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Abstract In this paper, for repetitive discrete-time linear single-input single-output systems described by the state-space model, an
iterative learning control algorithm with a tuning parameter is presented in order to utilize more historical control inputs and tracking
errors. Necessary and sufficient conditions of the tuning parameter to guarantee the convergence of the tracking error are developed
in terms of the spectral radius of an iterative matrix and the roots of a quadratic equation. Compared to some existing algorithms,
the proposed control algorithm can improve the convergence speed of the tracking error by choosing a proper tuning parameter. Also,
an explicit expression of the optimal parameter is derived to achieve the fastest convergence speed of the tracking error. Finally, the
proposed theoretical results are validated by simulation.
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1 Introduction

In practical engineering, there exists a class of systems that perform work tasks at a finite fixed time interval
and repeat these tasks, such as high-speed trains [1], robot manipulators [2], power converters [3], and alternating
current microgrids [4]. Iterative learning control (ILC) is an intelligent method to improve the tracking performance
of repetitive systems. A significant difference between the ILC method and other control methods is the evolutionary
direction of the control inputs. More specifically, the control inputs in the next trial are updated by the control
inputs and the tracking errors in the previous trials, such that the tracking performance of the system along the
iteration direction is gradually improved [5].

The ILC method was first proposed by Uchiyama [6], and was subsequently mathematically formulated by
Arimoto et al. [7] and applied to mechanical systems. After continuous development, there have been a large
number of theoretical results on ILC. On the one hand, multiple types of ILC algorithms have been reported. In [8],
a proportional ILC was presented for nonlinear discrete-time time-varying systems. In [9], a proportional derivative
ILC was proposed for uncertain interconnected systems. In [10], an ILC scheme with a time-varying learning gain
was designed for linear time-invariant systems. In [11], an ILC mechanism incorporating feedback and difference
was developed for batch processes. The common feature of these ILC algorithms in [8-11] is that only the control
inputs in the latest iteration are used, and the difference of these algorithms is that the tracking error information
is used in different forms. In [12-14], a class of ILC algorithms with a forgetting factor was presented. Specifically,
the control inputs in the latest iteration and the initial iteration were used in the algorithm of [12], the control
inputs in the latest iteration were utilized in that of [13], and the control inputs in the latest two iterations were
used in the algorithm of [14].

On the other hand, ILC has been applied to many types of controlled systems with different forms of descrip-
tion. For discrete-time linear time-invariant systems described by the state-space model, an ILC method with the
intermittent data was developed in [15]. For discrete-time linear time-invariant systems described by the trans-
fer function, robust monotonic convergence conditions were established for ILC in [16]. For a class of multiagent
systems with a discrete-time unknown nonlinear function, a distributed data-driven ILC algorithm was presented
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in [17]. For continuous-time manipulator systems with unmodeled dynamics, a practical adaptive ILC mechanism
was devised in [18]. It can be found that the ILC algorithm has been widely used regardless of the description form
of repetitive systems. No matter whether the system model information is known or based on system data, ILC
has been a common control approach to handle the tracking problem of repetitive systems.

In iterative learning control, it is crucial to ensure that the tracking error sequence is convergent in the trial-to-trial
direction. In the existing literature on ILC, there are a variety of available techniques to analyze the convergence of
the tracking error. To name a few, two-dimensional system theory [19], composite energy function approach [20],
contraction mapping approach [21], lifting representation approach [22], and frequency-domain analysis approach
[23]. Furthermore, there are various types of convergence performance of the tracking error in ILC. For instance,
monotonic convergence [24] and mean square convergence [25].

When analyzing the convergence of the tracking error, the convergence speed is an essential metric to evaluate
the convergence performance. However, there is little literature related to the convergence speed. In [26], the
convergence speed of a model-free adaptive ILC algorithm for nonlinear systems was investigated. In [27], a data-
driven mechanism was used to accelerate the convergence of the norm optimal ILC method. In [28], the trade-off
between robustness and convergence speed in norm-optimal ILC was discussed. In addition, a hybrid reinforcement
Q-learning approach and two hybrid iteration algorithms were developed in [29,30], respectively. These methods
in [29,30] achieve an improvement in the convergence speed. In addition to the study of the convergence speed for
asymptotic convergence, there have also been some other efforts to improve convergence performance. In [31,32],
the predefined time control and the finite-time control were studied, and the faster convergence performance was
realized.

In the present paper, a novel ILC algorithm with one tuning parameter is presented to improve the convergence
of the tracking error. The systems under consideration are repetitive discrete-time linear systems described by the
state-space model. In the proposed algorithm, the control inputs in the current iteration are updated by using the
control inputs and the tracking errors in the past two iterations. The iterative sequence of the tracking error along
the iterative direction is obtained, and a necessary and sufficient condition to guarantee the convergence of the
tracking error is provided in terms of the spectral radius of the iterative matrix. On this basis, an easy-to-check
condition is given for choosing a proper tuning parameter to make the tracking error convergent. In addition, the
expression of the optimal parameter that maximizes the convergence speed of the tracking error is provided.

The main contributions and novelties of the present paper are outlined as follows.

(1) A novel ILC algorithm with the information (control inputs and tracking errors) in the latest two iterations is
proposed by introducing a tuning parameter. Compared to the algorithms in [8,10], where only the control inputs
and tracking errors in the last iteration are used, more information in past iterations is considered in the designed
algorithm. The introduction of the tuning parameter can also provide an extra degree of freedom to the control
algorithm.

(2) There exist some ILC algorithms in some literature, for example, [13,33]. Compared to these algorithms, the
difference of the algorithm in the current paper lies in two aspects. One is that only the information in the last
iteration step is used in [13,33]. The other is that the parameter with the function of forgetting factors in [13, 33]
is confined to the interval (0,1). Such a restriction is not necessary for the tuning parameter in the current paper.

(3) An explicit expression is provided for the introduced parameter such that the considered repetitive system
achieves the fastest convergence speed. However, to the best of our knowledge, such a types of results on the optimal
parameters of the iterative learning control do not appear in [10, 14, 34].

