
SCIENCE CHINA
Information Sciences

March 2026, Vol. 69, Iss. 3, 132205:1–132205:13

https://doi.org/10.1007/s11432-024-4533-2

c© Science China Press 2026 info.scichina.com link.springer.com

. RESEARCH PAPER .

A quantized order estimator

Lida JING*

School of Artificial Intelligence, Shandong University, Jinan 250100, China

Received 15 June 2024/Revised 4 May 2025/Accepted 22 July 2025/Published online 14 January 2026

Abstract This paper considers the order estimation problem of stochastic autoregressive exogenous input (ARX) systems using quan-

tized data. Based on the least squares algorithm and inspired by the control systems information criterion (CIC), a new kind of criterion

and a new system order estimation algorithm are proposed for ARX systems with quantized data. When the upper bounds of the system

orders are known and the persistent excitation condition is satisfied, the system order estimates given by this algorithm are shown to be

consistent for a small quantization step. Furthermore, a concrete method is given for choosing quantization parameters to ensure that

the system order estimates are consistent. A numerical example is given to demonstrate the effectiveness of the theoretical results of the

paper.
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1 Introduction

System identification with quantized data is a challenging research topic [1,2]. In many cases, using quantized data
during the system identification process will bring quantization error, which increases the difficulty of analysis. Up
to now, a large number of identification methods with quantized data have been developed, including [1, 3–11],
to name a few. In particular, Ref. [1] proposed two different frameworks, namely, stochastic and deterministic
frameworks so as to identify systems. Ref. [3] researched the identification of multi-agent systems with quantized
observations. Ref. [4] gave some motivating examples of quantized measurements and introduced the methods
and algorithms of system identification for set-valued linear systems. Ref. [5] used a projection algorithm to
estimate parameters of quantized deterministic autoregressive moving average (DARMA) systems, and proved the
boundedness of parameter estimation error by designing system inputs. Refs. [6,7] solved the parameter estimation
problem of quantized DARMA systems and quantized stochastic autoregressive exogenous input (ARX) systems
with the help of the least squares, respectively. Ref. [8] concerned the system identification for FIR systems with
set-valued and precise data received from multiple sensors.

The system identification task for ARX systems consists of estimating (i) the orders, (ii) the parameters, and
(iii) the covariance matrix of system noise. However, the contributions listed above are all for parameter estimation
with quantized data. As for order estimation by using quantized data, it is a novel problem. Actually, order
estimation with quantized data plays a significant role in areas such as signal processing, control systems, and
communication systems, where measurements are often quantized for practical reasons (e.g., limited sensor resolution
or data storage constraints). And in sensor networks, estimating model orders from sensor data that have been
quantized can reduce transmission costs or storage space. Order estimation is a statistical method used to estimate
the values of orders within a statistical model based on observed data. This concept is important in numerous fields,
including statistics and system identification. Here are some key characteristics of order estimation. (i) Consistency.
The estimator converges to the true order value in some sense as the sample size increases. In other words, larger
samples lead to more accurate estimates. (ii) Robustness. Due to the positive integer order of the linear system
model, the algorithm should ensure convergence to the correct order even when the data are quantitative and
imprecise. (iii) Method of estimation. Order estimation algorithms are generally based on parameter estimation
algorithms, so there are high requirements for the structural design of the algorithm and the accuracy of parameter
estimation. Obviously, selecting the right model order is the first step for the goal of estimating system parameters.
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A number of classic order estimation techniques such as [12–20] have been made since about the 1970s. Specifically,
Akaike proposed a well-known criterion, Akaike’s information criterion (AIC) [12]. Ref. [13] proved that the final
prediction-error (FPE) criterion and AIC are asymptotically equivalent. Ref. [14] made some consistent studies
on the order estimation. Ref. [16] proposed an approach for model order determination based on the minimum
description length (MDL) criterion which is shown to depend on the minimum eigenvalues of a covariance matrix
derived from the observed data. Ref. [17] proved that a strongly consistent estimation of the order can be based
on the law of iterated logarithm for the partial autocorrelations. Ref. [18] established the asymptotic properties
under very general conditions. Ref. [19] got a consistent estimate of the order of feedback control systems with
system parameters estimated by the least squares method. Ref. [20] introduced a new criterion, control systems
information criterion (CIC), so as to estimate orders of the linear stochastic feedback control system. In recent
years, order estimation problems have received further attention in signal processing and other fields [21–23].

