design.

2.1.1 Single queue effective capacity model

The derivation of this part is based on the following assumptions.

Assumption 1. The arrival of data packets in the uplink queue is periodic and the size of each packet is the
same.

Assumption 2. The size of the control data packets is consistent, and the amount of sensing data required to
generate each control command is fixed.

Assumption 3. The channel fading follows a Rayleigh distribution. Besides, effects such as frequency-selective
fading, multi-path propagation, and Doppler shift are not considered.

Assumption 1 holds because the packets in the uplink queue originate from sensors, which usually sense peri-
odically in the factory, and the format of these packets is typically consistent1). Assumption 2 is determined by
the control algorithm. Since the control algorithm often remains unchanged in each iteration, it is reasonable to
consider Assumption 2 as valid. Assumption 3 is reasonable because, in factories, there are often many obstructions
and scatters, with rare direct paths [26,27]2). Besides, AGVs and similar industrial devices typically operate at low
speeds in factory environments [1].

Under the above assumptions, the number of arrivals data per second, i.e., the arrival rate, of the uplink queue λu

is constant according to Assumption 1. Besides, according to Assumption 2, the arrival rate of the downlink queue,
denoted by λd, has a linear relationship with the amount of data departing from the uplink queue per second, i.e.,
the uplink departure rate Lu, which is

λd = cdLu. (1)

In this work, cd is treated as a constant, which implicitly assumes that each downlink control packet has a
fixed size and structure. This reflects the scenario where each unit of uplink data generates a consistent amount
of downlink control information. We acknowledge that, in practice, dynamic adjustment of downlink packet size
could be realized, for example, by reducing the resolution of control commands or simplifying their structure when
network resources are limited. However, for the sake of clarity and consistency in analysis, and to focus on the core
closed-loop relationship between uplink sensing and downlink control, we maintain the fixed packet size assumption
in our model.

Besides, the service rate of the queue denotes the average number of items that can be served by the queue per
unit of time. In the proposed communication model, the service rate is the average number of packages transmitted

1) Assumption 1 is consistent with typical industrial scenarios and standards such as 3GPP TS 22.261 [1], where most sensors perform

periodic sampling and reporting. In practice, there may be occasional cases where the reporting interval of a sensor changes due to manual

reconfiguration or specific application requirements. As long as the reporting interval remains fixed for a certain period, the periodic arrival

assumption and the corresponding analysis remain valid within that period. For scenarios involving event-triggered or highly adaptive sensing,

where the arrival process is fundamentally non-periodic, a different modeling approach would be required. These scenarios are not the focus of

this work.

2) This assumption is widely adopted for industrial environments with rich scattering and non-line-of-sight (NLOS) propagation, where direct

paths are rare due to obstacles such as metallic equipment [26, 27]. More complex models can also be integrated into our analytical framework

by adapting the expectation in Theorem 1, at the cost of tractability.
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per second, i.e., the transmission rate of the communication channel. Therefore, according to Assumption 3, the
service rate of two queues, i.e., the capacity of uplink and downlink channels Ru and Rd satisfies

Ri = Wi log2(1 + SNRi · γ
2
i ), i = u, d, (2)

where SNRi is the constant number of signal-to-noise ratio (SNR) obtained by dividing the expectation of the
signal power by the expectation of the noise power, and Wi is the bandwidth of the uplink and downlink channels.
Parameter γ is the fading coefficient, which is a random variable following the Rayleigh distribution. Therefore, γ2

follows the exponential distribution [28]. It should be noted that in practical industrial environments, the channel
fading process may exhibit temporal correlation. Our framework can accommodate such cases by substituting the
effective capacity under correlated fading channels, but the closed-form expressions are generally unavailable, and
numerical evaluation is required. The Rayleigh assumption thus strikes a balance between analytical tractability
and practical relevance.