The rest of this paper is organized as follows. In Section 2, the problem of this paper is formulated. In Section 3,
an ILC algorithm with a tuning parameter is presented and the necessary lemmas are given. In Section 4, the
convergence of the tracking error is analyzed and three theorems on the convergence related to the tuning parameter
are presented. In Section 5, the optimal tuning parameter is investigated and several results on the optimal
parameter for different system parameters are derived. In Section 6, three simulation examples are provided. In
Section 7, the conclusion of this paper is drawn.

Notations. For a matrix G, its inverse, determinant, the ith eigenvalue and spectral radius are denoted as G~ !,
det(G), X\i(G) and p(G), respectively. The notation I[a,b] represents the set {a,a + 1,...,b} for any two integers
a < b. The notation ® is the Kronecker product. In addition, Iy denotes the N-dimensional identity matrix.
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2 Problem description

Consider a discrete-time linear single-input single-output (SISO) system described by the following state-space
model:

{x(t +1) = Ax(t) + Bul(t), (1)

y(t) = Cu(t),

where ¢ € I][0, N] is the time variable and N is the duration. Additionally, z(¢) € R", u(t) € R and y(t) € R are
the system state, scale input and output, respectively. Besides, A € R"™*" B € R"*! and C € R'*" are system
matrices. In particular, it is required that CB # 0, that is, the relative degree of system (1) is 1.

In practical applications, there are some systems that operate repeatedly, and these systems can be set to the
same initial conditions in each operation trial [35]. In view of the repetitiveness, an iterative index is added to
system (1). Thus, the repetitive discrete-time linear SISO system is described as

Yi (t) = C,Ti (f), (2)

where ¢ € {1,2,...} denotes the iterative index; z;(¢) € R", u;(t) € R and y,(t) € R are the system state, scale
input and output in the ith iteration, respectively.

The goal of iterative learning control (ILC) for repetitive systems is to make the system output y;(t) perfectly
track a desired output y4(t) through repetition in the direction of the iterative index. Since the repetitive system
considered in this paper is described by the state-space model, the following assumption about yq(t) is given.

{xi(t +1) = Az;(t) + Bui(t),

Assumption 1 ([36]). For a given desired output yq(t) over the entire duration interval ¢ € I[0, N], there exist

the unique desired control input uq(t) and desired system state xq(¢) such that

za(t+1) = Azq(t) + Buq(t), 3)
yd(t) == O:Ed (t)

In addition, similar to [37], we assume that the initial conditions for all iterations satisfy
z;(0) = 24(0), i € {1,2,...}, (4)

where x4(0) is the initial value of the desired state x4(t).

Remark 1. In this paper, the desired output yq(t) is assumed to be realizable. Assumption 1 is an assumption
about the realizability of y4(t), and it is usually a common assumption in ILC [36-39]. The case where the desired
output is more general will be considered in our future work.

Remark 2. The same initial condition (4) is necessary for ILC to achieve a perfect tracking and is also a reasonable
and common assumption in the field of ILC. It is a realistic requirement for actual systems that repeatedly perform
the same task to start each task with the same initial conditions [18,21,35,37,38]. However, this assumption may
not be fulfilled in practical applications due to inevitable errors and uncertainties. The relaxation/removal for the
same initial condition is an important issue in the field of ILC [40,41]. The corresponding analysis methods and
techniques are quite different from the current work. Such a problem will become a theme for our future research.

In current paper, based on Assumption 1 and the same initial condition, the focus is on proposing an ILC
algorithm that makes the tracking error achieve a faster convergence speed. For this end, define the tracking error
as

ei(t) = ya(t) — 4i(t)- (5)
For the system (2), the following algorithm has been proposed in [42]
Ujt1 (t) = ul(t) + Lei(t + 1), (6)

where L € R is the learning gain.

For the ILC of repetitive systems, the convergence speed of the tracking error is very crucial. In this paper, we
try to present a new ILC algorithm such that the tracking error can achieve a faster convergence speed when this
new algorithm is employed to the repetitive system (2).
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3 An ILC algorithm with a tuning parameter

To achieve the main objective mentioned in the previous section, a novel ILC algorithm with a tuning parameter is
presented in this section. By introducing any v € R, the control input u;41(t) could be transformed into

i1 () = Yuira(t) + (1 = i (0).
With this, the ILC algorithm (6) can be rewritten as
wip1(t) = Y[ui(t) + Lei(t + )] + (1 = )[wi(t) + Lei(t + 1)]. (7)

In order to improve the convergence speed of the tracking error, more historical information could be used in the
ILC algorithm. With this consideration, the second term in the right-hand side of (7) is replaced by (1 —~)[u;—1(t) +
Le;_1(t + 1)]. Thus, the following ILC algorithm is proposed

ui+1(t) = v[ui(t) + Lei(t + 1)] + (1 - 7)[ui_1(t) + Lei_l(t + 1)], (8)

where v € R is a tuning parameter. Obviously, when v = 1, the proposed control algorithm (8) can be simplified
to the algorithm (6).
Remark 3. In the algorithm (8), the parameter v needs to be chosen to guarantee the convergence of the tracking
error of the system (2) under this algorithm. Unlike [12-14, 33] where the introduced parameter is confined to the
interval (0, 1), in this paper such a restriction is not needed for the tuning parameter . Therefore, the parameter
introduced in this paper is more flexible than those in [12-14,33]. In the next section, a necessary condition on the
tuning parameters that guarantees the convergence of the tracking error is investigated.

The following results are needed in the subsequent section on the convergence analysis of the tracking error under
the control algorithm (8).

Lemma 1 ([43]). For any eg € R™ and any ¢ € R, the sequence e; generated by the following iterative process:
eir1=Me;+c¢, 120
is convergent if and only if p(M) < 1. In addition, the convergence speed of the iterative process is
V=—Inp(M).
Lemma 2 ([44]). Given two square matrices M € R™*™ and W € R™*", and a matrix P with an appropriate

dimension, there holds

det = (=1)""det M det W.

0

v

Lemma 3 ([44]). Given two square matrices P and @, and two matrices M and W with appropriate dimensions,
if @ is invertible, then there holds

det l; g] = det Q det (P—MQ%W).