Considering the wide use of quantized data and the important value of order estimation, it is of significance to
study order estimation based on quantized data. The introduction of quantized data will produce quantization
error, which brings difficulties to order estimation. Using some conclusions of [7], an order estimation method of
ARX models with uniform quantized data is proposed. The order estimation algorithm in the paper is utilized in
the following process. First of all, the range of ARX system orders is selected (i.e., 0 6 p 6 pmax and 0 6 q 6 qmax,
where p is the order of the AR part and q is the order of the exogenous part). Then for each (p, q) pair the
parameters of the model are estimated by the least squares under the assumption that p and q are the right model
orders. Finally, a prediction error variance for the model is calculated by the proposed criterion and the (p, q) pair
yielding the lowest value is chosen as the best estimate of the model order. So, the key step of estimation lies in
two aspects: the design of a criterion for the order estimate algorithm as well as the choice of a quantization step.
In fact, they are complementary. During the order estimation algorithm designing progress, new difficulties arise
in dealing with the quantized data. For example, the robustness of the quantized parameter estimation algorithm
generated estimated errors, which affect the accuracies of traditional order estimation algorithms. By analyzing the
upper bound of the quantized parameter estimation, we gave the structure of the criterion in the algorithm design
phase, and this difficulty has been solved.

In contrast to the previous studies [3,5–8,14–20], the main contributions of this paper are summarized as follows.

• As mentioned earlier, order estimation is one component of system identification problems. However, to the
best of my knowledge, the existing papers on quantized system identification mainly focus on quantized parameter
estimation. The discussion about quantized order estimation is pretty rare. Actually, studies like [3,5–8] considered
quantized parameter estimation based on known system orders. Different from them, in this paper, we study the
quantized order estimation problem when the system orders and parameters are both unknown.

• Compared with classic papers [14–20] on order estimation based on accurate data, we study the order estimate
problem under uniform quantized observations. To be more concrete, one of the difficulties in designing an order
estimate algorithm is how to make full use of the roughness of quantized observations. Quantized data make the
structure of classic estimation algorithms more complex and the estimated parameter cannot converge to the real
value in many cases. By designing the criterion and using some hypotheses of system parameters and orders, the
quantized order estimation can converge to the real value in some sense.

• Different from [3,5,6], the model researched in this paper contains stochastic noise. So, the algorithm analysis
methods in the parameter estimation part of this note are quite different.

There are two main novelties here. One is the method of proving the excitation condition. To be more specific,
during studying the properties of the quantized criterion, we found that the excitation condition is the key to
getting the lower bound of the quantized criterion. So, in this note, we prove that the system satisfies the excitation
condition based on quantized data instead of assuming it. The other is the proposal of a quantized criterion. The
inaccuracy of parameter estimation based on uniform quantized data brings essential difficulties to order estimation.
To deal with the difficulties, we design a new kind of criterion, named the quantized criterion. And we focused on
exploring the upper and lower bounds of the quantized criterion, which are not necessary in the classical situation.

In this paper, R denotes the real number field. For a given vector or matrix x, x⊤ denotes the transpose of x; ||x||
denotes the Euclidean norm for the vector case and the corresponding induced norm for the matrix case. λmin ()
denotes the smallest eigenvalue of the matrix between round brackets. The rest of the paper is as follows. In Section
2, we describe the model. Section 3 shows the specific order estimation algorithm for the quantized ARX model,
and the influence of quantization error on the order estimation is analyzed. Section 4 uses a numerical example to
demonstrate the main result. Section 5 concludes this work.
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2 Model

Consider the following ARX system:

A(z)yn+1 = B(z)un + wn+1, n > 0, (1)

where yn, un, and wn are the system output, system input, and system noise. Besides, N(0, 1) indicates a Gaussian
distribution with zero mean and variance 1. The noise {wn} is a sequence of independent and identically distributed
(i.i.d.) random variables and wn ∼ N(0, 1). For simplicity, suppose yn = un = wn = 0, ∀n < 0.

A(z) = 1 + a1z + a2z
2 + · · ·+ ap0

zp0 , p0 > 0,

B(z) = b1 + b2z + · · ·+ bq0z
q0−1, q0 > 1,

where ai and bj are unknown system parameters. z is the shift-back operator and the orders p0, q0 are unknown.
ap0

6= 0, bq0 6= 0.

