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Abstract This paper tackles the challenge of achieving non-trivial consensus control on directed signed networks. Although (interval)

bipartite consensus and trivial consensus are convergence states on signed networks that have been extensively studied, non-trivial

consensus represents a novel convergence state that has not been fully explored yet. In order to drive group states on a directed signed

network to reach non-trivial consensus, a control technique based on linear system theory and our graph decomposition framework

is proposed. Our technique operates under mild connectivity conditions and does not impose restrictions on whether the network is

structurally balanced or unbalanced. Moreover, the consensus value can be preset arbitrarily as required. Based on matrix perturbation

theory, the impact of the antagonistic interactions on the non-trivial consensus speed in signed networks with external control is further

studied. Numerical simulations validate the effectiveness of our approach and theoretical framework. The work in this paper demonstrates

that a group with coopetitive (cooperative-competitive) interactions under control can achieve consensus, which was previously considered

exclusive to fully cooperative groups.
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1 Introduction

With the rapid development of automatic control and wireless communication, multi-agent systems have emerged
as a focal point in the area of networked control and optimization. This field contains various research directions
including consensus [1,2], synchronization [3,4], and topology identification [5,6]. The study of consensus problems
holds significant practical importance in real-world scenarios, such as enabling distributed situation awareness in
unmanned aerial vehicle (UAV) swarm systems [7], optimizing control strategies for battery storage system in DC
shipboard microgrids [8], facilitating economic power dispatch in smart grids [9], and modeling opinion dynamics
in social networks [10,11]. Consensus control for multi-agent systems consisting of cooperative agents has attracted
much attention and achieved fruitful results [12–14]. These systems are typically characterized by unsigned graphs
with positive edge weights.

However, it is noteworthy that antagonistic interactions are prevalent in natural environment, unmanned aerial
vehicle systems, and social networks. Therefore, the study of consensus control for signed networks, where edge
weights can be negative, is of great significance. Previous studies have extensively explored the bipartite consensus
control for structurally balanced signed networks [15–18], as well as the stability (trivial consensus [19]) control for
structurally unbalanced signed networks [18]. Nevertheless, to the best of our knowledge, the challenge of non-trivial
consensus [19] control, specifically, to drive a group of coopetitive (cooperative-competitive) agents connected by a
directed signed graph to one desired non-zero consensus state, remains unsolved.

The structural balance property indicates that the agents in the system can be partitioned into two subgroups,
where interactions within each subgroup are cooperative, while interactions between the two subgroups are an-
tagonistic. A classic example of structural balance is observed in two-party political systems [20]. However, not
all relationships are necessarily balanced. In a complete, multi-relational social network of a society consisting of
the 300000 odd players of a massive multiplayer online game [21], different types of “signed triads” relationships—
including “+ + − triads” and “− − − triads” coexist. This makes it impossible to partition all the agents into
two opposing subgroups according to the principles of structural balance. Moreover, in insecure network environ-
ments, unbalanced communication topologies frequently emerge in bidirectional formation of unmanned vehicles

*Corresponding author (email: xqwu@whu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4536-0&domain=pdf&date_stamp=2025-10-27
https://doi.org/10.1007/s11432-024-4536-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4536-0
https://doi.org/10.1007/s11432-024-4536-0


Niu T M, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132203:2

and robots [22]. As studied in previous studies [10, 18, 23], the typical outcome for a structurally balanced signed
network is bipartite consensus, namely all agents converge to a consensus value that is the same for all agents
except for the sign. Conversely, for a structurally unbalanced signed network, the entire system eventually reaches
trivial consensus, i.e., all agents’ states converge to zero. From the perspective of opinion dynamics, the above
outcomes suggest that the entire group splits into two camps with completely opposite opinions on a structurally
balanced network, while on a structurally unbalanced network, all agents become indifferent to the topic in the
end. Consequently, an intriguing question arises from the aforementioned discussion. Can a group of agents within
a directed signed network reach a non-zero consensus state that is not only identical in value but also in sign,
through the application of external controls, regardless of whether this signed network is structurally balanced or
not? Furthermore, how can a controller be designed to facilitate the convergence of these agents towards a shared
non-zero state, which can be preset arbitrarily as needed?

The practical significance of realizing non-trivial consensus on signed networks lies in both areas of unmanned
aerial vehicle networks and social networks. To be specific, consider the deliberate attack on the communication
channels of a group of cooperative unmanned aerial vehicles [24, 25]. Such an attack may bring new antagonistic
relationships, resulting in a coopetitive UAV network, whose interaction topology can be characterized by a signed
network. In this case, the original consensus states before the attack will be disrupted, and the states of all the
vehicles may converge to different values. By realizing non-trivial consensus control of signed networks, we propose
a theoretical scheme that brings such attacked UAV groups back to consensus, in other words, the disruption caused
by the attack is offset. Another research background comes from opinion manipulation problems in the area of social
networks [26–28]. Trust and mistrust relationships coexist in social networks, which commonly leads to opinion
separation among countries, political parties and opinionated individuals [10]. Studying non-trivial consensus on
signed networks gives rise to an opinion manipulation strategy, through which a group of agents that contains
mistrust relationships can be driven to follow one shared opinion in a unanimous way, rather than polarize or
become indifferent to the topics in the end.

Non-trivial consensus control on signed networks can be seen as an extension of traditional consensus control
in the field of multi-agent systems, moving from unsigned networks to the more complex case of signed networks.
Traditional consensus control [12–14] typically requires the network to be unsigned, a fundamental precondition.
However, the presence of negative edges in signed networks introduces significant challenges for achieving consensus.
In practical scenarios, negative edges represent antagonistic interactions in UAV groups or mistrust relationships in
social networks, both of which are clearly detrimental to consensus formation.