4 Convergence analysis

In the previous section, a novel ILC algorithm in (8) has been proposed. In the current section, the convergence
of the tracking error is analyzed when this control algorithm (8) is employed to the repetitive discrete-time linear
SISO system (2).

For the state variable and the control input, their iteration errors in the ith iteration are defined as

Oxi(t+1)=xq(t+1) —zi(t + 1), 9)
and

Sui(t) = ua(t) — ui(t). (10)
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In addition, it follows from (2), (3), (5) and (9) that

ei(t+1)=ya(t+1) —y(t+1)
=Czq(t+1) — Cxi(t +1)
=C(zq(t+1) —z(t+1))
=Cox;(t +1).

With this, it is obtained that
ei—1(t+1)=Coxi_1(t +1).
From (2), (3), (9) and (10), it is obtained
dz;(t + 1) =Azq(t) + Buqa(t) — Az;(t) — Bu,

=A(za(t) — zi(t)) + B(ua(t) — ui(t))
=Adz;(t) + Bou;(t).

By using the state response of discrete-time state-space linear systems in [39], it follows that
Szi(t+1) = A 162, (0) + ZAf I Bou, (7).
7=0

Obviously, there holds dz;(0) = 0 from (4). Thus, Eq. (13) becomes

t
Sai(t+1) = ZAt’szSui(j),

j=0
from which it is easily derived that
t .
0xi—1 (t + 1) = Z At_JBéui_l(j).
§=0
Besides, it follows from (8) and (10) that

o1 (t) =ua(t) — uip1(t)
=uq(t) — y[u;(t) + Le;(t + 1)] — (1 — ) [wi—1(t) + Le;—1(t + 1))

[u
=yua(t) + (L =y)ua(t) —yui(t) = yLei(t +1) = (L = y)uia(t) = (1 = y)Leia(t+ 1)
=(ua(t) —ui(t)) + (1 =) (ua(t) —wi1(t)) = vLei(t +1) = (1 =) Lei1(t +1)

(
=vy0u;(t) + (1 —v)oui—1(t) —yLej(t +1) — (1 —y)Le;—1(t + 1).

Then, substituting (11) and (12) into (16), gives

i1 (t) = youi(t) + (1 — y)dui—1(t) — yLCOx;(t + 1) — (1 — ) LCdz;—1 (L + 1).

Next, for any positive integer i, define

62T (2) - 62T (N)]",

; Suf (1) --- dul (N — 1)}T
i =[eF(1) eF@2) - eF (V)]

2

With the notations in (18) and (20), it is easily obtained from (11) that

€ = @fu

(11)

(12)

(13)
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where
O=IyxC.

With the notations in (18) and (19), it follows from (14) that

& = SG, (22)
where
B
AB B
S —
AN-1B AN=2B ... B
From (15), it is also obtained that
§i—1 = SGi—1. (23)
With the notations in (18) and (19), it can be denoted from (17) that
Git1 =G + (1 = 7)Gim1 = W& — Féin, (24)

where
W =~In®LC, F=(1-7v)Iy®LC.
Further, substituting (22) and (23) into (24), yields

Givr =G + (L —¥)Ci—1 = WS¢ — FSG1
=(yIN = WS8)G + (1 =) In — FS)i-1. (25)

With the previous preliminary, the convergence of the tracking error is provided in Theorem 1.

Theorem 1. For the repetitive discrete-time linear SISO system (2) and the ILC algorithm (8) with a tuning
parameter 7y, define the following two matrices:

v —~vLCB
—~LCAB v —~LCB
R = . . )
i —vLCAN-'B  —yLCAN—2B ... ~—~LCB
[ (1-9)(1-LCB)
—(1—~)LCAB (1-v)(1-LCB)
H =

- V)LOAN%B - V)Z;OAN*QB . (1—7)(1-LCB)

Then, the tracking error along the iterative index is convergent if and only if

where

(27)
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Proof.  For any positive integer 7, combining (21) and (22), yields
€ir1 = O&ip1 = ©5C41. (28)
By calculation, Eq. (25) can be further written as

Gir1 =lvIn — (vIn @ LO)S]G + [(1 =) In — (1 = 7)In ® LO)S]Gi—1
=R(+HG—1. (29)

It follows from (28) and (29) that

€ir1 =OS(RG + H(i—1)
=OSR(+OSH( 1.

It is easy to derive that ©SR = ROS and ©SH = HOS. With these two relations, the previous relation is
equivalently written as

€41 =ROSG + HOS(_. (30)
From (28), it is obtained that
O5¢ =€, OSG_1 = ¢€_1. (31)
Therefore, it follows from (30) and (31) that
€1 = Re; + Hej—1. (32)

€41
Ei1= .
€

With the fact €; = ¢;, it is easily obtained from (32) that

Define

R H

Ei =
+1 In 0

From Lemma 1, the tracking error is convergent along the iterative index if and only if (26) holds. The proof of
this theorem is thus completed.

In Theorem 1, a convergence condition is presented in terms of the spectral radius of a matrix related to the
introduced tuning parameter v. The matrix M () is called the iterative matrix of the system composed of (2)
and (8). This iterative matrix is composed of high-dimensional matrices R and H, thus it is difficult to find an
appropriate parameter v satisfying condition (26) by finding directly the eigenvalues of M (). In the sequel, some
further results are provided for choosing the parameter .

Theorem 2. For the closed-loop system composed of the repetitive discrete-time linear SISO system (2) and the
ILC algorithm (8) with a tuning parameter, if the tracking error converges in the direction of the iterative index,
then the parameter v satisfies

1 1

-t 4
i—zce ~ 't hn—zcoB

Proof.  According to Lemma 2, from the matrix M () given in (27) we have
2
[ det(M ()| = [(=1)"" det(H) det(In)| = (1 = ~)(1 = LCB)|™. (33)
Let A1, A2, ..., Ao denote all the eigenvalues of M (7). Then, the determinant of M () is expressed as
det(M(*y)) = )\1)\2 e )\QN. (34)

From Theorem 1, |A;| < 1, j € I[1,2N] holds if the tracking error is convergent. Based on this fact, it follows
from (33) and (34) that

[det(M(7))] = [(1 = 7)1 = LEB)IY = [Atda -~ dan| <1,

from which the conclusion of this theorem is immediately obtained. The proof of this theorem is thus completed.
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In Theorem 2, a necessary condition of the parameter v to guarantee the convergence of the tracking error is
provided. This result further specifies the interval of the tuning parameter +. In the following, we aim to provide
an easy-to-check necessary and sufficient condition for choosing a proper parameter to make the tracking error
convergent.