Remark 1. The system orders p0 and q0 are to be estimated in the note. The order of a discrete linear system is
determined by the number of input variables and output variables required to fully describe the system’s behavior.
It determines the complexity of the system’s behavior and the number of variables that should be considered when
modeling or controlling the system.

For the convenience of proving, the model (1) can be rewritten as follows:

yn+1 = θ⊤(p0, q0)ϕn(p0, q0) + wn+1, (2)

where

θ(p0, q0) = [−a1, · · · ,−ap0
, b1, · · · , bq0 ]⊤ ,

ϕn(p0, q0) = [yn, · · · , yn−p0+1, un, · · · , un−q0+1]
⊤
.

This paper considers the condition that the system output yn cannot be directly measured and only its quantized
value is known. We want to design an order estimation algorithm and analyze the influence of the quantization step
on order estimation.

For a given constant ε > 0 and any n = 0, 1, 2, ..., the quantized value of yn is from the following uniform
quantizer:

sn = ε

⌊
yn

ε
+

1

2

⌋

. (3)

We can call ε the quantization step and sn is the quantized output.

Remark 2. The more direct form of (3) is

sn =







...
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[
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From (2) and (3) we know that

sn+1 = θ⊤(p0, q0)ψn(p0, q0) + wn+1 + ǫn+1, (4)

where

ψn(p0, q0) = [sn, · · · , sn−p0+1, un, · · · , un−q0+1]
⊤
, (5)

and ǫn+1 is the quantization noise at time n+1, which is produced by quantized outputs and its concrete property
is as follows.

From (2) and (4) we know that

|ǫn+1| =
∣
∣sn+1 − θ⊤(p0, q0)ψn(p0, q0)− wn+1

∣
∣

=
∣
∣sn+1 − θ⊤(p0, q0)ψn(p0, q0)−

(
yn+1 − θ⊤(p0, q0)ϕn(p0, q0)

)∣
∣

=
∣
∣sn+1 − yn+1 + θ⊤(p0, q0) (ϕn(p0, q0)− ψn(p0, q0))

∣
∣

6 |sn+1 − yn+1|+
∣
∣θ⊤(p0, q0) (ϕn(p0, q0)− ψn(p0, q0))

∣
∣

6
ε

2
+
ε

2
(|a1|+ |a2|+ · · ·+ |ap0

|)

=
ε

2
(|a1|+ |a2|+ · · ·+ |ap0

|+ 1) . (6)

So, we can assume ǫn is the bounded noise.

3 Order estimation of quantized ARX systems

The purpose of this paper is to estimate p0 and q0 in (4) using system inputs and quantized outputs. In this section,
we give the specific order estimate method and analyze its properties.

Let {

ψi(p, q) := [si, · · · , si−p+1, ui, · · · , ui−q+1]
⊤
,

Pn+1(p, q) :=
(
I +

∑n

i=0 ψi(p, q)ψ
⊤
i (p, q)

)−1
,

(7)

where si = ui = 0, when i 6 0. And let λ
(p,q)
min (n) denote the smallest eigenvalue of P−1

n+1(p, q).

3.1 Assumptions

In order to proceed the analysis, we introduce the following assumptions.

Assumption 1. {ui} is a sequence of independent and identically distributed (i.i.d.) random variables and ui
satisfies uniform distribution in [−δ, δ], δ > 0.

Assumption 2. A(z) is stable, i.e., A(z) 6= 0, ∀|z| 6 1.

Assumption 3. There exists a constant c > 0 such that |ai| 6 c, |bj| 6 c, i = 1, ..., p0, j = 1, ..., q0, and
ε < 1

2(1+p0c)
.

Assumption 4. {p0, q0} belongs to a known finite set M :

M , {(p, q) : 0 6 p 6 p∗, 0 6 q 6 q∗} ,
where p∗ > 0, q∗ > 0.

Assumption 5. There exists a constant c1 > 0 such that

λ
(p,q∗)
min (n) > c1 (n+ 1) , a.s., n→ ∞,

for all 0 6 p 6 p∗.

Assumption 6. There exists a constant c2 > 0 such that

λ
(p∗,q)
min (n) > c2 (n+ 1) , a.s., n→ ∞,

for all 0 6 q 6 q∗.

