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1 Appendix A
Proof of Theorem 1

Substituting [1, Eqn. 2] into [1, Eqn. 3], there is
1
Ci(6:, Wi, SNRy, i) = — - In (E {exp [—0;W;log, (1 + SNRi+?)]}) . (1)
Considering that 72 follows an exponential distribution with parameter 3;, (1) can be further derived
as

1 1 W;0; 1
i(0i, Wi, SNRy, B;) = W; 1 NRiBi) = —-In(T'|1- , , 2
Cil6s, Wa, SNR, i) = Wi log, (SNRifi) = ooz — n( < 2 SNRZﬂi)) )
where T'(s, x) is the upper incomplete gamma function. Besides, 1 — Iﬁg < 0 and 7SNF1{1_&_ — 0 since the

order of magnitude for bandwidth W; is typically above 10°, the order of SNR; is usually above 103, @ is
around 1073 for factory scenario, and the typical value for f3; is approximately 1. Subsequently,

LW 1 N (1 (1*%")E 1
In2 "SNR;3; ) \SNR;8; gt \ SNR;

N 1 (1-5) -1
- <SNR¢5¢‘) ' (1 — Wiei)’

In2

where E,(z) is the generalized exponential integral function, which is

E,(z) = /1 h %ﬂ dt, (4)

and the approximation holds due to
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Substituting (3) into (2),
Ci(0:, Wi, SNRy, B;)

=IWiloga(SNR.B) — g + - <1 - ) In (SNR ) + ;- In < L 1) )
1 W;0; 1
=0 In(SNR;8;)( 2 1) - SNR.B

2 Appendix B
Proof of Theorem 2

According to [1, Eqn. 7], the delay of a packet in a single queue follows a exponential distribution with
parameter 0,C;(6;, W;, SNR;, 3;). Therefore, the probability density function of D;(i = u,d) is

I, (l‘) = M eXp(7Mi$) (Z =u, d)a (7)

where according to Theorem 1 [1],

W0, 0;
i = 0,Ci(0;, Wi, SNRy, B;) = In(SNR;8;) (=" — 1) — oo

1 ( Bi) = (SNRyfi) (5 — 1) SNR.G,

Thus, the probability density function the closed-loop delay D. = D, + Dy is the convolution of the

probability density functions of D,, and Dy, that is
fp.(x) =fp,(x) * fp4(2) = —

(i = u,d). 8)

e THu _ g~ THd Lo fhd
( ) Butla )
Hu — Hd

Subsequently, the package drop probability €. satisfies

Dc,max _Dc,mxde _ _Dc,maxﬂu
€ =P{D.> Dopmax} =1— / o (z)dz = < Fu = © fd. (10)
0 M — Hd
Besides, the exception of the closed-loop delay when package is not dropped is
D
e afp (@)
E-DCDC<Dcmax :/ —— _dx
[ | ’ ] 0 P(Dc < Dc,max) (11)
:/J’Z - :U/?l + e_DC’maXMuN?l (1 + Dc,maxﬂu) - e—Dc.mamedMi (1 + DQmaxﬂd)
puptd (H = pa + e~ Pemaxetie g — e~ Demaxttap,,) '
3 Appendix C
Proof of Theorem 3
According to [2, Eqn. 10], the departure process of the first queue L,, is
A, 0<64<0,
.= ¢ . (12)
i{(ad _eu) Cu(HU7WU7SNRuaBu) +)\u9u}7 Gd > eu
Therefore, substituting (12) into [1, Eqn. 6],
Ao, 060,80,
Ay = ) d . (13)
cd%{(ed_9u> Cu(9u7WuysNRU7ﬁu) +)\u9u}u ed > eu
Then substituting (13) into [1, Eqn. 1], when 6, > 6,
Cq(04, Wa,SNRaq, Ba) = cadu, (14)
and when 0, < 6,4,
1
Cd(gd, Wy, SNRd, ﬁd) > Cdf{(ad — Qu) Cu(Gu, W, SNRU, Bu) + )\uau}. (15)

04
After rearranging formulas (14) and (15), Theorem 3 can be proved.
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4 Appendix D
Proof of (29) and (30)