Theorem 3. For the repetitive discrete-time linear SISO system (2) and the ILC algorithm (8) with a tuning
parameter -y, the tracking error is convergent if and only if v satisfies the condition that all roots of the quadratic
equation

M =M(1-LCB)+(1-5)(1—-LCB) (35)

with respect to A have modulus less than 1.
Proof.  Denote A as an arbitrary eigenvalue of the matrix M (v) in (27). Then, there holds

My —-R —H
det(May — M(y)) =det | =0. (36)
—In iN
If A =0 is an eigenvalue of M (), then it follows from (36) that
-R -—-H
det =0,
—In 0
which implies v = 1. If v = 1, the matrix M (v) in (27) becomes
Rly=1 O
My =| = o 7
In 0
where
1-LCB

—LCAB 1-LCB
R|'y:1 =

—~LCAN=IB —LCAN=2B ... 1 - LCB

From (37) it can be seen that all eigenvalues of M (1) are 0 and 1 — LC'B. Then, the corresponding quadratic
equation can be described as A(A — (1 — LC'B)) = 0, which is the same as (35) with v = 1.
Next, the case where none of the eigenvalues of M(y) is 0 is considered. It follows from Lemma 3 and (36) that

1
det(May — M (7)) = det(Ay) det (/\IN “R- XHIN) . (38)
According to (38), since A # 0, there holds det(A ) # 0; thus, det(Alay — M (7)) = 0 if and only if

1
det <)\IN — R - XHIN> =0.

By simple calculation, it follows that

N
det (MN ~R- %HIN) = ()\ — (y—~yLCB) — %(1 — (1= LOB)) = 0. (39)

It can be observed from (39) that the matrix M () has two different eigenvalues with multiplicity N. From (39),
it is obtained that

A= (y—~LCB) - %(1 —)(1-LCB) = 0. (40)
Multiplying A on both sides of (40), yields
M~ My (1 - LCB) - (1-+)(1-LCB) =0,

which is (35). Thus, the condition in the form of the spectral radius in Theorem 1 is transformed to the condition
that all the roots of (35) satisfy |A| < 1. The proof is thus completed.
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In Theorem 3, a necessary and sufficient condition to ensure the convergence of the tracking error is provided in
terms of the roots of a quadratic equation. Compared to the condition in Theorem 1, it is much easier to find the
parameter 7y to satisfy this condition.

5 The choice of the optimal tuning parameter

In the previous section, several conditions for the convergence of the tracking error along the iterative index have
been given. A further problem is to seek the optimal parameter to ensure that the tracking error achieves the fastest
convergence speed under the proposed ILC algorithm. In the present section, such a problem is under investigation.

Obviously, the two roots of (35) are related to the tuning parameter v. Thus, denote these two roots as A1(7)
and A2(7). By the definition of the spectral radius and the result of Theorem 3, there holds

p(M(7)) = max{|Ai(v)],7 = 1,2}

The discriminant of the quadratic equation (35) with respect to A is

A(y) =+*(1 = LCB)*> + 4(1 — v)(1 — LCB). (41)
When A(v) > 0, the two roots of (35) are
M) = 3701~ LOB) + 3 /A, .
Aa(y) = %7(1 — LCB) - % A()-
When A(y) < 0, the two roots of (35) are
A(y) = %7(1 —LCB) + %1 —AM); 3)
X)) = 39— LCB) - 5iV/=A0)

Next, we will provide expressions for the optimal parameters from two cases 1 — LCB > 0 and 1 — LCB < 0.
5.1 The case of 1 — LCB >0

In this subsection, the case of 1 — LC'B > 0 is considered.
For A(v) > 0, it is obvious from 1 — LC'B > 0 and (42) that

{|A1<w)| > (Ao (y)], for v >0,
A2(7) > [A1(y)], for v < 0.

Therefore, when 1 — LCB > 0 and A(y 0, there holds

) =
1
27(1 —LCB) + 5VA),  fory >0,
1 1

—57(1 — LCB) + Ex/A(”y), for v < 0.

For A(v) < 0, it is easily calculated from (43) that
M) =) = V(1 =)(LCB - 1).
Therefore, when 1 — LCB > 0 and A(y) < 0, there holds
p(M(7)) = /(1 =)(LCB - 1). (45)

Further, according to (41), the discriminant A(7y) can be written as

A(y) =7*(1 = LCB)? +4(1 — LCB) — 4v(1 — LCB)
=[y(1 - LCB) — 2> + 4[(1 — LCB) — 1], (46)

from which it is known that A(vy) is always nonnegative for all real v when 1 — LC'B > 1 or equivalently LCB < 0
By combining this fact with (44), the following lemma can be immediately obtained.
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Lemma 4. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with a tuning
parameter v, the matrix M () is given in (27). If LCB < 0, then

1 1
—57(1 — LCB) + Ex/A(”y), for v <0,

p(M(7)) =1 ¢ 1
57(1 — LCB) + 5V A(y), for v > 0,

where A(7) is given in (41).
Next, the case where 0 < 1 — LCB < 1 is considered. In this case, 0 < LCB < 1 and the discriminant (46) can
be written as

A(7) =[y(1 = LCB) = 2> =4[l — (1 — LCB)]
=(1 - LCB)*(y = m)(y — 72) (47)
with
T (9
w = (9

Obviously, there holds v; < 72 since 0 < LCB < 1. Tt is easily obtained from (47) that when v > 42 or v < v,
there holds A(y) > 0; when 71 < v < 72, there holds A(v) < 0. By these two facts and the preceding expressions
given in (44) and (45), the following lemma can be obtained on p(M(v)) when 0 < LCB < 1.