Remark 3. Assumption 1 means system inputs {ui} are bounded and satisfy a uniform distribution. Assumptions
2 and 4 are common in classic system identification literature. Assumption 3 is always used in quantized identifi-
cation. Assumptions 5 and 6 mean persistent excitation condition can be satisfied and they are pretty important
to the proof of the theorem in the paper.
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3.2 Examples about the assumptions

We use one example to explain the existence of Assumptions 5 and 6 in a specific situation.
Consider the system: A(z)yn+1 = B(z)un + wn+1, where A(z) = 1 + 0.7z + 0.1z2, B(z) = 1, p0 = 2, q0 = 1. We

assume that p∗ = 3, q∗ = 2. {yn} is quantized by (5).

For any x ∈ R
p+q, ||x|| = 1, write x in the form x = [x1, x2, · · · , xp+q ]

⊤
and let

φi(p, q) = A(z)ψi(p, q). (8)

From (8) it can be seen that

x⊤

(
n∑

i=0

φi(p, q)φ
⊤
i (p, q)

)

x =

n∑

i=0

(
x⊤φi(p, q)

)2

=

n∑

i=0





2∑

j=0

ajx
⊤ψi−j(p, q)





2

6

2∑

j=0

a2j

n∑

i=0

2∑

j=0

(
x⊤ψi−j(p, q)

)2

63

2∑

j=0

a2jx
⊤

(
n∑

i=0

ψi(p, q)ψ
⊤
i (p, q)

)

x

=4.5x⊤

(
n∑

i=0

ψi(p, q)ψ
⊤
i (p, q)

)

x, (9)

where a0 = 1, a1 = 0.7, a2 = 0.1. So we have

λ
(p,q)
min (n) > λmin

(
n∑

i=0

ψi(p, q)ψ
⊤
i (p, q)

)

>
2

9
λmin

(
n∑

i=0

φi(p, q)φ
⊤
i (p, q)

)

. (10)

Example 1. We give the analyses of λ
(p,2)
min (n), 0 6 p 6 3 and λ

(3,q)
min (n), 0 6 q 6 2.

When p = 0, q = 2,

λmin

(
n∑

i=0

φi(0, 2)φ
⊤
i (0, 2)

)

= inf ||x||=1x
⊤

(
n∑

i=0

φi(0, 2)φ
⊤
i (0, 2)

)

x

= inf ||x||=1

n∑

i=0

[x1ui + (0.7x1 + x2)ui−1 + (0.1x1 + 0.7x2)ui−2 + 0.1x2ui−3]
2
.

When p = 1, q = 2,

λmin

(
n∑

i=0

φi(1, 2)φ
⊤
i (1, 2)

)

= inf ||x||=1x
⊤

(
n∑

i=0

φi(1, 2)φ
⊤
i (1, 2)

)

x

= inf ||x||=1

n∑

i=0

[x2ui + (x1 + 0.7x2 + x3)ui−1 + (0.1x2 + 0.7x3) ui−2 + 0.1x3ui−3 + x1wi + x1ǫi]
2
.

When p = 2, q = 2,

λmin

(
n∑

i=0

φi(2, 2)φ
⊤
i (2, 2)

)
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= inf ||x||=1x
⊤

(
n∑

i=0

φi(2, 2)φ
⊤
i (2, 2)

)

x

= inf ||x||=1

n∑

i=0

[x3ui + (x1 + 0.7x3 + x4)ui−1 + (x2 + 0.1x3 + 0.7x4) ui−2 + 0.1x4ui−3

+x1wi + x2wi−1 + x1ǫi + x2ǫi−1]
2
.

When p = 3, q = 2,

λmin

(
n∑

i=0

φi(3, 2)φ
⊤
i (3, 2)

)

= inf ||x||=1x
⊤

(
n∑

i=0

φi(3, 2)φ
⊤
i (3, 2)

)

x

= inf ||x||=1

n∑

i=0

[x4ui + (x1 + 0.7x4 + x5)ui−1 + (x2 + 0.1x4 + 0.7x5)ui−2 + (x3 + 0.1x5)ui−3

+x1wi + x2wi−1 + x3wi−2 + x1ǫi + x2ǫi−1 + x3ǫi−2]
2
.

When p = 3, q = 0,

λmin

(
n∑

i=0

φi(3, 0)φ
⊤
i (3, 0)

)

= inf ||x||=1x
⊤

(
n∑

i=0

φi(3, 0)φ
⊤
i (3, 0)

)

x

= inf ||x||=1

n∑

i=0

[x1ui−1 + x2ui−2 + x3ui−3 + x1wi + x1ǫi + x2wi−1 + x2ǫi−1 + x3wi−2 + x3ǫi−2]
2
.

