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Appendix A Proof of Lemma 1
From Assumptions 1, 2, Lemma B.3.3. of [1] (Page 486) and law of large numbers, we know that there exists a positive constant ĉ

such that lim
n→∞
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So, from (3), (7) and Assumption 1, we know that
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So, as n→∞, there exists a constant c3 > 0 such that
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Let c3 = 2p0ĉ+
p0ε2

2 + q∗δ2 + 1. This completes the proof.

Appendix B Proof of Lemma 2
From (13) and (14) we know that
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and from (4), (5), (7), (13) and (B1) it can be seen that
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From (15) we know that
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From (15) and (B2) the estimated parameter error can be written as
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So,
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From Assumption 5 we know that
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So, from (B5)-(B7) and Theorem 1 of [2] it can be seen that∣∣∣∣∣∣∣
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where c′ is a constant, and its definition can be found in Theorem 1 of [2]. This completes the proof.
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in (B8) is similar with that in Theorem

1 of [2]. To be more concrete, from (13) and (14), we just need to treat 0 in (13) as parameters to be estimated.

Appendix C Proof of Lemma 3
From (15) we get
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From Assumption 5 it can be seen that ∣∣∣∣∣∣
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By (C2), (C3) and Assumptions 1, 2 it can be seen that ||θn(p, q∗)|| is bounded (a.s.).

From (13), (14) and Assumption 3 we know that
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This completes the proof.
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