Lemma 5. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with a tuning
parameter v, the matrix M () is given in (27). If 0 < LCB < 1, then

—%7(1—LCB)+%\/W, for v <0,
%7(1—LCB)+%\/W, for 0 < v < 71,
V(A -7)(ZLCB-1), for ;1 <y <72,
%7(1 - LCB) + %\/Wa for v > 7o,

where A(7) is given in (41), and 77 and ~2 are given in (48) and (49), respectively.

As shown in Lemmas 4 and 5, the explicit expressions for the spectral radius of matrix M () in both cases
LCB < 0and 0 < LCB < 1 are given. Based on these results, the optimal tuning parameter will be explored. For
the sake of further analysis, denote

9(1) = —57(1 ~ LCB) + 3 /B,
1 1 (50)
h(v) = 57(1 - LCB) + B A7),

where A(7) is given in (41).

Firstly, Theorem 4 is given regarding the choice of the optimal parameter v for the case of LCB < 0.
Theorem 4. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with a tuning
parameter v, the matrix M () is given in (27). When LCB < 0, there holds

min p(M (7)) = V1 - LCB.

Proof.  In the case of LOB < 0, the expression for the spectral radius p(M (7)) is provided in Lemma 4. Addi-
tionally, the functions g(v) and h(7y) defined in (50) are used later.

When v < 0, there holds p(M(v)) = g(7). Clearly, the function g(v) consists of —2~v(1 — LCB) and $/A(y).

The function —%7(1 — LCB) is monotonically decreasing with respect to v since 1 — LCB > 1 > 0. Moreover, it

follows from (47) that the function 4/A(v) is monotonically decreasing with respect to v when v < Also,

2
1-LCB"
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it is obvious that ﬁ > 0 due to 1 — LCB > 1. Therefore, the function % A(7) is monotonically decreasing

with respect to v when v < 0. Thus, when v < 0, both —%”y(l — LCB) and %\/A(Fy) are monotonically decreasing
with respect to 7, and thus the function g(v) is monotonically decreasing with respect to .

When v > 0, there holds p(M(y)) = h(y). Similarly, when v > =25, both 37(1 — LCB) and $+/A(y) are
monotonically increasing with respect to v due to 1 — LCB > 1 > 0 and (47). Thus, when v >
h(v) is monotonically increasing with respect to ~.

Next, the monotonicity of h(y) is analyzed for the case of 0 < v < ﬁ. To do this, taking the derivative of
the function h(vy) with respect to v yields

2 .
1-L.CB’ the function

dh(y) 1-LCB  2vy(1- LCB)? —4(1 — LOB)

dy 7 /A0
(1 - LCB)\/A(y) + (1 — LCB)? — 2(1 — LCB)
_ . (51)
2¢/A(7)
Since 1 — LCB > 1, it follows from (46) that
A(y) =[y(1 = LCB) — 2]*> +4[(1 — LCB) — 1]
>[y(1 — LCB) — 2% (52)

Besides, there holds v(1 — LCB) < 2 due to v < ﬁ and 1 — LC'B > 1. Taking the square root of both sides
of (52), gives

A(y) 22-9(1-LCB). (53)
Multiplying both sides of (53) by 1 — LC'B, gives
(1—LCB)y/A(y) = 2(1 — LCB) — v(1 — LCB)?,
which implies that

(1—LCB)\/A(y) —2(1 — LOB) +~(1 — LCB)* > 0. (54)

Combining (51) with (54) yields d’é(,?) > 0, which means that h(v) monotonically increases with respect to 4 when
0<y< ﬁ. In addition, it can be readily checked that h(y) is continuous with respect to . Therefore, when
~ > 0, the function h(v) is monotonically increasing with respect to .

By now, it has been obtained that p(M()) monotonically decreases when v < 0 and monotonically increases
when v > 0. Also, the function p(M (7)) in Lemma 4 is continuous by calculating the value of p(M (7)) at v = 0.

Therefore, the minimal value of p(M()) is taken at v = 0, and is given as
min p(M (7)) =h(7) =0
=0+ %\/4(1 — LCB)
=v1- LCB.

The proof of this theorem is thus completed.

The conclusion in Theorem 4 implies that the spectral radius p(M(y)) for any v € R is always greater than
or equal to 1 when LCB < 0. This fact implies that there does not exist any real number v to guarantee the
convergence of the tracking error of the system (2) under the control algorithm (8) for the case of LCB < 0.
Subsequently, the result on the choice of the optimal parameter in the case of 0 < LC'B < 1 is given in Theorem 5.
Theorem 5. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with a tuning
parameter v, the matrix M () is given in (27). When 0 < LCB < 1, the minimal value of p(M (7)) is taken as

min p(M(y)) =1—-VLCB

at v = 71, where 1 is defined in (48).
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Proof. In the case of 0 < LCB < 1, the expression for the spectral radius p(M(y)) is given in Lemma 5.
Analogous to the proof of Theorem 4, the functions g(v) and h(y) defined in (50) are also used. Additionally, the
numbers y; and 2 defined in (48) and (49) are also used.

When v < 0, there holds p(M(vy)) = g(y). By the monotonicity analysis of g(y) with respect to v in Theorem 4,
when v < 0, the function ¢g(y) monotonically decreases with respect to .

When 0 < v < 71, there holds p(M(v)) = h(y). It follows from (46) and 0 < 1 — LCB < 1 that

A7) < [y(1 - LCB) - 2. (55)

It is obvious from (48) that v; < ﬁ. Then, there holds v < ﬁ when 0 < v < 71, and thus v(1 - LCB) < 2
holds due to 0 < 1 — LCB < 1. Taking the square root of both sides of (55), gives

VA(y) <2—-~(1-LCB).
Further, there holds
(1—LCB)\/A(y) —2(1 — LOB) +~(1 — LCB)* < 0. (56)

Combining (56) with (51) yields %(J) < 0, which means that h(y) monotonically decreases with respect to v when
O<y<m
When v < v < 72, there holds

p(M(7)) = V(1 —7)(LCB -1).

Clearly, this function is monotonically increasing with respect to v since LCB — 1 < 0.