When p = 3, q = 1,

λmin

(
n∑

i=0

φi(3, 1)φ
⊤
i (3, 1)

)

= inf ||x||=1x
⊤

(
n∑

i=0

φi(3, 1)φ
⊤
i (3, 1)

)

x

= inf ||x||=1

n∑

i=0

[x4ui + (x1 + 0.7x4)ui−1 + (x2 + 0.1x4)ui−2 + x3ui−3 + x1wi + x1ǫi + x2wi−1

+x2ǫi−1 + x3wi−2 + x3ǫi−2]
2
.

It can be seen that in each case, the coefficients of ui, ui−1, ui−2, ui−3, wi, wi−1, wi−2 are not all 0. So, from
(10) and [7] (confer (16), Lemma 1), we know that Assumptions 5 and 6 can be satisfied.

3.3 The estimation of p0

In this section, we will prove the convergence of the estimate of p0.
First, we give the analyses of the matrix composed of quantized regressor vectors.

Lemma 1. Suppose Assumptions 1 and 2 are satisfied. Then, as n→ ∞, there is a constant c3 > 0 such that

λ(p0,q
∗)

max (n) 6 c3 (n+ 1) , a.s., (11)

where λ
(p0,q

∗)
max (n) denotes the largest eigenvalue of

∑n

i=0 ψi(p0, q
∗)ψ⊤

i (p0, q
∗) + I.

Proof. The proof can be seen in Appendix A.
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For (p, q) ∈M , define the cost function

Jn(θ) :=

n∑

i=0

(
si+1 − θ̄⊤(p, q)ψi(p, q)

)2
, (12)

where

θ̄(p, q) = [−a1, · · · ,−ap, b1, · · · , bq]⊤ (13)

and

ai = 0, bj = 0, i > p0, j > q0. (14)

Let (12) be minimized by the least squares with respect to the parameters θ̄(p, q).
Based on the regularized method, the estimation of θ̄(p, q) can be defined as

θn(p, q) :=

(
n−1∑

i=0

ψi(p, q)ψ
⊤
i (p, q) + I

)−1 n−1∑

i=0

ψi(p, q)si+1 = Pn(p, q)

n−1∑

i=0

ψi(p, q)si+1, (15)

where

θn(p, q) = [−a1n, · · · ,−apn, b1n, · · · , bqn]⊤ . (16)

Lemma 2. Suppose Assumptions 1–5 are satisfied. Then as n→ ∞,

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(
n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗) + I

)− 1

2 n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

6 (1 + p0c) εn+ o (n) , a.s. (17)

Proof. The proof can be seen in Appendix B.
Next, we show the properties of parameter estimation error.

Lemma 3. Suppose Assumptions 1–5 are satisfied under the condition p 6 p0, and define

θ̂n(p) := [−a1n(p), · · · ,−apn(p), 0, · · · , 0
︸ ︷︷ ︸

p0−p

, b1n(p), · · · , bq∗n(p)]⊤, (18)

where ain(p), bin(p) are of θn(p, q
∗).

Let

θ̃n(p) = θ̄(p0, q
∗)− θ̂n(p). (19)

Then as n→ ∞, there is a constant γ such that
∣
∣
∣

∣
∣
∣θ̃n(p)

∣
∣
∣

∣
∣
∣ 6 γ, a.s. (20)

Proof. The proof can be seen in Appendix C.
Then, we give the form of the quantized criterion Ln(p, q) and the order estimation algorithm.
Let

Ln(p, q) := σn(p, q) + ln · (p+ q) , (21)

where

σn(p, q) =

n−1∑

i=0

(
si+1 − θ⊤n (p, q)ψi(p, q)

)2
, (22)

and the restrictions of ln will be given later.
The order estimation p̂n of p0 is defined as

p̂n := argmin06p6p∗Ln(p, q
∗). (23)

Now, we give the upper bound of σn(p0, q
∗) in the following lemma.
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Lemma 4. Suppose Assumptions 1–5 are satisfied, then as n→ ∞,

σn(p0, q
∗) 6 3 (1 + p0c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2 + o (n) , a.s. (24)

Proof. From (4), (5), (7), (13), (14), (22) we have

σn(p0, q
∗) =

n−1∑

i=0

(
θ̄⊤(p0, q

∗)ψi(p0, q
∗) + wi+1 + ǫi+1 − θ⊤n (p0, q

∗)ψi(p0, q
∗)
)2
. (25)