In [19], where the concept of non-trivial consensus for signed networks was proposed, non-trivial consensus can
only be established in the case of (essentially) cooperative network. In [16], which concerns undirected signed
networks, necessary and sufficient conditions for the non-trivial consensus control problem to be solvable were
derived. Nevertheless, this theoretical result does not provide specific controller design formulas, and requires the
network under investigation to be connected and structurally balanced.

Motivated by the preceding discussion, this article primarily focuses on the non-trivial consensus control problem
for directed signed networks, without restriction on the network property of structural balance or unbalance. Our
work fills the gap in the related research on consensus control of directed signed networks. The theoretical results
derived here can be applied to the practice of unmanned aerial vehicle network formation control in automatic
control and opinion manipulation in social networks.

Antagonistic interactions, once introduced to a cooperative network with external control, shall make it scarcely
possible for the agents to exactly reach consensus with the control signal. One can say that, in terms of convergence
state, these antagonistic interactions hindered the trend of the system reaching consensus. It is our second objective
in this article to analyse the effect of these antagonistic interactions from another perspective: convergence speed,
which is related to spectral properties of the grounded Laplacian matrix [29, 30]. Our work in this part essentially
draws a universal framework to analyse convergence speed variation trends when regulating edge weights in cooper-
ative networks with external control, particularly, the case of introducing new antagonistic interactions is our major
innovation.

Formally, the main contributions of this article, along with comparisons with some existing related studies, are
summarized as follows.

(1) Non-trivial consensus control technique for directed signed networks is developed. This result demonstrates
that a group with coopetitive (cooperative-competitive) interactions under control can achieve consensus, which
was previously considered exclusive to fully cooperative groups. Specifically, the appropriate informed agents set
is selected, the specific and formulaic external control signal and the coupling weights are designed, to facilitate
the convergence of the agents on a directed signed network towards a shared non-zero state, which can be preset
arbitrarily as needed. In contrast, in the general case of interval bipartite consensus [31] on directed signed networks,
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the precise convergence states are usually diverse and unavailable. To achieve this, a novel graph decomposition
framework is proposed, which includes the idea to decompose a leader-follower signed network into its positive
subgraph and followers subgraph. The topology assumption in our work originates from a practical scenario in
unmanned aerial vehicles, ensuring real-world practicality of our non-trivial consensus control technique, which holds
potential for extensions in UAV coordination in automatic control and opinion manipulation in social networks.
The connectivity conditions in our technique are more relaxed, compared with most existing results on consensus
control, which often require strong connectivity [16–18] or spanning tree conditions [1, 2]. Notably, our technique
imposes no restriction on structural balance or unbalance, broadening its applicability.

(2) A universal framework is first proposed to analyse how convergence speed varies when adjusting edge weights
in a directed unsigned network with external control. This framework holds its generality in applicability for all
types of edge weights regulation, with particular emphasis on the introduction of negative edges. In contrast, prior
work in [29] is restricted on regulating edges weights within the scope of positive weights, and the distributed
neighbor selection technique for faster convergence in [32] only considers edge disconnection operation, excluding
the case of adding negative edge(s). Based on this framework, the effect on non-trivial consensus speed of all the
antagonistic interactions in signed networks is further studied. Specifically, it is proved that, in a signed network
with strongly-connected agents and external control, the antagonistic interactions within a certain range lead to
faster non-trivial consensus. The analysis method can be applied to derive the theoretical results analogous to those
in [29, 32], demonstrating the universality of our framework.

2 Notations and preliminaries

Throughout the paper, we denote 1N = [1, 1, . . . , 1]⊤ ∈ RN and 0N = [0, 0, . . . , 0]⊤ ∈ RN . For a vector B =
[b1, b2, . . . , bN ]⊤ ∈ R

N , the notation diag(B) refers to the diagonal matrix with diagonal elements b1, b2, . . . , bN ,

and |B| = [|b1|, |b2|, . . . , |bN |]
⊤

∈ RN represents the absolute value of vector B. The set of all N × N matrices
on the complex number field is denoted by MN(C), or shortly, MN . The function sgn(·) represents the standard
sign function. A signed network comprising N agents is described by a signed digraph G = (V , E ,A), where V =
{v1, v2, . . . , vN} denotes the vertex set, E ⊆ V×V = {(vi, vj)|vi, vj ∈ V} denotes the edge set, andA = [aij ] ∈ R

N×N

is the adjacency matrix of G such that aij 6= 0 if and only if (vj , vi) ∈ E . Here, aij represents the weight of edge
(vj , vi) and may be either positive or negative. We say vertex vi is reachable from vertex vj if there exists a directed
path starting at vj and ending at vi in graph G.

Generally, in a fully autonomous network (FAN) [32] of N agents interacting with each other over a signed digraph
G, the dynamics of each agent i can be described as

ẋi(t) =
N∑

j=1

|aij | (sgn (aij)xj(t)− xi(t)) , i = 1, . . . , N, (1)

where xi(t) ∈ Rn is the state of agent i at time t. The signed Laplacian matrix L(G) = [lij ] ∈ RN×N corresponding
to a signed digraph G, or L for simplicity, is defined as [23]

lij =





− aij , j 6= i,

N∑

k=1,k 6=i

|aik|, j = i.