When v > 72, there holds p(M (7)) = h(7). It is obvious from (49) that v > —2=% since 0 < 1 — LCB < 1.
In addition, by the proof of Theorem 4, it is known that A(vy) monotonically increases with respect to v when
v = %. Therefore, the function h(7y) monotonically increases with respect to v when v > 7,.

By now, it has been known that p(A(+)) monotonically decreases when v < 0 and 0 < v < 71, and monotonically
increases when 1 < v < 72 and v > 2. Also, the function p(M (7)) in Lemma 5 is continuous by calculating the
values of p(M(y)) at v = 0, v = v and v = 2. Thus, p(M(vy)) monotonically decreases when v < ~1, and
monotonically increases when v > ~1. Accordingly, the minimal value of p(M (7)) is taken at v = ~1, and is given
as

min p(M (7)) =h(7)y=

1 1
=511 - LCB) + 3 A1)

2
12-2VLCB
=1-+VLOB,

where \/A(1) = 0 holds since (47). The proof is thus completed.

By the conclusion of Theorem 5, the optimal parameter in the case of 0 < LC'B < 1 is obtained such that the
tracking error of the system (2) under the control algorithm (8) has the fastest convergence speed.

5.2 The case of 1 — LCB <0

In this subsection, the case of 1 — LC'B < 0 is considered.
For A(v) > 0, it is obvious from 1 — LC'B < 0 and (42) that

[A2(7)| > [A1(y)], for v >0,
AL ()] > [A2(7y)], for v < 0.

Therefore, when 1 — LCB < 0 and A(y) > 0, there holds
1 1
—57(1 — LCB) + 3 A(y), forvy >0,

p(M(1) =1 | :
57(1 — LCB) + 3 Ay), for v < 0.
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When 1 — LCB < 0 and A(y) < 0, it follows from (43) that

p(M(7)) = /(1 —7)(LCB —1).

In addition, for the numbers v, and - defined in (48) and (49), respectively, there holds v < 0 < =1 since
1 — LCB < 0. Further, it follows from (47) that when v > 71 or v < 72, there holds A(y) > 0; when y2 < vy < ¥,
there holds A(y) < 0. Based on these analysis, the following result can be obtained on p(M (7)) when LCB > 1.

Lemma 6. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with a tuning
parameter v, the matrix M () is given in (27). If LCB > 1, then

1 1
57(1 — LCB) + 5\/A(7)7 for v < 72,
p(M(7)) =< /(1 —7)(LCB-1), for o <y <,
1 1
—57(1—LCB)+5\/A(7), for v > 1,

where A(7) is given in (41), and 71 and -2 are given in (48) and (49), respectively.

With the result of Lemma 6 as the basis, the choice of the optimal parameter is provided in the following theorem
when LC'B > 1.
Theorem 6. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with a tuning
parameter v, the matrix M () is given in (27). When LCB > 1, the minimal value of p(M (7)) is taken as

min p(M(vy)) = VLCB —1

at v = 71, where 7 is defined in (48).
Proof.  When LCB > 1, the expression for the spectral radius p(M(v)) is given in Lemma 6. Analogous to the
proofs of Theorems 4 and 5, the functions g(v) and h(y) defined in (50) are also used. Additionally, the numbers
~v1 and 2 defined in (48) and (49) are also used.

When v < 72, there holds p(M (7)) = h(y). Similar to the monotonicity analysis of h(vy) with respect to v when
v = ﬁ in Theorem 4, it can be derived that h(y) monotonically decreases with respect to v when v < ﬁ.
Additionally, vo < ﬁ holds since 1 — LCB < 0. Therefore, the function h(y) monotonically decreases with
respect to v when v < 7.

When 2 < v < 71, there holds

p(M(7)) = V(1 —7)(LCB -1).

Clearly, this function is monotonically decreasing with respect to v since LCB — 1 > 0.

When « > v1, there holds p(M(v)) = g(v). Similar to the monotonicity analysis of g(y) with respect to v when
v < ﬁ in Theorem 4, it is known that g(7y) monotonically increases with respect to v when v > ﬁ.
Additionally, v; > ﬁ holds since 1 — LC'B < 0. Therefore, the function g(v) is monotonically increasing with
respect to v when vy > ;.

By now, it has been known that p(M (7)) monotonically decreases when v < v and 72 < v < 71, and monoton-
ically increases when v > 7;. Also, the function p(M(7)) in Lemma 6 is continuous by calculating the values of
p(M(7y)) at v = 2 and v = y1. Thus, p(M (7)) monotonically decreases when < 1, and monotonically increases
when v > 1. Accordingly, the minimal value of p(M (7)) is taken at v = 7, and is given as

min p(M (7)) =9(7)|y=v
1 1
=—5m(1 = LCB) + 5V/A(m)
__12-2vICF
2 1-LCB
=VLCB -1,

(1—LCB)+0

where \/A(v1) = 0 holds since (47). The proof is thus completed.

From the conclusion of Theorem 6, the minimal value of p(M (7)) is greater than or equal to 1 when LCB > 4.
In this case, there does not exist a tuning parameter v to guarantee the convergence of the tracking error of the
system (2) under the control algorithm (8).
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5.3 Further discussion

In the previous two subsections, the optimal parameters have been provided in Theorems 4-6 for cases LC'B < 0,
0 < LCB <1 and LCB > 1, respectively. By summarizing these results, the following corollary can be obtained.

Corollary 1. For the repetitive discrete-time linear SISO system (2) under the ILC algorithm (8) with «, when
0 < LCB < 4, there exists a tuning parameter v to guarantee the convergence of the tracking error of the
corresponding closed-loop system. Furthermore, the optimal tuning parameter is v = 1 given in (48).

It is easy to prove that the original ILC algorithm (6) can make the tracking error converge for the repetitive
system (2) only if 0 < LCB < 2 holds. Such a result has been given in [45]. Obviously, the system consisting
of (2) and (6) does not work if LCB is out of this interval. However, by the above corollary, for the proposed ILC
algorithm (8), a proper tuning parameter can be selected such that the system consisting of (2) and (8) can work
when 0 < LC'B < 4. These facts imply that the proposed algorithm can be applied to more types of systems.

