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Appendix A Proof of Lemma 1
From Assumptions 1, 2, Lemma B.3.3. of [1] (Page 486) and law of large numbers, we know that there exists a positive constant ¢
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So, from (3), (7) and Assumption 1, we know that
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So, as n — oo, there exists a constant cg > 0 such that
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Let c3 = 2po¢ + EO;— + ¢*62 + 1. This completes the proof.
Appendix B Proof of Lemma 2
From (13) and (14) we know that
BP0, a") = [—a1,-  —apg, b1+ sbags 0y 0] T, (B1)
and from (4), (5), (7), (13) and (B1) it can be seen that
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From (15) we know that
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From (15) and (B2) the estimated parameter error can be written as
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So,
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From (7) we have
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From Assumption 5 we know that
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So, from (B5)-(B7) and Theorem 1 of [2] it can be seen that
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where ¢’ is a constant, and its definition can be found in Theorem 1 of [2]. This completes the proof.
Remark 1. 20, (po, ") P, (po, 4" )0n (po, ") < '+ (1 + poc) en+O <log )\ffg)ﬂ*)(n - 1)) in (B8) is similar with that in Theorem

1 of [2]. To be more concrete, from (13) and (14), we just need to treat 0 in (13) as parameters to be estimated.

Appendix C Proof of Lemma 3
From (15) we get
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From Assumption 5 it can be seen that
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By (C2), (C3) and Assumptions 1, 2 it can be seen that ||0, (p, ¢*)|| is bounded (a.s.).
From (13), (14) and Assumption 3 we know that Hg(po, q*)H is bounded.
So, there is a constant « such that
|62 )| = | |60, a") = 60 )| < 1160, a)]| + |02 @)|| = 180, a*)] + [[0n(p:a")]| < 7, a-s. (c4)

This completes the proof.
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