So,

σn(p0, q
∗) =

n−1∑

i=0

(

θ̃⊤n (p0, q
∗)ψi(p0, q

∗) + wi+1 + ǫi+1

)2

=θ̃⊤n (p0, q
∗)

n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗)θ̃n(p0, q

∗) + 2θ̃⊤n (p0, q
∗)

n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

+

n−1∑

i=0

(wi+1 + ǫi+1)
2
. (26)

From Theorem 1 of [7] we get

θ̃⊤n (p0, q
∗)

n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗)θ̃n(p0, q

∗) 6 (1 + p0c) εn+ o (n) , a.s., (27)

and

2

∣
∣
∣
∣
∣
θ̃⊤n (p0, q

∗)
n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

∣
∣
∣
∣
∣

= 2
∣
∣
∣θ̃

⊤
n (p0, q

∗)
(

θ̄(p0, q
∗)− P−1

n (p0, q
∗)θ̃n(p0, q

∗)
)∣
∣
∣

6 2
∣
∣
∣θ̃⊤n (p0, q

∗)θ̄(p0, q
∗)
∣
∣
∣+ 2θ̃⊤n (p0, q

∗)P−1
n (p0, q

∗)θ̃n(p0, q
∗)

6 2 (1 + p0c) εn+ o (n) , a.s. (28)

From (26)–(28) we obtain

σn(p0, q
∗) 6 3 (1 + p0c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2
+ o (n) , a.s. (29)

This completes the proof.
Based on the above lemmas, we can get the main theoretical result of the paper.

Theorem 1. Supposing Assumptions 1–5 are satisfied and ln satisfies

ln > [5 (1 + p∗c) ε+ α1]n, α1 > 0, (30)

and

ln 6
α2

p∗

[

a2p0
c1 − 2γ

√

c3 (1 + p∗c) ε− 3 (1 + p∗c) ε
]

n, 0 < α2 < 1, (31)

then

p̂n −−−−→
n→∞

p0, a.s. (32)
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Proof. First, we want to prove

lim sup
n→∞

p̂n 6 p0, a.s. (33)

For p > p0, similar with (28) we have

2

∣
∣
∣
∣
∣
θ̃⊤n (p, q

∗)

n−1∑

i=0

ψi(p, q
∗) (wi+1 + ǫi+1)

∣
∣
∣
∣
∣
6 2 (1 + p∗c) εn+ o (n) , a.s. (34)

Similar with (26) we have

σn(p, q
∗) =θ̃⊤n (p, q

∗)

n−1∑

i=0

ψi(p, q
∗)ψ⊤

i (p, q
∗)θ̃n(p, q

∗) + 2θ̃⊤n (p, q
∗)

n−1∑

i=0

ψi(p, q
∗) (wi+1 + ǫi+1)

+

n−1∑

i=0

(wi+1 + ǫi+1)
2
. (35)

From (34) and (35) we have

σn(p, q
∗) >2θ̃⊤n (p, q

∗)

n−1∑

i=0

ψi(p, q
∗) (wi+1 + ǫi+1) +

n−1∑

i=0

(wi+1 + ǫi+1)
2

>− 2 (1 + p∗c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2
+ o (n) , a.s. (36)

From (36) and Lemma 4 we have

σn(p, q
∗)− σn(p0, q

∗) > −2 (1 + p∗c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2
+ o (n)

−
[

3 (1 + p0c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2
+ o (n)

]

> −5 (1 + p∗c) εn+ o (n) , a.s. (37)

From (30) it can be seen that

ln · (p− p0) > ln > [5 (1 + p∗c) ε+ α1] . (38)

From (21), (37), (38) and noticing α1 > 0, we have

minp0<p6p∗ [Ln(p, q
∗)− Ln(p0, q

∗)] >− 5 (1 + p∗c) εn+ ln · (p− p0) + o (n)

>− 5 (1 + p∗c) εn+ [5 (1 + p∗c) ε+ α1]n+ o (n)

>α1n+ o (n) −−−−→
n→∞

∞, a.s. (39)

So, Eq. (33) is proven.
Next, we want to prove

lim inf
n→∞

p̂n > p0, a.s. (40)

For p < p0, from (4), (5), (7), (13), (14), (16), (18), (19) we have

si+1 − θ⊤n (p, q
∗)ψi(p, q

∗) =si+1 − θ̂⊤n (p)ψi(p0, q
∗)