In this paper, some convergence conditions of the tracking error under the proposed ILC algorithm with a tuning
parameter have been given, and explicit expressions of the optimal parameter to make the tracking error converge
fastest are also derived. In the sequel, some remarks are provided to clarify the difference among the results in the
current paper and some existing results.

Remark 4. 1In [10,14,34], the optimal solution of the introduced parameters is not considered, and the parameters
need to be manually adjusted. Differently, the optimal solution of the introduced parameter is obtained in an explicit
form by rigorous mathematical derivation in this paper.

Remark 5. In our previous studies [46,47], the idea of parameter introduction has been utilized to solve Lyapunov
matrix equations and algebraic Riccati equations. In the current work, a tuning parameter is introduced into an
existing ILC algorithm, and thus a novel ILC algorithm is presented. Compared to the results in [46,47], the
differences of the results in this paper are as follows.

(1) The studied problems are different. The aim of [46] is to present an iterative algorithm for solving the
discrete periodic Lyapunov matrix equation. The aim of this paper is to present an ILC algorithm to accelerate the
convergence of the tracking error.

(2) As the considered problems are different, the utilized information to construct the iterative forms is different.
In [46], the estimation of the known matrices in the current and the last steps is used to update the estimation of
the unknown matrices in the current step by taking advantage of the coupling structure. In this paper, both control
inputs and tracking errors in past iterations are used to update the control inputs.

In the current work, the control inputs in the (¢ + 1)th iteration is updated by using the information in the
ith iteration and the (i — 1)th iteration. By following such an idea of parameter introduction, more information
can be utilized to construct ILC algorithms. Specifically, more ILC algorithms are derived based on the proposed
algorithm (8). Similar to the derivation in Section 3, the ILC algorithm (8) can be written as

w1 (t) =7 [ui(t) + Les(t + 1)+ (1 = ) [ui—1(t) + Lei—1(t + 1)]
=[ui(t) + Les(t + )] + (1 =) [ (ui—1(t) + Lei—a (¢ + 1)) + (1 = ) (wi—1(t) + Lei1(t + 1)) (57)

To utilize more historical information, the term (1—+) (u;—1(¢t) + Le;—1(t + 1)) in (57) is replaced by (1—)(u;—2(t)+
Le;_o(t +1)). Thus, the following ILC algorithm is obtained

uir1(t) =y[wi(t) + Lei(t + )] + (1 =) [y (wi—1(t) + Lei—1(t + 1)) + (1 — ) (ui—2(t) + Lei—2(t + 1))]
zv[ui(t) + Lei(t + 1)] + ’7(1 - ’7)[ui_1(t) + Lei_l(t + 1)] + (1 - '7)2[ui_2(t) + Lei_g(t + 1)]

Along the similar line, the following ILC algorithm in a general form can be

—

m—

wivr(t) =7 Y (1= fuia(t) + Leima(t + D] + (1= 3) [uim () + Lei—m(t + 1], (58)
=0

where m > 1 is the number of past iterations used in the proposed algorithm. The convergence analysis of the
tracking error under the algorithm (58) and the selection of the optimal parameter deserve further investigation.

Remark 6. In the current work, the considered system is a repetitive discrete-time linear system. In fact, the
proposed ILC algorithm can also be applied to repetitive nonlinear or stochastic systems. Of course, the analysis
of the convergence and the optimal parameter becomes more complicated.
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Table 1 Comparison of the convergence performance for different tuning parameters.

Tuning parameter Spectral radius Convergence speed
v =0.9 0.5422 0.6121
y=1 0.5 0.6931
v =1.05 0.4720 0.7507
v =1.1716 0.2929 1.2279
y=14 0.4472 0.8047

Remark 7. To compute the new control input u;41(t), the original algorithm (6) requires one multiplication
operation and one addition operation, and the proposed algorithm (8) requires four multiplication operations and
four addition operations. With the current powerful computational capabilities, the added operations of the al-
gorithm (8) compared to the algorithm (6) do not take much computational time. Furthermore, the closed-loop
system has a faster convergence speed under the algorithm (8), and thus the same tracking precision can be achieved
with fewer iterations. Therefore, the presented ILC algorithm could exhibit better performance.

6 Numerical simulation

To convincingly illustrate the distinctive advantages of our presented control algorithm (8), three simulation exam-
ples are provided.
Example 1. Consider the following repetitive system that has been investigated in [39]

0.50 0 1.00 0
zi(t+1)=1] 0.15 030 0 zi(t)+ | 0 | ui(t),
~0.75 0.25 —0.25 1.00 (59)
yi(®) = [ 00 1.00 | @ (0).
In [39], the control algorithm applied to (59) is
wit1(t) = wi(t) + 0.5e;(t +1). (60)
The desired output is set to be
ya(t) = sin(27t/50) + sin(27t /5) + sin(507tt).
Based on the control algorithm (60), the proposed novel algorithm with the parameter + is
wip1(t) = y[ui(t) + 0.5e;(t + 1)] + (1 — v)[wi—1(t) + 0.5e;_1(t + 1)]. (61)

In the simulation, set the duration of each iteration to be N = 50 and set the number of iterations to be 180.
Moreover, the initial values of the variables are set to be z;(0) = [0,0,0]T,i € I[1,180] and u4(t) = 0,¢ € 1[0, 50].
For this example, LCB = 0.5. According to Theorem 5, the optimal tuning parameter v is 1.1716. Define the root
mean square of the tracking error along the iterative axis as

When the control algorithm (61) with different tuning parameters is applied to the system (59), the curves of
log,o ER are given in Figure 1 and the comparison results of the convergence performance are summarized in
Table 1. It is observed from Figure 1 and Table 1 that the tracking error under the proposed control algorithm (61)
with proper parameters (e.g., v = 1.05 and v = 1.4) has a faster convergence speed compared to that under
the original algorithm (60) (i.e., v = 1) and the tracking error achieves the fastest convergence speed when the
tuning parameter is taken as v = 1.1716. Therefore, the presented control algorithm is effective in improving the
convergence speed of the tracking error.