Subsequently, the effective capacity theory is employed to connect the link-layer performance with physical
layer resources. The application of the effective capacity theory is motivated by the characteristics of industrial
closed-loop systems, where traffic is typically periodic and deterministic, dictated by fixed sampling and actuation
cycles as required by industrial standards. Moreover, the effective capacity framework enables a direct and explicit
relationship between link-layer performance metrics (such as delay and packet loss) and underlying physical-layer
parameters (including bandwidth, SNR, and channel fading), which is particularly valuable for cross-layer analysis
and practical resource allocation in wireless industrial applications. The effective capacity is defined as the maximum
acceptable amount of bits that the channel can handle per unit of time, which is given by [29],

Ci(θi, Ri) =−
1

θi
ln (E{exp(−θiRi)}) , i = u, d, (3)

where Cu and Cd are effective capacities of the uplink and downlink communications, respectively. The parameter
θi represents the decay rate of the queue overflow probability, which satisfies

lim
qi,0→∞

ln Pr{qi (∞) > qi,0}

qi,0
= −θi, i = u, d, (4)

with qi (∞) being the length of the communication buffer queue in steady state, and qi,0 being the buffer overflow
threshold.

With Assumption 3, the effective capacities of the uplink and downlink queues follow Theorem 1.

Theorem 1 (Effective capacity of Rayleigh channel). The effective capacity of uplink and downlink queues under
Assumption 3 is approximated by

Ci(θi,Wi, SNRi, βi) =
1

θi
ln(SNRiβi)

(
Wiθi
ln 2

− 1

)
−

1

SNRiβi
, i = u, d, (5)

where βi is the rate parameter of the random variable γ2 in the uplink and downlink channels.

Proof. See the proof in Appendix A.

According to the definition of the effective capacity, Ci is the maximum data volume that the queue can accom-
modate. Therefore, it should satisfy the following inequalities:

λi 6 Ci(θi,Wi, SNRi, βi) =
1

θi
ln(SNRiβi)

(
Wiθi
ln 2

− 1

)
−

1

SNRiβi
, i = u, d. (6)

Moreover, packets are considered to be lost when their delay exceeds a specified threshold. Consequently, the
packet loss rate, denoted by ǫi, is defined as

ǫi = P (Di > Di,max) = e−Di,maxθiCi(θi,Wi,SNRi,βi), (7)

where Di is the delay of the packet, and Di,max is the threshold for packet loss [30, Eq. 3].

2.1.2 Analysis of the tandem queue

Based on the analysis of a single queue above, we further consider the performance metrics for the tandem queue
of the close-loop communication.
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We would like to further emphasize the inherent coupling between the uplink and downlink queues by noting that
the uplink queue carries the sensing data collected by sensors from the controlled device, which, after being processed
by the controller, is used to generate control instructions that are transmitted via the downlink. This mechanism
leads to a situation where changes in the uplink queue’s traffic, such as increases in arrival rate or improvements
in channel capacity, will directly impact the load on the downlink queue, thereby requiring additional resources
on the downlink side to maintain system stability. At the same time, the queuing and service parameters of both
uplink and downlink, including bandwidth allocation and effective channel capacity, jointly determine the overall
closed-loop delay Dc and packet loss rate ǫc. Therefore, under constraints on delay and reliability, any degradation
in one link’s communication performance will necessitate compensatory resource allocation in the other to meet
the overall system requirements. With these coupling effects in mind, we now proceed to derive the closed-form
expressions for the closed-loop delay, packet loss rate, and maximum arrival rate for the tandem queue model.

The closed-form expressions of the closed-loop delay Dc, the packet loss rate ǫc, and the maximum arrival rate
λmax are given in the following theorems.

Theorem 2 (Packet loss rate and closed-loop delay). Considering that Dc,max is the threshold of the closed-loop
delay Dc that leads to packet loss, the packet loss rate ǫc is given by

ǫc =
e−Dc,maxµdµu − e−Dc,maxµuµd

µu − µd
. (8)

The exception of the closed-loop delay is derived as

E [Dc|Dc < Dc,max] =[µ2
u − µ2

d + e−Dc,maxµuµ2
d (1 +Dc,maxµu)

− e−Dc,max xµdµ2
u (1 +Dc,maxµd)]/µuµd

(
µu − µd + e−Dc,max xµuµd − e−Dc,maxµdµu

)
,

(9)

where

µi = ln(SNRiβi)

(
Wiθi
ln 2

− 1

)
−

θi
SNRiβi

, i = u, d. (10)

Proof. See the proof in Appendix B.