=θ̄⊤(p0, q
∗)ψi(p0, q

∗) + wi+1 + ǫi+1 − θ̂⊤n (p)ψi(p0, q
∗)

=θ̃⊤n (p)ψi(p0, q
∗) + wi+1 + ǫi+1. (41)
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From (22) and (41) we have

σn(p, q
∗) =

n−1∑

i=0

(
si+1 − θ⊤n (p, q

∗)ψi(p, q
∗)
)2

=
n−1∑

i=0

(

θ̃⊤n (p)ψi(p0, q
∗) + wi+1 + ǫi+1

)2

=θ̃⊤n (p)
n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗)θ̃n(p) + 2θ̃⊤n (p)

n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

+
n−1∑

i=0

(wi+1 + ǫi+1)
2
. (42)

From (13), (18), and (19) we get

∣
∣
∣

∣
∣
∣θ̃⊤n (p)

∣
∣
∣

∣
∣
∣

2

> a2p0
> 0. (43)

From (20), (43) and Assumption 5 we have

θ̃⊤n (p)

n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗)θ̃n(p) =θ̃

⊤
n (p)

(
n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗) + I − I

)

θ̃n(p)

>a2p0
λ
(p0,q

∗)
min (n− 1)−

∣
∣
∣

∣
∣
∣θ̃n(p)

∣
∣
∣

∣
∣
∣

2

>a2p0
c1n− γ2, (44)

2θ̃⊤n (p)
n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

= 2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

θ̃⊤n (p)

(
n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗) + I

) 1

2
(

n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗) + I

)− 1

2

·
n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
. (45)

From Lemmas 1–3 and (45) we have

2θ̃⊤n (p)
n−1∑

i=0

ψi(p0, q
∗) (wi+1 + ǫi+1)

6 2
∣
∣
∣

∣
∣
∣θ̃⊤n (p)

∣
∣
∣

∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(
n−1∑

i=0

ψi(p0, q
∗)ψ⊤

i (p0, q
∗) + I

) 1

2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

√

(1 + p0c) εn+ o (n)

6 2γ

√

λ
(p0,q∗)
max (n− 1)

√

(1 + p0c) εn+ o (n)

6 2γ
√
c3n
√

(1 + p0c) εn+ o (n)

= 2γ
√

c3 (1 + p0c) ε+ c3o (1)n

6 2γ
√

c3 (1 + p0c) εn+ o (n) . (46)

From (42), (44) and (46) it follows that

σn(p, q
∗) > a2p0

c1n− 2γ
√

c3 (1 + p0c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2
+ o (n) . (47)
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From (47) and Lemma 4 we have

σn(p, q
∗)− σn(p0, q

∗)

> a2p0
c1n− 2γ

√

c3 (1 + p0c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2 −

[

3 (1 + p0c) εn+

n−1∑

i=0

(wi+1 + ǫi+1)
2
+ o (n)

]

+ o (n)

= a2p0
c1n− 2γ

√

c3 (1 + p0c) εn− 3 (1 + p0c) εn+ o (n)

> a2p0
c1n− 2γ

√

c3 (1 + p∗c) εn− 3 (1 + p∗c) εn+ o (n) , a.s. (48)

From (31) it can be seen that

ln · (p0 − p) 6
α2

p∗

[

a2p0
c1 − 2γ

√

c3 (1 + p∗c) ε− 3 (1 + p∗c) ε
]

np∗

=α2

[

a2p0
c1 − 2γ

√

c3 (1 + p∗c) ε− 3 (1 + p∗c) ε
]

n. (49)

From (21), (48), (49) and noticing 0 < α2 < 1, we have

min06p<p0
[Ln(p, q

∗)− Ln(p0, q
∗)]

> a2p0
c1n− 2γ

√

c3 (1 + p∗c) εn− 3 (1 + p∗c) εn+ o (n)− ln · (p0 − p)

> a2p0
c1n− 2γ

√

c3 (1 + p∗c) εn− 3 (1 + p∗c) εn+ o (n)− α2

[

a2p0
c1 − 2γ

√

c3 (1 + p∗c) ε− 3 (1 + p∗c) ε
]

n

= (1− α2)
[

a2p0
c1 − 2γ

√

c3 (1 + p∗c) ε− 3 (1 + p∗c) ε
]

n+ o (n) −−−−→
n→∞

∞, a.s.