3 Problem statement

Let L ∈ R
N×N represent the signed Laplacian matrix of the signed digraph G of the original FAN system in our

study. The original FAN system is represented as

ẋ(t) = −(L⊗ In)x(t), (2)

where x(t) =
[
x⊤
1 (t), . . . ,x

⊤
N (t)

]⊤
∈ RnN is the state of the N agents. In fact, Eq. (2) describes the entire system

under dynamics (1).
It is a common observation that the state x(t) in the signed system (2) reaches (interval) bipartite consensus

or converges to zero, when G is strongly-connected or contains a spanning tree [10, 23, 31]. The primary focus in
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this paper is to realize non-trivial consensus control for system (2), i.e., driving these N agents towards a non-zero
consensus state, where the consensus state value can be arbitrarily configured as needed. The standard definition
of non-trivial consensus control shall be given afterward.

To achieve this, the external control input will be exerted to some specified agents in the original FAN system
(2)

ẋi(t) =

N∑

j=1

|aij | (sgn (aij)xj(t)− xi(t)) +

m∑

l=1

|bil|(sgn(bil)ul − xi(t)), i = 1, . . . , N, (3)

where ul ∈ Rn is the l th external control signal, bil ∈ R is the coefficient indicating the coupling weight from ul

to xi, which can be positive, negative or zero. Dynamics (3) establishes a semiautonomous network (SAN) [32],
in which a subset of agents (referred to as informed agents [33]) are selected to receive external control signals to
steer the entire network toward the desired non-zero consensus state. The vertex set of informed agents is denoted
as VI , where for each agent i, vi ∈ VI if and only if bil 6= 0 for some l ∈ {1, . . . ,m}. The naive vertex [33] set is
VN = V \ VI . It is time now to give the specific definition of non-trivial consensus control in our framework.

Definition 1 (Non-trivial consensus control). Under the control dynamics (3), if there exists bil ∈ R,ul ∈ Rn for
i = 1, . . . , N and l = 1, . . . ,m, such that

lim
t→+∞

xi(t) = θ ∈ R
n, i = 1, . . . , N,

where θ 6= 0n is the preset consensus state, then we say that the non-trivial consensus control for the signed SAN
system (3) is realized.

In our study, one time-invariant external control signal is sufficient to realize non-trivial consensus for the original
system (2). In the following part of this paper, the control protocol under investigation is thus

ẋi(t) =

N∑

j=1

|aij | (sgn (aij)xj(t)− xi(t)) + |bi| (sgn(bi)x0 − xi(t)) , i = 1, . . . , N, (4)

where x0 ∈ Rn represents the state of the sole external control signal, which is time-invariant. bi ∈ R, i = 1, . . . , N
indicates the coupling weight from x0 to xi. Correspondingly, the vertex set of informed agents is denoted as VI ,
where for each agent i, vi ∈ VI if and only if bi 6= 0. The naive vertex set is VN = V \ VI .

Given a desired non-trivial consensus state θ 6= 0n for agents xi, i = 1, . . . , N , the main task of this paper is
to realize non-trivial consensus control by appropriately designing the external control signal x0 and the coupling
weights bi, i = 1, . . . , N , including the basic problem of selecting the informed agents set VI ⊆ V to receive external
control signal.

The time-invariant external control signal x0 can be viewed as an individual agent from an augmented system
perspective. In this way, the SAN (4) can be equivalently written in the form of FAN:

żi(t) =

N̂∑

j=1

|âij | (sgn (âij)zj(t)− zi(t)) , i = 1, . . . , N̂ (5)

with the compact form being

ż(t) = −
(
L̂⊗ In

)
z(t), (6)

where zi(t) = xi(t) for i = 1, . . . , N, z
N̂
(t) ≡ x0, and z(t) = [z⊤

1 (t), . . . , z⊤
N (t), z⊤

N̂
(t)]⊤. The augmented system (5)

(or (6)) is endowed with the augmented signed graph Ĝ = (V̂ , Ê , Â) and the augmented signed Laplacian matrix

L̂ ∈ RN̂×N̂ , in which Â = [âij ] ∈ RN̂×N̂ , for clarity. In this paper, for the augmented graph Ĝ = (V̂ , Ê , Â), we

denote V̂ = {v̂1, . . . , v̂N , v̂0}, in which v̂1, . . . , v̂N and v̂0 correspond to the N agents x1, . . . ,xN and the external

control signal x0 in (4), respectively. Clearly, N̂ = N + 1, and

L̂ =

[
L+ diag(|B|) −B

01×N 0

]
, (7)

where B = [b1, . . . , bN ], and the part LB = L + diag(|B|) is referred to as the grounded Laplacian matrix [29] or
the perturbed Laplacian [32], whose spectral properties play a central role in determining the convergence speed of
the augmented system (6).
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Figure 1 (Color online) An illustrative example of Assumption 1

(structurally unbalanced G).

Figure 2 (Color online) An illustrative example of Assumption 1

(structurally balanced G).

For simplicity, in the following analysis, we take the dimension of each agent zi ∈ Rn (as well as agent xi ∈ Rn) as
n = 1. The conclusions for the case of n > 2 can be obtained accordingly by taking a micro view of each individual
element of zi ∈ Rn (and xi ∈ Rn), and is thus omitted.

Before ending this section, an indispensable Lemma is proposed.

Lemma 1 ([31]). By the decomposition of L̂ in (7), if the signed digraph Ĝ has a spanning tree, then all the
eigenvalues of L+ diag(|B|) have positive real parts.

4 Main results

4.1 Graph decomposition and positive subgraph

To begin with, we introduce our graph decomposition framework, which commences with the definition of positive
subgraph.