Theorem 3 (Maximum arrival rate). When θu > θd, the maximum arrival rate λmax satisfies

λmax = min

{
1

θu
ln(SNRuβu)

(
Wuθu
ln 2

− 1

)
−

1

SNRuβu
,

1

cdθd
ln(SNRdβd)

(
Wdθd
ln 2

− 1

)
−

1

SNRdβd

}
. (11)

Besides, when θu < θd,

λmax = min

{
1

θu
ln(SNRuβu)

(
Wuθu
ln 2

− 1

)
−

1

SNRuβu
,

1

cdθu
ln

[
(SNRdβd)

(
Wdθd
ln 2

)
(SNRuβu)

cd

(
Wu (θd − θu)

ln 2

)cd
]}

.

(12)

Proof. See the proof in Appendix C.

2.2 Control model

The control system serves as the backbone of a closed-loop system. The purpose of the control stage is to generate
the control commands based on the current state of the device, so as to enable the device to reach the expected state
after a period of time. In the field of control, dynamic functions are often applied to model the state evolution. The
following subsections progressively establish the dynamic function of the closed-loop system, advancing from a simple
model to a model with imperfect sensing, and finally to a model influenced by imperfect wireless communication.

2.2.1 Basic control model

The model starts from a basic state-space control model [31], i.e.,

Ẋ = AX+BU, (13)

where X = {x1, x2, . . . , xn} is the state vector of the actuator with n states, U is the control vector, which is
determined by the control command. A and B are system matrices which are guaranteed by physical characteristics
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of the system. The state evolution of nearly all devices can be represented in this form, such as AGVs [32] and
robotic arms [33].

For example, for the movement control of AGVs [32], X = [δ, v, a]
T
, with δ, v, and a being the position, velocity,

and acceleration, respectively. U is a linear control strategy, which is the linear combination of the state X. With
such control strategy, A and B are given by

A =




0 1 0

0 0 1

0 0 −1/ς


 , B =

[
0, 0,−1/ς

]T
, (14)

respectively, where ς is a constant related to the engine.
For ease of analysis, Eq. (13) can be discretized with Euler’s method [34].
Specifically, expand the continuous-time solution as a Taylor series at each step as

Xt+1 = Xt + TdẊ+
T 2
d

2
Ẍ+ · · · (15)

with Xt being the state of time t, and Td being the time interval where the device is assumed to be constant. By
retaining only the first-order term and neglecting higher-order terms, the discrete-time approximation becomes

Ẋ ≈
1

Td
(Xt+1 −Xt). (16)

Substituting (16) into (13), the control model at time t is expressed as

1

Td
(Xt+1 −Xt) = AXt +BUt. (17)

Suppose a linear control strategy is applied, i.e., U = KX with K = [K1,K2,K3], which is widely applied
in [35–37]. The control model (17) can be reorganized as

Xt+1 = ÃXt + B̃KXt, (18)

where Ã = TdA+ I and B̃ = TdB.

2.2.2 Control model considering imperfect sensing and wireless communication

The imperfect sensing, followed by the subsequent estimation process, complicates the controller’s task of generating
control commands. These commands depend on accurate state information of the actuator, and any inaccuracies
in this process can lead to control deviation. To model the impact of the imperfect sensing and estimation on the
dynamic function, let X̂t denote the estimate of the state X. The device then receives the estimated-state-based
control command Ût = KX̂t, rather than the actual-state-based command Ut = KXt. Therefore, Eq. (18) can be
developed as

Xt+1 = ÃXt + B̃KX̂t. (19)

The effect of wireless communication can be attributed to the inaccurate control caused by communication
delay and the loss of control instructions due to the package loss. When the communication delay occurs, the
device will receive control commands corresponding to the previous state rather than the current state, resulting
in a suboptimal control strategy. However, the delay-compensated strategy can be applied to compensate for the
impact of communication delay [7, 38]. Therefore, a delay-compensation control method is proposed, as Figure 3.