So, Eq. (40) is proven.
From (33) and (40) we know that

p̂n −−−−→
n→∞

p0, a.s. (50)

This completes the proof.

3.4 The estimation of q0

The quantized criterion Vn(p, q) can be defined as

Vn(p, q) := σn(p, q) + vn· (p+ q) , (51)

where σn(p, q) is defined in (22) and the restrictions of vn will be given later.
The order estimation q̂n of q0 is defined as

q̂n := argmin06q6q∗Vn(p
∗, q). (52)

Theorem 2. Supposing Assumptions 1–4 and 6 are satisfied and vn satisfies

vn > [5 (1 + p∗c) ε+ β1]n, β1 > 0 (53)

and

vn 6
β2

q∗

[

b2q0c2 − 2γ′
√

c4 (1 + p∗c) ε− 3 (1 + p∗c) ε
]

n, 0 < β2 < 1, (54)

then

q̂n −−−−→
n→∞

q0, a.s. (55)

Proof. The proof is similar to Theorem 1.
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Figure 1 (Color online) The trajectory of p̂n with p∗ = 3, q∗ = 3. Figure 2 (Color online) The trajectory of p̂n with p∗ = 6, q∗ = 6.

Remark 4. By choosing suitable ε, α1, α2, β1 and β2 it can be made sure that

[

5 (1 + p∗c) ε+ α1,
α2

p∗

(

a2p0
c1 − 2γ

√

c3 (1 + p∗c) ε− 3 (1 + p∗c) ε
) ]

and

[

5 (1 + p∗c) ε+ β1,
β2

q∗

(

b2q0c2 − 2γ′
√

c4 (1 + p∗c) ε− 3 (1 + p∗c) ε
) ]

are not empty sets. So, Eqs. (30), (31), (53) and (54) are meaningful.

4 Numerical example

In this section, we will illustrate the theoretical result with a simulation example.

Consider the following ARX system: yn = a1yn−1 + a2yn−2 + a3yn−3 + b1un−1 + b2un−2 +wn, n = 1, 2, ..., where

the system noise wn follows N(0, 1), p0 = 3, q0 = 2. θ = [a1, a2, a3, b1, b2]
⊤
= [−1.5,−0.66,−0.08, 1, 1]

⊤
. Let yn be

quantized by (3) under ε = 0.001, p∗ = 3, q∗ = 3 and p∗ = 6, q∗ = 6, respectively.

With the selected p (p 6 p∗) and q (q 6 q∗), we use Algorithm 1 to estimate p0 and q0.

Algorithm 1 The estimate of p0 and q0.

Input: ui.

Output: p̂n and q̂n.

1: Compute θn(p, q) according to (15);

2: Compute σn(p, q) according to (22);

3: Compute Ln(p, q) according to (21);

4: Compute Vn(p, q) according to (51);

5: Compute p̂n according to (23);

6: Compute q̂n according to (52).

From this estimate of θn, we use (23) to estimate p0, where ui satisfies uniform distribution in [−6, 6] (δ = 6).
From (30) and (31), let ln = 0.006n. The trajectories of p̂n are given by Figures 1 and 2.

From this estimate of θn, we use (52) to estimate q0, where ui satisfies uniform distribution in [−1, 1] (δ = 1).
From (53) and (54), let vn = 0.006n. The trajectories of q̂n are given by Figures 3 and 4.

From Figures 1–4, we can learn that the estimate p̂n converges to the true value p0 and the estimate q̂n converges
to the true value q0. The convergence rates of p̂n and q̂n are affected by the bounds p∗ and q∗. To be more concrete,
the larger the bounds, the slower the convergence rates of p̂n and q̂n.
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Figure 3 (Color online) The trajectory of q̂n with p∗ = 3, q∗ = 3. Figure 4 (Color online) The trajectory of q̂n with p∗ = 6, q∗ = 6.

5 Conclusion

This paper has considered the order estimation of ARX systems using uniform quantized data. We design a novel
criterion so as to estimate orders based on the persistent excitation condition and some assumptions. Obviously,
Ref. [7] provided ideas for this paper and the least squares method is the key to the algorithm of this paper. It
is shown that the estimated order is consistent. For further research, the conditions on the system itself may be
relaxed by finding other suitable criteria. Another topic is how to reduce the amount of calculation. The methods
proposed by [24] may be useful to solve such a problem.
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