Definition 2 (Positive subgraph). For a signed digraph G = (V , E ,A) with Laplacian matrix L, the positive
subgraph associated with G is G+ =

(
V+, E+,A+

)
, where V+ = V , E+ ⊆ E is a subset of E that consists of all the

positive edges in E . The Laplacian matrix of G+ is denoted as L+.
Notice that according to the above definition, signed digraph G and its positive subgraph G+ have the same

vertex set V , and G+ = G if and only if G has no negative edge. To achieve non-trivial consensus control of the N

agents in (4), Assumption 1 is necessary.

Assumption 1. The vertex set V of signed digraph G and its positive subgraph G+ can be partitioned into two
nonoverlapping subsets V1 and V2, such that

(1) In G, one of the following holds:
• for any vertex vi in V1, there exists at least one negative edge pointing to vi;
• there exists no negative edge in G;
(2) In G+, for any vertex vj in V2, there exists at least one vertex vk in V1 such that vj is reachable from vk.
To explain Assumption 1, consider graph G and its positive subgraph G+ in Figure 1 or 2, in which the 6 vertices

can be partitioned into two subsets V1 = {v1, v2} and V2 = {v3, v4, v5, v6}. Clearly, such partition satisfies (1) and
(2) in Assumption 1.

From the perspective of practical significance, the proposal of Assumption 1 originates from the unmanned aircraft
systems [24] in reality. Consider the practical scenario when the communication channels of a group of cooperative
unmanned aerial vehicles organized by a spanning tree topology (correspondingly, we require that “in G+, for any
vertex vj in V2, there exists at least one vertex vk in V1 such that vj is reachable from vk” in (2) of Assumption
1 come under attack. To break the consensus states, such deliberate attack may be especially targeted at those
leaders vehicles and brings new antagonistic interactions (correspondingly, we require that “for any vertex vi in
V1, there exists at least one negative edge pointing to vi” in (1) of Assumption 1), as shown in Figure 3. Such
attack belongs to the category of interference and forgery of signals in availability attack [25], since according to
the paradigm of dynamics on signed network (1), introducing new antagonistic interaction from agent j to agent i
can be viewed as forging a control signal that is opposite of the real state of agent j, and delivering this fake signal
to agent i.

After the attack, this UAV group is no longer a completely collaborative unit. Accordingly, their states may tend
to polarize or reach trivial consensus, which is meaningless since all agents’ states converge to zero. Our work in this
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Figure 3 (Color online) A practical interaction topology satisfying Assumption 1. Blue dashed lines represent cooperative interactions, and

red dashed lines represent antagonistic interactions.

Figure 4 (Color online) An illustrative example of graph decomposition.

paper can be applied to deal with such corrupted UAV networks, to be specific, our control technique drives these
agents in the new coopetitve (cooperative-competitive) network to reach a non-trivial consensus, in which all agents
tend to one shared non-zero consensus state, just like the original status of the network before being attacked.

Remark 1. The signed digraph G satisfying Assumption 1 is not necessarily structurally unbalanced, as shown
in Figure 2. In other words, Assumption 1 holds generality in its applicability for both structurally balanced and
unbalanced signed digraphs.

Remark 2. The above assumption on network topology indicates milder connectivity conditions in our control
techique, compared with most of the existing studies on consensus control, where strong connectivity (connectivity
for undirected graph) [17, 18] or spanning tree condition [1] is often required.

Definition 3 (Graph decomposition). Consider a graph G = (V , E ,A) and a sequence of graphs Gi = (Vi, Ei,Ai),
i = 1, . . . ,m, m > 2. If G is the union of G1,G2, . . . ,Gm, meaning that V =

⋃m

i=1 Vi and E =
⋃m

i=1 Ei, then we say
that G can be decomposed into m subgraphs G1,G2, . . . ,Gm, which is represented as G =

⋃m

i=1 Gi.

Based on the above definitions, we decompose the graph Ĝ of the augmented system (6) into the graph G of

the original system (2) and the positive subgraph Ĝ+, denoted as Ĝ = G
⋃
Ĝ+. Figure 4 provides an illustrative

example. The detailed topology of augmented graph Ĝ will be explicated in Subsection 4.2. Based on our graph
decomposition framework, we are now in a position to establish our main result of non-trivial consensus control on
directed signed networks.

4.2 Non-trivial consensus control on directed signed networks

Recall the control protocol (4) under investigation with the basic underlying topology G = (V , E ,A), and recall
the non-trivial consensus control task illustrated in Definition 1. Suppose that Assumption 1 holds for G, then the
vertex set V can be partitioned into V1 = {v1, . . . , vN1

} and V2 = {vN1+1, . . . , vN} after appropriately reordering,
and the vertex set consisting of every vertex that has incoming negative edge(s) in G can be denoted as U =
{v1, . . . , vN1

, vN1+1, . . . , vN1+P }, if there exists negative edge(s) in E . For each vertex vi, denote Ωi as the vertex
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set consisting of all the neighbor vertices of vi that has outgoing negative edge pointing to vi in G. Then one has
the following theorem.