Based on the control objective, the control center generates the optimal linear control law coefficientK in advance.
After the current device’s state is uploaded to the control center at time t0, the estimated state X̂t0 is obtained
through estimation, and the states for the subsequent N time instants are subsequently estimated. Based on the
estimated N state values, control sequences for the corresponding N time instants are generated. The sequence is
transmitted to the device entirely, and appropriate data packets are selected based on the discretized time interval
from the sending of perception data to the receiving of control packets, i.e., ⌊Dc/Td⌋, where ⌊·⌋ represents the floor
function.
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Figure 3 The delay-compensation control method.

Based on the above analysis, the impact of packet loss on the iteration of system states is further considered.
When the packet loss occurs, the control command cannot be transmitted to the device, and the state equation
relies on the physical properties during uncontrolled iterations, that is

Xt+1 = ÃXt + ηB̃KX̂t, (20)

where η is a random variable which equals 0 with probability ǫc and equals 1 with probability 1− ǫc.

2.3 Sensing and estimation model

The sensing-estimation process is located in the first half of the closed-loop process. The sensor detects the current
state of the actuator and quantifies it into a digital signal, which is then transmitted to the control center. At
the control center, the future states are estimated according to the received information to compensate for the
communication delays, which is introduced as the control model and Figure 3. In the subsequent analysis, a uniform
quantization method is adopted. Further analysis is conducted on the errors introduced by the quantization and
estimation.

Suppose the sensors are capable of locally acquiring the state information of the actuators with high accuracy;
i.e., the data prior to quantization are accurate. Besides, the detection of the quantization is assumed to lie in
the area of [XL,XU ]. Let r denote the quantization level; i.e., the area [XL,XU ] is uniformly quantized into 2r

intervals. Hence, the sensing data generated per unit time, also known as the arrival rate of the uplink queue, can
be represented as

λu =
r

Td
. (21)

Besides, the midpoint of the interval is taken as the quantization of Xt, which is denoted by X
q
t .

X
q
t = XL +

(
j +

1

2

)
·
1

2r
[XU −XL], (22)

where j ∈ {0, 1, . . . , 2r − 1}. Therefore, the quantization error for Xt can be formulated as

e0 =X
q
t −Xt ∈

[
1

2

1

2r
[XL −XU ],

1

2

1

2r
[XU −XL]

]
. (23)

On the assumption that the error e0 follows the uniform distribution, which is a usual assumption in a generalized
control system [23], we obtain

E[e0] = E[Xq
t −Xt] = 0, (24)

E[eT0 e0] =
1

12

1

4r
[(XL −XU )

T(XL −XU )]. (25)

After quantization, the estimator at the controller should estimate the future N states for generating the control
sequence to compensate the communication delay, where the estimation is made by

X̂t+1 =ÃX̂t + E(η)B̃KX̂t = ÃX̂t + (1− ǫc)B̃KX̂t=̇AKX̂t, (26)
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where AK = Ã+ (1− ǫc)B̃. According to the iteration (26), the estimation of the future state at time t+ τ is

X̂t+τ = (AK)τ X̂t. (27)

Therefore, the mean estimation error of time t+ τ is obtained as

E[eτ ] = E[X̂t+τ −Xt+τ ] = (AK)τ (Xq
t −Xt) = 0. (28)

Besides, when Tr(ÃTÃ) 6= 1, the mean square estimation error satisfies

E[eTτ eτ ] 6
1

12

1

4r
[Tr(ÃTÃ)]τ ||XL −XU ||

2 + (ǫc − ǫ2c)Tr(K
TB̃TB̃K)XT

MXM
1− [Tr(ÃTÃ)]τ

1− Tr(ÃTÃ)
. (29)

And when Tr(ÃTÃ) = 1,

E[eTτ eτ ] 6
1

12

1

4r
[(XL −XU )

T(XL −XU )] + (ǫc − ǫ2c)τ

· Tr(KTB̃TB̃K)XT
MXM ,

(30)

where XM = {xM,i|xM,i = max{|xU,i|, |xL,i|}}, with xU,i and xL,i being the ith element of matrix XU and XL,
respectively, where i ∈ {1, 2, . . . , n}. The proofs of (29) and (30) are provided in Appendix D. According to (29)
and (30), a common bound for any τ with the delay bound Dc,max can be obtained as

E[eTτ eτ ]