In addition, in order to illustrate the advantage of the proposed ILC algorithm, four existing ILC algorithms
are also applied to this example system. These four algorithms are the proportional-type ILC algorithm in [8]
(Algorithm 1)
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Figure 1 (Color online) Curves of the tracking error under the con- Figure 2 (Color online) Curves of the tracking error under different
trol algorithm (61) with different tuning parameters. ILC algorithms.

the ILC algorithm with a time-varying learning gain in [10] (Algorithm 2)
wig1(t) = ui(t) +e " Le;(t + 1), (63)
the derivative-type ILC algorithm in [48] (Algorithm 3)
ir1 (t) = wi(t) + Le;(t+ 1) — ei(t)), (64)
and the ILC algorithm with a fractional power update rule in [34] (Algorithm 4)
wit1(t) = wi(t) + Lle;(t + 1)|*sgn(e;(t + 1)). (65)

For the sake of fairness, the parameters in (62)—(65) are adjusted such that the tracking errors in the corresponding
closed-loop systems achieve the fastest convergence speed. Specifically, in (62), L = 0.5; in (63), L = 0.5 and
a =0.002; in (64), L = 0.5; in (65), L = 0.5 and o = 1.01; and in (61), L = 0.5 and v = 1.1716. The curves of root
mean square of the tracking error log;y ER vs. the number of iterations are shown in Figure 2. It is clearly seen
that the tracking error under the algorithm (61) in this paper possesses the fastest convergence speed.

Example 2. Consider the following repetitive linear SISO system

0.1 0 0 -2
J,'i(t + 1) = 0 0.1 0 {Ei(f) + 0 ui(t),
—0.04 —0.2 —1.8 0.4 (66)
yilt) = {0.04 0.2 0} (1)
The desired output is set to be
yd(t) -1 670.2(1571)'
For this example, CB = —0.08. When the original ILC algorithm (6) with L = —30
ui+1(t) = ul(t) — 306i(t + 1) (67)

is applied to the system (66), there holds LCB = 2.4 > 2. Therefore, the tracking error of the closed-loop system
consisting of (66) and (67) is not convergent. Now, the following control algorithm with a tuning parameter -y

is applied to the system (66). According to Theorem 2, if the tracking error is convergent, then the parameter
satisfies v € (0.2857,1.7142). Further, by Theorem 6, when this tuning parameter is chosen to be v = 0.7846, the
tracking error achieves the fastest convergence speed.
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Figure 3 Curve of the root mean square of the tracking error of the Figure 4 (Color online) Curve of the root mean square of the track-
system (66) under the algorithm (67). ing error of the system (66) under the algorithm (68) with v = 0.7846.

In the simulation, the duration of each iteration is set to be N = 50 and the number of iterations is set to be 80.
In addition, the initial values are set to be x;(0) = [0,0,0]T,i € I]1,80] and u;(¢) = 0,¢ € 1[0, 50]. For the system
composed of (66) and the algorithm (67), the curve of the root mean square of the tracking error vs. the number
of iterations is given in Figure 3. Obviously, the tracking error is divergent. For the system composed of (66) and
the algorithm (68) with v = 0.7846, the result is depicted in Figure 4. Clearly, the tracking error is convergent.
According to Figures 3 and 4, even though the tracking error of this example cannot be made to converge under
the ILC algorithm (67), it can be controlled to be convergent under the ILC algorithm (68) by selecting a proper
tuning parameter.

Example 3. Consider the following car suspension system, which has been studied in [49, 50]

0.2779 —0.006738 1
zi(t+1) = l ]ffi(t)'i‘ l

] ui(t),

1 0 0 (69)
yi(t) = [0.03052 0.005925} x;(t).
The desired output is set to be
—20(t/40)7 + 70(t/40)5 — 84(t/40)° + 35(t/40)*, ¢ € 1[0, 39],
valt) = {1, t € 1[40, 100].
In [50], the control algorithm applied to (69) is
wit1(t) = wi(t) +9.5e;(t +1). (70)
In this paper, the proposed algorithm with a tuning parameter ~ is
wip1(t) = y[ui(t) + 9.5ei(t + 1)] + (1 — v)[wi—1(t) + 9.5e;_1(t + 1)]. (71)

In the simulation, the duration of each iteration is set to be N = 100 and the number of iterations is set to be
100. In addition, the initial conditions for the system state and the control input are x;(0) = [0,0]T,i € I[1,100]
and ui(t) = 0,t € I[0,100]. For this example, LC'B = 0.2899 and the optimal parameter ~ is calculated as 1.3000
according to Theorem 5. When the algorithm (70) and the algorithm (71) with v = 1.3000 are applied to the
system (69), the root mean square of the tracking error ER and log;, ER are shown in Figures 5 and 6, respectively.
It is observed that the convergence of the tracking error under the proposed algorithm (71) with v = 1.3000 is faster
than that under the algorithm (70).
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Figure 5 (Color online) Curves of ER of the system (69) under the Figure 6 (Color online) Curves of log,, ER of the system (69) under
algorithms (70) and (71). the algorithms (70) and (71).

7 Conclusion

In the current paper, a novel ILC algorithm is presented for repetitive discrete-time state-space linear SISO systems
by the method of parameter introduction, and the information of the control inputs and the tracking errors in the
historical two iterations is used. Further, the convergence property of the tracking error under the presented ILC
algorithm is analyzed. For this end, the relation among the iteration errors of the state variable and the control
input is derived in the matrix-vector form, and further the iterative sequence of the tracking error is obtained. With
such a relation as the basis, a convergence condition of the tracking error under the presented control algorithm is
established in terms of the spectral radius of the iterative matrix. In addition, a necessary condition of the tuning
parameter is developed to guarantee the convergence of the tracking error. By transforming the spectral radius
of the iterative matrix into the roots of a quadratic equation, an easy-to-check condition is provided to choose an
appropriate tuning parameter such that the tracking error is convergent. Moreover, some explicit expressions are
also obtained for the optimal tuning parameter with which the tracking error of the system achieves the fastest
convergence speed under the corresponding ILC algorithm.
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