Theorem 1. Consider the signed SAN (4), or equivalently in the FAN form (5), with the basic underlying topology
G = (V , E ,A) in (1) satisfying Assumption 1. Let the coupling weights bi, i ∈ VI have the same sign. If there exists
negative edge(s) in E , the informed agents set is chosen as VI = U ; otherwise, VI = V1. If for every i ∈ VI ,

bix0

|bi|+ 2
∑

k∈Ωi
|aik|

= θ, (8)

in which θ 6= 0 is the desired consensus state, then

lim
t→+∞

xi(t) = θ, i = 1, . . . , N, (9)

which indicates that the non-trivial consensus control for the N agents in signed SAN system (4) is accomplished.
Proof. Since x0 is the sole time-invariant control signal and bi, i ∈ VI have the same sign, one can assume without
loss of generality that

bi > 0, i ∈ VI . (10)

For the special case where G is unsigned, non-trivial consensus (9) can be established by setting x0 = θ. In the
following proof, we assume that G has at least one negative edge. Analogous to (7), for the two unsigned Laplacian

matrices L̂+ and L+, one has

L̂+ =

[
L+ + diag(B) −B

01×N 0

]
.

Write (5) in the compact form

ż(t) = −L̂z(t) = −

[
L+ diag(|B|) −B

01×N 0

]
z(t) (11)

with z(t) = [x1(t), . . . , xn(t), x0(t)]
⊤.

Under Assumption 1, Ĝ and Ĝ+ both have a spanning tree with leader v̂0 being the root. By Lemma 1, the
eigenvalues of L + diag(|B|) and L+ + diag(B) all have positive real parts. As a result, L + diag(|B|) and

L+ +diag(B) are two invertible matrices. Therefore, L̂ ∈ RN̂×N̂ has rank N = N̂ − 1, rendering the right and left

eigenvectors of L̂ corresponding to zero eigenvalue falling into a pair of one-dimensional subspaces, each spanned
by a non-zero vector. According to [31], Eq. (11) yields

lim
t→+∞

z(t) = wrw
⊤
l z(0) =

(
w⊤

l z(0)
)
wr,

where wl and wr are the normalized left and right eigenvectors of L̂ associated with its zero eigenvalue, such that
w⊤

l L̂ = 0⊤
N̂
, L̂wr = 0

N̂
and w⊤

l wr = 1. Specifically, since

z(0) =
(
z1(0), . . . , zN (0), z

N̂
(0)
)⊤

= (z1(0), . . . , zN(0), x0)
⊤
,

take w⊤
l = (0, . . . , 0, 1

x0

) and wr = (θ, . . . , θ, x0)
⊤
, then

lim
t→+∞

z(t) = wr = (θ, . . . , θ, x0)
⊤,

which includes the desired outcome (9). It is clear that w⊤
l wr = 1, and w⊤

l L̂ = 0⊤
N̂

since the last row of L̂ is 0⊤
N̂
.

In the following, we prove that

0
N̂

= L̂wr

=

[
L+ diag (|B|) −B

01×N 0

][
θ1N

x0

]

=




|b1|+
∑N

k 6=1 |a1k| · · · −a1N −b1
...

. . .
...

...

−aN1 · · · |bN |+
∑N

k 6=N |aNk| −bN

0 · · · 0 0







θ

...

θ

x0



.

(12)
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Denote L̂ =
[
α̂⊤

1 ; . . . ; α̂
⊤
N̂

]
, where α̂⊤

i represents the ith row of L̂. By the selection of informed agents set

VI = U = {v1, . . . , vN1
, vN1+1, . . . , vN1+P } and the designed condition of external control signal x0 and coupling

weight bi in (8),

α̂⊤
i wr =


|bi|+

N∑

k 6=i

|aik| −
N∑

k 6=i

aik


 θ − bix0

=

(
bi + 2

∑

k∈Ωi

|aik|

)
θ − bix0

= 0, i = 1, . . . , N1 + P.

(13)

Denote L̂+ =
[
α̂+⊤

1 ; . . . ; α̂+

N̂

⊤
]
. Since Ĝ+ is an unsigned digraph that contains a spanning tree, according to [1],

the system ẋ(t) = −L̂+x(t) reaches consensus. Equivalently, each row α̂+⊤
i of submatrix L̂+ admits the eigenvector

θ1
N̂

∈ RN̂ . Notice that for i = N1 + P + 1, . . . , N̂ , the N̂th elements of α̂+⊤
i are all zero, one has

α̂+⊤
i wr = 0, i = N1 + P + 1, . . . , N̂ .

Recall that in our setting, the informed agents set VI = U = {v1, . . . , vN1+P } includes all the vertices in Ĝ that

has incoming negative edges, therefore, α̂⊤
i = α̂+⊤

i for i = N1 + P + 1, . . . , N̂ , and further

α̂⊤
i wr = 0, i = N1 + P + 1, . . . , N̂ . (14)

Combining (13) with (14), one has L̂wr = 0
N̂
, which fulfills the proof of (12).

Remark 3. Given a certain original FAN system (2) with determinate topology G = (V , E ,A), given the deter-
minate external control signal x0, the consensus state θ can be viewed as an outcome varying with coupling weights
bi, i ∈ VI . From (8) one has ∣∣∣∣

θ(bi)

x0

∣∣∣∣ =
∣∣∣∣∣

bi

|bi|+ 2
∑

k∈Ωi
|aik|

∣∣∣∣∣ < 1, i ∈ VI . (15)

Furthermore

lim
bi→+∞

θ(bi)

x0
= 1, i ∈ VI ,

and

lim
bi→−∞

θ(bi)

x0
= −1, i ∈ VI .

Remark 3 highlights that, as the positive coupling strength bi, i ∈ VI getting strong, the consensus state of the N
agents in (4) gradually approaches the external control signal. Meanwhile, Eq. (15) is consistent with the theoretical

results in [31]. The augmented signed graph Ĝ = (V̂ , Ê , Â) contains a spanning tree, where v̂0 serves as the sole root
vertex. According to [31], the states of the N followers x1, . . . , xN shall converge and lie in the interval [−x0, x0],
which is determined by the state of the sole leader.