6






1
12

1
4r [Tr(Ã

TÃ)]⌊Dc,max/Td⌋[(XL −XU )
T(XL −XU )],

+(ǫc − ǫ2c)Tr(K
TB̃TB̃K)XT

MXM
1−[Tr(ÃTÃ)]⌊Dc,max/Td⌋

1−Tr(ÃTÃ)
,when Tr(ÃTÃ) > 1,

1
12

1
4r [(XL −XU )

T(XL −XU )] + (ǫc − ǫ2c)
Tr(KTB̃TB̃K)XT

MXM

1−Tr(ÃTÃ)
,when Tr(ÃTÃ) < 1,

1
12

1
4r [(XL −XU )

T(XL −XU )] + (ǫc − ǫ2c)⌊Dc,max/Td⌋ · Tr(K
TB̃TB̃K)XT

MXM ,when Tr(ÃTÃ) = 1

=̇Fe(r, ǫc, Dc,max).

(31)

2.4 Convergence analysis of the closed-loop system

To quantitatively analyze the impact of communication, sensing, and estimation on the performance of control
systems, this section introduces an analytical framework based on the Lyapunov theory. Through this framework,
we next derive inequalities that establish a relationship between the system’s convergence rate and key factors such
as delay, packet loss, and estimation errors.

According to the LaSalle’s invariance principle [15, 39], the system converges at a rate of ρ, if

E [Vf (Xt+1)|Xt] 6 ρVf (Xt), (32)

where Vf (·) is the Lyapunov function of the closed-loop system, which is defined as [40, Ch. 4.2]

Vf (Xt) = XT
t PXt=̇|Xt|

2
P (33)

with P being a pre-defined semi-positive definite matrix.
Based on (20), (32), and (33), the impact of communication and sensing on the convergence of the closed-loop

system is derived in Theorem 4.

Theorem 4 (Convergence rate inequality). The sufficient condition of the system convergence (32) is satisfied if

ρ >
Fρ(Wu,Wd,K,Xt)

|Xt|2P
, (34)

where
Fρ(Wu,Wd,K,Xt) =(1− ǫc){−|ÃXt|

2
P + |(Ã+ B̃K)Xt|

2
P

+ Fe(r, ǫc, Dc,max)Tr[|BK|2P]}+ |ÃXt|
2
P,

(35)

and Fe(r, ǫc, Dc,max) is given in (31).

Proof. See the proof in Appendix E.

The closed-form inequality in (34) quantitatively characterizes how the convergence rate of the closed-loop system
depends on key parameters. This result provides explicit guidance for resource allocation and parameter config-
uration, serving as a sufficient condition for system convergence, and can therefore be regarded as a conservative
design criterion. Despite its conservative nature, this closed-form expression remains a practical tool for evaluating
and optimizing the joint effects of communication, sensing, and control parameters.
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3 Optimization of control strategy and resource allocation

As illustrated in Figure 3, to ensure the on-demand equipment operations, it is essential to design the optimal control
law, i.e., K. However, as can be inferred from the system model, the performance of communication, sensing, and
control is intricately linked. Therefore, to achieve the control objectives, it is necessary to simultaneously regulate
the resources such as the bandwidth, quantization levels, and control strategies. Considering the complexity of
such a problem, a constrained model predictive control (MPC) strategy is applied to simultaneously generate the
optimal control law and the resource allocation strategy [40].

J(K,Wu,Wd) =

N−1∑

t=0

[
X̂T

t QX̂t + (KX̂t)
TR(KX̂t)

]
+

1

2
X̂T

NPf X̂N , (36)

where N is the prediction horizon in which the future states are considered. The term X̂T
t QX̂t, which can

be reformed as (X̂t − 0)TQ(X̂t − 0), is the distances between X̂t and the control objective X̂ = 0 at time t.