Substitute [1, Eqn. 20] and [1, Eqn. 26] into the left side of [1, Eqn. 29], we can get
Elele,]
=E[(Xerr = Xipr) " (Xigr — Xigr)]
=E{[A(X¢1r — Xegr) + (1= e = n)BKX (]T[AXp - — Xigr) + (1 - € = )BKX, ]} (16)
=E{el ,(ATA)e, 1} +E[(1 —e. —)°XF,  KTB"BKX,;, 1]
=E{Tr[(ATA)e,_1e]_]} +E[(1 - e — n)* - Te(K"B"BKX 1 X[y, y)].
Since Tr(XY) < Tr(X)Tr(Y) if X and Y are semidefinite matrices, (16) can be further scaled as
Elefe,] <Tr(ATA)E[e]_ e. 1] +E[(1 — e —7)’] - Tr(K"B"BK)E[X}, ,_; X4 1]
<Tr(ATA)E[e! e, 1]+ (€. — ) Tr(KTBTBK) - X}, Xy,
where the first inequality is due to the Cauchy-Schwarz inequality.

According to such recurrence relationship, the upper bound of E[ele,] can be obtained with E[el eg]
given by [1, Eqn. 25], i.e. when Tr(ATA) # 1,

(17)

. - _ ATAVIT
Elele,] < [Tr(ATA)|"Eled eq] + (e — eg)Tr(KTBTBK)XLXMM
1—Tr(ATA) (18)
11 o~ ~ e 1—[Tr(ATA)"
=— —[Tr(ATA)" (X — X)) T(Xp — Xp)] + (ec — 2)Tr(K"BTBK)XT, X — 4~ 2
73 17 L1 NT(XL = Xo) ™ (X = Xu)] + ( &) Tr( )Xy Xm | Te(ATA)
and when Tr(ATA) =1
11 ~
Elele,] < E?[(XL — X)) T (X — X)) + (e — )7 - Tr(KTBTBK)X 1, X ). (19)

5 Appendix E
Proof of Theorem 4

According to [1, Eqn. 20] derived in the control model, the Lyapunov function of the closed-loop system
considering the effect of sensing and communication is derived as follows.

E[V}(Xe11)|Xs] =E [XtT+1PXt+1|Xt} —E [(j&xt + nBKX,)TP(AX, + nﬁKXt)}
—c|AX [} + (1 - e)|(A + BK)X,[} + (1 - . )E[e,]"K"BTPX,  (20)
+ (1 — €)X PBKE,[e,] + (1 — ¢.)E.[eT KTBTPBKe,],
where E, [-] represents the exception of the random variable 7.
According to [1, Eqn. 28],
E.[e,] = 0. (21)
Therefore, considering that with the Cauchy-Schwarz inequality,
E,[elK'TB"PBKe,| =E, [Tr{e K"BTPBKe, }| = E,[Tr{e,e] K"B"PBK]}
<E,[Tr{e,e! Tr{K"B"PBK} = Tr{E[e.e! |} Tr{K"BT"PBK}  (22)
=E,[ele, | Tr{K'BTPBK}.
Besides, according to (25),
E-[efe;] < Fo(r ec, Denax)- (23)
Therefore,
E [V (Xi41)[Xe]
el AXufp + (1= o)|(A + BK) X[} + (1 =€) Fe(r ¢, Deomax) Tr{K"B"PBK} (24)
—e.|AXy|3 + (1 — €)|(A + BK)X|% + (1 — €.) Fu(r, €, Demax) TH{K "TBTPBK]}.
Substituting [1, Eqn. 8] into (24), and let (24) less than pV;(X,), we can get the sufficient condition
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for [1, Eqn. 32], that is
6C|AXt|%F> + (1 —e)[(A + BK)Xt‘ZP + (1 = €c) Fe(r, €, DC,maX)Tr{|BK|2f} < P‘Xtﬁp, (25)

where Elele,] is given by [1, Eqn. 29] and [1, Eqn. 30].
After rearranging (25), [1, Eqn. 32] can be obtained.
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