Remark 4. Eq. (8) integrally provides the design of both the external control signal x0 and coupling weights
bi, i ∈ VI . Through condition (10), one can equivalently design x0 and bi, i ∈ VI in a separate manner:

x0 = ρθ, bi =
2

ρ− 1

∑

k∈Ωi

|aik|, i ∈ VI ,

in which ρ is a constant that can be arbitrarily chosen from interval (1,+∞).

Remark 5. Recall the conditions for signed digraph G and its positive subgraph G+ in Assumption 1. From
Theorem 1 and its proof one can see that, the key idea of our non-trivial consensus control technique is to “balance”
the negative impact of the antagonistic interactions on consensus by exerting “positive” external control, and
meanwhile ensuring accessibility of the external control signal for all the agents, which explains significance of
Assumption 1 from the perspective of technical realization.

Theorem 1 develops a universal framework that enables agents on a directed signed network to reach non-trivial
consensus under mild connectivity conditions, regardless of whether this network is structurally balanced or not,
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whereas the existing work in the field of consensus control on signed networks mainly focus on bipartite consensus
control [16–18] and stability control [19]. In [19], where the concept of non-trivial consensus for signed networks
was proposed, non-trivial consensus can only be established in the case of (essentially) cooperative network. In [16],
which concerns undirected signed networks, necessary and sufficient conditions for non-trivial consensus control
problem to be solvable were derived. Nevertheless, this theoretical result does not contain specific and formulaic
controller design method, and requires the network under investigation to be connected and structurally balanced.

As mentioned in Subsection 4.1, the topology condition in Assumption 1 of Theorem 1 originates from the prac-
tical scenario of deliberate attacks. These attacks introduce new antagonistic interactions into the communication
channels of a cooperative UAV group, causing the group states to polarize or reach a trivial consensus. However,
the destructive effect of the attack on consensus can be counteracted by the control technique proposed in Theorem
1. In the context of opinion dynamics, Theorem 1 indicates that, when a dominant outside leader comes to issue
proper commands, the agents that are coupled by a signed network satisfying Assumption 1 tend to unanimously
follow the opinion of the dominant leader.

4.3 Antagonistic interactions lead to faster consensus

Based on Theorem 1, the impact of negative edges on consensus in a signed network is counteracted. Following the
network topology and coupling weights setting in Theorem 1 and its proof, let us take another view of our graph
decomposition framework: Ĝ = G

⋃
Ĝ+, then we can see Ĝ as the signed rooted graph obtained by adding negative

edges to the unsigned rooted graph Ĝ+. Compare the two systems on Ĝ and Ĝ+:

ż(t) = −L̂z(t) = −

[
L+ diag(|B|) −B

01×N 0

]
z(t), (16)

and

ż+(t) = −L̂+z+(t) = −

[
L+ + diag(B) −B

01×N 0

]
z+(t), (17)

both of which realized non-trivial consensus control for the N agents, according to Theorem 1 and Definition 1.
In terms of convergence state, these negative edges weakened the consensus state of the related system, i.e., from
complete consensus [1] in (17) to the final state in (16) where the N agents can only approach but cannot exactly
follow the external control signal as the control coupling strength increasing, which is indicated by Theorem 1 and
Remark 3. In the following, we shall analyse the effects of these negative edges from the perspective of consensus
speed. To begin with, one essential Lemma is introduced.

Lemma 2 ([34]). Let A,E ∈ MN and suppose that λ is a simple eigenvalue of A. Let ξ and η be, respectively,
right and left eigenvectors of A corresponding to λ. Then

(a) for each given ε > 0 there exists a δ > 0 such that, for all t ∈ C such that |t| < δ, there is a unique eigenvalue

λ(t) of A+ tE such that
∣∣∣λ(t) − λ− tη

⊤Eξ

η⊤ξ

∣∣∣ 6 |t|ε;

(b) λ(t) is continuous at t = 0, and limt→0 λ(t) = λ;
(c) λ(t) is differentiable at t = 0, and

dλ(t)

dt

∣∣∣∣
t=0

=
η⊤Eξ

η⊤ξ
.

Consider a general directed unsigned network with external control:

ż(t) = −L̂z(t), (18)

where

L̂ =

[
LB L12

L21 L22

]
=

[
L+ diag(B) −B

01×N 0

]
,

in which LB = L + diag(B) is called the grounded Laplacian matrix of L̂. Denote λ(LB) as the eigenvalue of LB

that has the smallest real part, which is a measure of the network (18)’s convergence speed [29, 30].
Regarding this critical indicator, various researches have been made by studying the spectral properties of the

grounded Laplacian matrix. The bounds on the smallest eigenvalue of grounded Laplacian matrices were provided
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for unsigned networks with bidirectional interactions, utilizing Rayleigh quotient inequality and the interlacing
theorem for symmetric Laplacian matrices of undirected graphs [35, 36]. Spectral analysis has been performed for
a directed unsigned network to reveal the variation trend of λ(LB) when weakening or strengthening some specific
edges’ weights [29], based on tools from nonnegative matrix theory. For structurally balanced signed networks, the
distributed neighbor selection technique was derived to ensure faster convergence [32]. Nevertheless, this distributed
neighbor selection technique only considers the edge disconnection operation, excluding the case of adding negative
edge(s), which is of our particular interest.