(KX̂t)
TR(KX̂t) represents the amount of energy expended during the control process. Both Q and R are prede-

termined positive semi-definite matrices that respectively reflect the weighted relationships between state changes
and control energy, with their values carefully chosen to meet practical requirements. The summation term rep-
resents the total control cost over the next N time instants. 1

2X̂
T
NPfX̂N is the terminal cost [40], the purpose of

which is to compensate for the control cost, bringing it closer to the result when N = ∞, so as to enhance the
control performance. Pf is the solution of the discrete Racciti function [40, Ch. 2.5], given by

Pf = Q+ ÃTPfÃ− ÃTPf B̃
(
R+ B̃TPf B̃

)−1

B̃TPfÃ. (37)

According to Theorems 3 and 4, the state function (20), and the bandwidth limit, the optimization problem is
formulated as

P1: min
K,Wu,Wd

J(K,Wu,Wd), (38a)

s.t. λu 6 λmax, (38b)

ρ >
Fρ(Wu,Wd,K, X̂t)

|X̂t|2P
, (38c)

0 6 Wu +Wd 6 W0, (38d)

0 6 ǫc 6 1, (38e)

X̂t+1 = AKX̂t. (38f)

In the above optimization problem, constraints (38b) and (38c) are the solutions of Theorems 3 and 4, respectively.
Constraint (38d) constrains the available bandwidth of the communication. Constraint (38e) guarantees the correct
range of packet loss rate. Constraint (38f) is the estimation rule in (26).

Due to the complex structure of constraint (38c), this optimization problem is non-convex. The DE method
is particularly effective for this kind of non-convex problems due to its robust global search capability, which
significantly enhances the probability of finding the global optimum. Therefore, DE-based optimization method is
employed to seek the global optimal solution for this problem [41, 42], as Algorithm 1.

4 Simulation results

In this section, the motion control of an AGV is simulated to demonstrate the effectiveness of the proposed control
strategy and resource allocation method. Furthermore, we conduct an analysis to investigate the dynamic influence
of parameter variations on the system. For each experiment, 500 times of Monte-Carlo trials are conducted to
ensure statistical reliability. The setting of the parameters is shown in Table 1.

The iteration of the system is carried out based on the delay-compensation control method proposed in Sub-
section 2.2, as shown in Figure 3. The performance of the system is evaluated by three time-varying indicators,
i.e., state distance, accumulated control energy, and accumulated cost. The definitions of the three indicators are
provided in the sequel.
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Algorithm 1 DE-based optimization method.

Input: System parameters such as W0, θu, θd, SNRu, and SNRd. Algorithm parameters such as population size Np, crossover probability

pcr, differential weight Fd, maximum iterations Nm, maximum counter n, and tolerance of convergence tol.

1: Solve Pf according to (37);

2: Randomly initialize population with Np individuals;

3: Initialize best fitness change counter: counter = 0;

4: for i = 1 to Nm and counter < n do

5: for each individual Ξk = [Kk,Wu,k,Wd,k] do

6: Randomly select three individuals Ξr1, Ξr2, Ξr3 from the population;

7: Compute the mutant vector: Vk = Ξr1 + Fd × (Ξr2 − Ξr3);

8: Let Hk = Vk with probability pcr and Hk = Ξi with probability 1 − pcr;

9: if {Constraints are not violated for Uk and J(Uk) < J(Ξk)} or Constraints are violated for Ξk then

10: Replace Ξk with Uk in the population;

11: end if

12: end for

13: if |minJ(Hk) − minJ(Ξk)| < tol then

14: Increment counter by 1;

15: else

16: Reset counter to 0;

17: end if

18: end for

19: Output: The individual corresponding to the Fitnesscurrent .

Table 1 Simulation parameters.

Parameter Value Parameter Value

System parameters

Td 0.1 s ς 0.125

P diag(10, 10, 1) Q diag(10, 10, 1)

R 1 X0 [−100, 1, 1]T

N 10 cd 0.1

SNRu 30 dB SNRd 33 dB

βu 1 βd 1

θu 0.02 θd 0.04

W0 1.5MHz

Algorithm parameters

Np 15 pcr 0.7

n 5 Nm 1000

tol 0.01 Fd 0.5

• The state distance is the quadratic form of the state Xt, which reveals the distance from state Xt to state 0,
i.e.,

SD = XT
t QXt, (39)

where SD represents the state distance.
• The accumulated control energy is the total of control energy from the initial time to the current time, i.e.,

ACE =

N−1∑

t=0

[
(KXt)

TR(KXt)
]
, (40)

where ACE represents the accumulated control energy.
• The accumulated cost is the total control cost from the initial time to the current, which is the sum part of

(36), i.e.,

AC =

N−1∑

t=0

[
XT

t QXt + (KXt)
TR(KXt)

]
, (41)

where AC represents the accumulated cost.