The work in this subsection essentially establishes a universal framework to analyse convergence speed variation
trend when regulating edge weights in directed unsigned networks with external control. We primarily focus on
the case of adding new negative edge(s). The unidirectional interactions render tools like the Rayleigh quotient
inequality and the interlacing theorem for symmetric Laplacian matrices of undirected graph not applicable here,
and the nonnegative matrix theory becomes insufficient due to the emergence of new negative edge(s).

Let us first review an existing result induced from Theorem 2 in [29], this result is restricted on unsigned networks
and positive edges.

Lemma 3. For the unsigned network (18), assume the grounded Laplacian matrix LB is irreducible. Take a
positive right eigenvector ξ = (ξ1, ξ2, . . . , ξN )⊤ corresponding to λ(LB), for any edge (vj , vi) in the network, denote

L
δ
B

as the grounded Laplacian matrix of the new network after changing the edge weight aij into aδij . Assume
ξi < ξj , one has

(i) if aδij > aij > 0, then λ(LB) > λ(Lδ
B) > 0;

(ii) if aij > aδij > 0, then λ(Lδ
B) > λ(LB) > 0.

Lemma 3 indicates that, for an unsigned network, the positive right eigenvector of λ(LB) encodes the vital
information to regulate convergence speed by adjusting edge weight. It will be shown that this eigenvector also
plays an important role in our theoretical analysis.

Theorem 2. For unsigned network with external control (18), assume that LB is irreducible. The new grounded

Laplacian matrix L
δ
B
is obtained by adding a negative edge from vertex vj to vertex vi in G(L̂), i, j ∈ {1, . . . , N},

and the newly introduced negative edge’s weight is denoted as aδij = −δ < 0, where δ is a positive real number.
Then

dλ(Lδ
B
)

dδ

∣∣∣∣∣
δ=0

> 0. (19)

Proof. Denote the new signed Laplacian matrix L
δ
B

= LB + δE, in which E is the perturbation matrix that
declares the location of newly introduced negative edge(s), then

E =




i j

0
. . .

i 1 · · · 1
. . .

...

0
. . .

0




.

Assume that α is a sufficiently large number such that P = −LB + αIN is a nonnegative matrix. Since LB is
irreducible, From Perron-Frobenius theorem [34] we know that ρ(P ) is a simple eigenvalue and there exists positive
vectors ξ and η such that Pξ = ρ(P )ξ and η⊤P = ρ(P )η⊤. Since LB = αIn − P , λ(LB) = α− ρ(P ) is a simple
eigenvalue of LB, and ξ and η are the corresponding right and left eigenvectors, respectively.

Based on the above results, according to Lemma 2, one has

lim
δ→0

λ
(
L

δ
B

)
= λ(LB),

and
dλ(Lδ

B)

dδ

∣∣∣∣∣
δ=0

=
η⊤Eξ

η⊤ξ
.
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Normalize eigenvectors ξ and η, such that η⊤ξ = 1, then

dλ(Lδ
B)

dδ

∣∣∣∣∣
δ=0

= ηi(ξi + ξj) > 0,

since ξ and η are both positive eigenvectors. This completes the proof.

Remark 6. If there is more than one negative edge added, the corresponding perturbation matrix E would remain
a nonnegative matrix with elements 0 and 1, and thus Eq. (19) still holds.

The eigenvalue with the smallest real part λ(LB) of the grounded Laplacian matrix LB measures the convergence
speed of network (18). Therefore, Theorem 2 and Remark 6 indicate that introducing antagonistic interactions in
a cooperative network with external control and strongly-connected agents leads to faster convergence.

Remark 7. The above result relies on the assumption that LB is irreducible. From the proof of Theorem 2,
one can find that generally, as long as λ(LB) is a simple eigenvalue of LB and the corresponding left and right
eigenvectors are positive, then Eq. (19) still holds.

Remark 8. Technically, Eq. (19) indicates that, under mild perturbation, i.e., when the modulus δ of the added
negative edge’s weight is sufficiently small, the convergence speed would be improved. Nevertheless, our simulation
results in the next section show that, as the perturbation getting strong, the convergence speed in general maintains
a growing trend.

Essentially, the proof of Theorem 2 establishes a universal framework to analyse convergence speed variation
trends for all types of edge weights regulation in directed unsigned networks with external control. Theoretical
results analogous to Lemma 3 above, and Theorem 9 in [32] can be derived by applying the same method in
this framework, using different selections of the perturbation matrix. This demonstrates the universality of our
framework. Detailed explanation is omitted for brevity.

Back to the original objective of this subsection, which is to determine the effect on non-trivial consensus speed
of the antagonistic interactions in network (16). Based on Theorem 2, the conclusion is summarized as follows.

Corollary 1. Assume that the network (16) on Ĝ has at least one negative edge, and the modulus of these negative
edges’ weights is upper bounded by δ > 0. Assume that G+ is strongly-connected. Then there exists a positive
constant C such that if δ < C, then

Re
[
λ
(
L+

B

)]
< Re [λ (LB)] .

Remark 9. Based on Theorem 2 and Remark 7, the assumption “G+ is strongly-connected” in Corollary 1 can
be theoretically relaxed to: λ(L+) is a simple eigenvalue of L+, and the corresponding left and right eigenvectors
are positive. However, in practice, the relaxed assumption is difficult to verify, which involves matrix operations
with high complexity, complex number processing and the challenge of numerical stability. Therefore, we retain the
original “G+ is strongly-connected” assumption in Corollary 1 for conciseness and practicality.

Theorem 1 and Corollary 1 together reveal the role of the antagonistic interactions in our non-trivial consensus
control framework. It is proven that the antagonistic interactions within a certain range lead to faster non-trivial
consensus, at the cost of losing the ability for the agents to fully align with the external control signal.

5 Simulation

In this section, two numerical simulations are carried out first to illustrate the effectiveness of our control technique
proposed in Theorem 1, with the underlying topology shown in Figures 1 and 2. For simplicity, the time-invariant
external control signal is set as x0 = 1.

5.1 Non-trivial consensus control on structurally unbalanced signed networks

Consider original FAN system (1) and the corresponding SAN (4) under control coefficients setting (8) in Theorem
1, with the basic underlying structurally unbalanced network topology G satisfying Assumption 1 and the corre-
sponding augmented system topology Ĝ depicted in Figure 4. The augmented Laplacian matrix, which includes



Niu T M, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132203:12

Figure 5 (Color online) (a) States evolution of the original FAN system (1) on a structurally unbalanced signed network; (b) states evolution

of the corresponding SAN system (4) on a structurally unbalanced signed network.

both topology information for G and Ĝ, is

L̂ =




2 + 2

∣∣∣∣
2θ

1− θ

∣∣∣∣ 0 0 2 0 0 −2
2θ

1− θ

0 1.5 + 1.5

∣∣∣∣
2θ

1− θ

∣∣∣∣ 0 0 0 1.5 −1.5
2θ

1− θ

−1 0 1 0 0 0 0

0 0 −1.51.5 0 0 0

0 0 −0.5 0 0.5 0 0

0 −2 0 0 −13 +

∣∣∣∣
2θ

1− θ

∣∣∣∣ −
2θ

1− θ

0 0 0 0 0 0 0




.

Take the desired consensus state θ = 0.7, the evolution of both FAN and SAN is shown in Figure 5.

5.2 Non-trivial consensus control on structurally balanced signed networks

Consider original FAN system (1) and the corresponding SAN (4) under control coefficients setting (8) in Theorem 1,
with the basic underlying structurally balanced network topology G satisfying Assumption 1 and the corresponding
augmented system topology Ĝ depicted in Figure 6. The augmented Laplacian matrix is

L̂ =




2 + 2

∣∣∣∣
2θ

1− θ

∣∣∣∣ 2 0 0 0 0 −2
2θ

1− θ

0 1.5 + 1.5

∣∣∣∣
2θ

1− θ

∣∣∣∣ 0 01.5 0 −1.5
2θ

1− θ

−1 0 1 0 0 0 0

0 0 −3 3 0 0 0

0 0 −0.500.5 0 0

0 −2 0 0 1 3 +

∣∣∣∣
2θ

1− θ

∣∣∣∣ −
2θ

1− θ

0 0 0 0 0 0 0




.

Take the desired consensus state θ = 0.7, the evolution of both FAN and SAN is shown in Figure 7. Simulation
results shown in Figure 7, together with that in Figure 5, verified the applicability of our control technique for both
structurally unbalanced and balanced signed networks.

5.3 Antagonistic interactions lead to faster non-trivial consensus

This subsection visualizes the conclusion illustrated in Subsection 4.3. Take the topology in Figure 8 for network
(18).
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Figure 6 (Color online) Graph decomposition framework for structurally balanced basic topology G.

Figure 7 (Color online) (a) States evolution of the original FAN system (1) on a structurally balanced signed network; (b) states evolution of

the corresponding SAN system (4) on a structurally balanced signed network.

Figure 8 (Color online) (a) Topology of the original unsigned network with external control (18); (b) a case of perturbed topology by choosing

the negative edges combination 2(v3, v1) +
3

2
(v6, v2) + 1(v3, v6).
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Figure 9 (Color online) (a) States evolution of the original unsigned system on G(L̂). (b) States evolution of the perturbed system on G(L̂
δ
)

with δ = 1. The black dotted line in each plot represents external inputs. The topology of each system is taken from Figure 8.

Figure 10 (Color online) Variation of Re[λ(Lδ
B
)] regarding δ under several selections of location to set the nagative edge(s) at G(L̂) in Figure 8.

The coefficient written ahead of (vj , vi), multiplied by δ, is exactly the modulus of the newly introduced negative edge (vj , vi)’s weight after

perturbation.

As one can see from Figure 9, the non-trivial consensus speed is improved on the perturbed system, which includes
newly introduced negative edges. Further, by selecting several different locations to set the negative edge(s), one
obtains the variation trend of Re[λ(Lδ

B)] regarding perturbation weight δ under each selection, as shown in Figure 10,
in which L

δ
B
= LB + δE, and E is the perturbation matrix that declares the location of newly introduced negative

edge(s). It is shown that as the new negative edge(s) introduced, with relatively small perturbation weight δ,
Re[λ(LB)] immediately increases to Re[λ(Lδ

B)] > Re[λ(LB)]. Moreover, as the perturbation getting stronger, the
variation of Re[λ(Lδ

B
)] in general maintains growing trend.

6 Conclusion

In this paper, a non-trivial consensus control technique for directed signed networks is established under mild
connectivity conditions, without restriction on the network property of structural balance or unbalance. This paper
serves as one pioneering and significant work in the field of consensus control on directed signed networks, as
achieving non-trivial consensus is a rare and challenging result for signed networks, irrespective of the presence of
external control. The theoretical results derived here can be applied to address deliberate attack on UAV groups in
automatic control and opinion manipulation in social networks. Further, the effect on non-trivial consensus speed of
the antagonistic interactions among agents is studied based on matrix perturbation theory. Numerical simulations
are presented to verify our technique and theory.
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