4.1 Impact of closed-loop delay

The impact of closed-loop delay Dc,max on the system is shown in Figure 4, where Dc,max varies from 0.06 to 0.1 s,
ρ = 0.999, and r = 6. As illustrated in Figure 4(a), it can be observed that the convergence speed of states
significantly increases with the reduction of the maximum allowable closed-loop delay, which is due to the fact
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Figure 4 (Color online) Variations of (a) state distance, (b) accumulated control energy, and (c) accumulated cost with closed-loop delay

constraints.

Figure 5 (Color online) Variations of (a) state distance, (b) accumulated control energy, and (c) accumulated cost with different convergence

rates.

that strict delay constraints enhance the timeliness of control commands. However, when Dc,max is too small, such
as Dc,max = 0.06 s in Figure 4(a), the system experiences a high packet loss rate due to (8). This leads to the
failure of most control commands in reaching the actuators, consequently resulting in significant fluctuations in
the device’s state. For the same reason, Figure 4(b) demonstrates that excessively strict constraints on delay, i.e.,
Dc,max = 0.06 s, significantly augment the consumption of control energy. Furthermore, increasing Dc,max reduces
the packet loss rate, diminishing the need for large control actions against packet loss impacts. Consequently, the
accumulated control energy gradually decreases.

From Figures 4(a) and (b), it can be observed that although an increase in Dc,max leads to a reduction in control
energy consumption, it also results in a slower convergence. This results in a reduction of the accumulated cost
with the increase of Dc,max during the early stages of the control process, i.e., when t 6 500. Conversely, when
t > 500, within the interval where Dc,max > 0.08 s, the accumulated cost increases with the rise of Dc,max. This
is because although a higher Dc,max entails lower accumulated control energy consumption, its slower convergence
leads to a longer accumulation period for control costs. Over time, this results in a higher accumulated cost.

4.2 Impact of convergence rate

The impact of the convergence rate ρ on the system is shown in Figure 5, where ρ varies from 0.9999 to 0.99,
Dc,max = 0.1 s, and r = 6. As shown in Figures 5(a) and (b), the system cost and the state distance indeed converge
faster with the decrease of ρ. However, according to (34), an excessively small ρ, such as ρ = 0.99 in Figure 5,
leads to an increase in the packet loss rate, thereby causing greater fluctuations in the state. As in Figure 5(c), the
steady-state accumulated cost initially exhibits a downward trend with the decrease from ρ = 0.9999 to ρ = 0.999,
subsequently followed by an increase with the decrease from ρ = 0.999 to ρ = 0.99. This is because, on the one
hand, a reduction in ρ leads to an increase in the control energy consumption. On the other hand, the acceleration
of convergence results in a more rapid decrease in control energy. In the interval of ρ = 0.9999 to ρ = 0.999, the
impact of convergence acceleration predominates, leading to a reduction in the steady-state accumulated control
energy with the decrease of ρ. In the interval of ρ = 0.999 to ρ = 0.99, the excessive increase in control energy
dominates, which results in a tiny effect of the convergence acceleration.



Meng Z Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132301:13

Figure 6 (Color online) Variations of (a) state distance, (b) accumulated control energy, and (c) accumulated cost with different quantization

levels.

4.3 Impact of quantization level

The impact of quantization level r on the system is shown in Figure 6, where r varies from 4 to 8, Dc,max = 0.1 s,
and ρ = 0.999. It is evident that when the value of r is sufficiently small, particularly when r = 4, the convergence
of the system is hindered, leading to a substantial increase in both accumulated cost and control energy. This is
because the estimation error is much too large, making it difficult for the control instructions to accurately identify
the current state. Furthermore, an excessively large r, such as r = 8 as depicted in the figure, leads to an unsolvable
optimization problem. This situation obstructs the generation of control commands by the control center, thus
limiting the actuator’s capacity to achieve convergence.

Except for the above situations, a larger r results in a faster convergence and smaller control energy, as r respec-
tively equals 5, 6, and 7 in Figures 6(a) and (b). In such cases, a decrease in quantization level leads to an increase
in sensing errors, subsequently requiring higher control energy from the device to sustain control operations. Ulti-
mately, this contributes to increased control power consumption. However, increasing the quantization order places
a heavier burden on the communication link, resulting in an increased average time delay and slower convergence.
Furthermore, the accumulated cost is the combination of the state distance and the accumulated control energy.
Despite the higher initial control energy consumption associated with a smaller quantization level before t = 250, a
faster convergence rate is achieved for smaller r when r > 5 and t > 250, which results in a lower accumulated cost
overall, as demonstrated in Figure 6(c).

5 Conclusion

The existing theoretical models for closed-loop control systems with wireless networks fail to achieve the expected
control effects in practical applications, thus resulting in challenges in the design of communication, sensing, and
control systems. To address the issue of the separation between uplink and downlink models, an uplink-downlink
coupled closed-loop communication model was first proposed based on the transmission characteristics of the in-
dustrial wireless networks. The closed-form expressions of closed-loop delay and packet loss rate were next derived
to provide more practical metrics for the industrial system. Subsequently, a control model based on the delay com-
pensation algorithm and packet loss was presented, as well as a sensing-estimation model based on quantization and
estimation error. In order to model the relationship between communication, sensing, and control, the inequality
related to communication, sensing, and control parameters was derived based on the proposed models. The result
provided a lower bound on the convergence rate that ensures system stability. Finally, to provide guidance for the
design of the closed-loop system, a joint optimization problem for control and resource allocation was introduced.
An algorithm based on DE was presented to obtain the global optimal solution of the non-convex problem. Numer-
ical simulations indicated that due to the interdependencies among communication, sensing, and control systems,
excessively high or low parameter designs can markedly degrade the system’s control effectiveness.

6 Future work

This work establishes an integrated framework for closed-loop control systems, focusing on the interplay among
sensing, communication, and control under periodic, single-sensor operation. To further enhance both the theoretical
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richness and the practical relevance of the proposed model, several promising directions can be considered in future
research.

One important direction is to generalize the proposed framework to accommodate non-periodic or event-driven
data transmission schemes. While the periodic sampling and reporting assumption align with current industrial stan-
dards and is widely adopted in mainstream deployments, there are scenarios, such as event-triggered or application-
adaptive reporting, where sensor transmissions become non-periodic. Extending the analysis and optimization
framework to such cases, and investigating how time-varying traffic patterns and communication delays influence
closed-loop system stability and control performance, will further broaden the applicability of integrated sensing-
communication-control models to a wider range of practical industrial environments.

A further promising avenue is to extend the framework to integrated sensing and communication (ISAC) technolo-
gies [19, 20, 43–48]. ISAC allows wireless networks to simultaneously support communication and sensing, unifying
these functions at the physical and protocol layers. This integration can fundamentally change traditional closed-
loop processes by reducing or even eliminating the separate sensing time of conventional sensors, potentially leading
to significant latency improvements. Future research can focus on joint modeling and optimization of ISAC-enabled
systems, investigating how real-time scene information, joint waveform design, and co-optimized resource allocation
affect the stability and performance of closed-loop control. Exploring these aspects will provide valuable insights
for next-generation industrial systems with enhanced efficiency and responsiveness.

It is also valuable to generalize the current framework to multi-sensor systems. When multiple sensors observe
the same target, the system architecture can be viewed as a set of parallel sensing-communication links. This
redundancy not only improves reliability and robustness against data loss, but also introduces new challenges in
communication resource allocation and scheduling. From an information-theoretic perspective, the scenario in which
each sensor acquires a noisy observation and independently transmits quantized data to a central processor can be
viewed as a typical multi-terminal source coding problem, where the fusion center reconstructs the underlying
state based on all received data. The overall performance then depends on the joint effects of all communication
links, sensor errors, and the data fusion algorithm. Extending the integrated model to this scenario will involve
joint modeling of multi-source sensing, multi-channel communication, and data fusion, as well as investigating their
influence on closed-loop control stability and performance.

These extensions will provide valuable theoretical insights and design guidelines for practical industrial closed-loop
control systems with more diverse and complex architectures.
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