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Abstract This study investigates a predefined-time control approach for a class of n-link robotic systems with unknown nonlinearities.

First, a time-varying scaling transformation is designed to drive the tracking errors into an adjustable range within a predefined time.

Then, a novel nonsingular fast predefined-time sliding mode surface is used to develop a predefined-time controller. By introducing a

simple variable-exponent coefficient in the sliding variable, the control method can achieve the prescribed performance without encoun-

tering singularities. Specifically, both transient and steady-state performances are ensured under a weaker excitation condition known as

interval excitation, thereby relaxing the system’s excitation requirements. Building on this, a new predefined-time parameter composite

learning law is constructed by fully leveraging the information from parameter estimation errors and system tracking errors. Coupled with

the predefined-time strategy, the concise relationship between the tuning gains and the predefined stabilization time is established. The-

oretical analysis and experimental results confirm the proposed controller’s superior performance in parameter estimation and trajectory

tracking.
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1 Introduction

In recent years, robotic systems have played an increasingly important role in industrial production, including tasks
such as assembling, assisting, transporting, drilling, and deburring [1, 2]. Due to the complexity and variability
of these tasks, robotic control faces increasingly stringent requirements [3–5]. First, enabling rapid and precise
estimation of complex nonlinearities under system uncertainties is essential. In addition, enhancing the transient
and steady-state performance is essential. To achieve high-performance robotic control, these challenges demand
further investigation.

Adaptive robust control (ARC) is well suited for robotic systems, given their uncertain and time-varying pa-
rameters [6, 7]. In classical ARC, parameter update laws are systematically designed to eliminate cross terms in
the Lyapunov stability analysis. However, this approach restricts parameter identification, as it relies solely on
instantaneous tracking errors [8]. Due to the presence of damping terms, these methods ensure only that parameter
estimates remain close to predefined values, rather than converging to the true values. Consequently, the control
variable error converges to a bounded set instead of zero. To overcome these limitations, composite adaptive control
(CAC) methods have been proposed [9–11]. Although CAC ensures closed-loop stability, it guarantees accurate pa-
rameter identification only when the restrictive persistent excitation (PE) condition is satisfied. This limitation has
led to the recent development of composite learning control (CLC), which replaces the restrictive PE condition with
the more practical interval excitation (IE) condition. Unlike CAC, which relies solely on instantaneous data, CLC
also utilizes parametric information from historical data. Consequently, various advanced parameter-identification
methods have been developed based on CLC [12–17]. A persistent challenge with CLC schemes is that they achieve
only exponential convergence under IE conditions. To accelerate convergence, we recently proposed CL finite-time
control (CLFTC) and global CL fixed-time control (GCLFTC) [18, 19]. Notably, FTC outperforms finite-time
control in handling arbitrary initial conditions. However, its convergence time still lacks a direct relationship with
tunable gains. This shortcoming has prompted the exploration of predefined-time stability [20–22]. To the best
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of our knowledge, no existing solution simultaneously guarantees: (1) predefined-time convergence of parameter
estimation and tracking errors to zero, (2) singularity avoidance, and (3) operation under weak IE conditions in
robotic systems.

Existing studies on adaptive robot control primarily focus on steady-state parameter convergence, with little
attention to convergence rates. A key limitation of FTC, fixed-time control, and predefined-time control (PTC)
methods is their insufficient consideration of transient performance indicators such as overshoot and convergence
speed. In practice, controllers must meet transient performance requirements, including limits on overshoot, steady-
state error, and convergence rate [23]. Therefore, simultaneously reducing overshoot and improving error conver-
gence remain pressing challenges in robotic systems. Bechlioulis and Rovithakis introduced the widely adopted
prescribed performance control (PPC) method to ensure bounded transient and steady-state errors in uncertain
nonlinear systems [24]. For instance, Refs. [25, 26] employed prescribed performance functions (PPFs) combined
with coordinated suspension-error transformations to regulate both transient and steady-state responses. Similarly,
Refs. [27, 28] applied PPFs to enforce attitude-tracking-error bounds in spacecraft missions. However, achieving
prescribed performance under weak IE conditions remains an open issue.

Herein, we focus on designing a predefined-time CL algorithm for robotic systems to achieve prescribed transient
and steady-state performance bounds for position tracking errors, while ensuring the boundedness of all closed-loop
signals. The main contributions of this study are summarized as follows.

(1) In contrast to the nondifferentiable finite-time [29] and fixed-time [30] sliding variables, we develop a novel
nonsingular finite-time predefined-time sliding mode (NFPTSM) by incorporating a simplified variable exponent
coefficient into the sliding mode variable. Based on this innovation, a novel nonsingular CLPTC (NCLPTC) strategy
is proposed. The proposed nonsingular sliding mode, independent of switching, enhances the practicality of the
controller.

(2) Unlike the restrictive PE condition, this study proposes a much weaker IE condition, which relaxes the
dependence on system initial states. Different from [31,32], we construct a novel predefined-time parameter learning
law that fully exploits parameter estimation errors and system tracking errors. This learning law significantly
accelerates the parameter convergence rate.

(3) Compared with [33, 34], the proposed control strategy integrates a novel coordinate transformation into
the predefined-time design, allowing direct handling of time-varying asymmetric tracking error constraints. This
approach eliminates the need for stringent conditions on constraint functions while preserving the original control
structure. Consequently, transient and steady-state performances are guaranteed within a predefined time.

The remainder of this paper is organized as follows. Section 2 presents the background and problem formulation.
Section 3 presents the development of NCLPTC. Section 4 presents the experimental results. Section 5 concludes
the study.

2 Background and problem formulation

The dynamics of n-link robots are described by the Euler-Lagrange equation, as follows:

H(q)q̈ +D(q, q̇)q̇ + F q̇ + g(q) = τ, (1)

where q ∈ Rn×1 is the vector of joint displacements, H (q) ∈ Rn×n represents the inertia matrix, D (q, q̇) ∈ Rn×n

represents the Coriolis and centrifugal forces, g (q) ∈ Rn×1 denotes the gravitational force, τ ∈ Rn×1 represents the
joint torque control, and F q̇ ∈ Rn×1 represents the viscous friction torque.

Further, the robot system exhibits the following three properties [35].

Property 1. The matrix H(q) is symmetric and positive, and there exist positive constantsm1 andm2 satisfying
m1I 6 H(q) 6 m2I.

Property 2. The matrix Ḣ(q) − 2D(q, q̇) is skew symmetric, meaning that xT(Ḣ(q) − 2D(q, q̇))x = 0 with
x ∈ Rn×1.

Property 3. The dynamic model of (1) can be linear in a set of unknown physical parameter vectors θ ∈ Rm×1,
as

H(q)ξ̇ +D(q, q̇)ξ + F q̇ + g(q) =WT(q, q̇, ξ, ξ̇)θ, (2)

where ξ is an auxiliary variable, W (q, q̇, ξ, ξ̇) ∈ Rm×n is a regressor matrix.
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Lemma 1 ([35]). Consider a nonlinear system

ẋ = f(t, x).

If there exists a constant, Tc > 0, such that the Lyapunov function satisfies

V̇ 6 −
π

ηTc
(V 1−η/2 + V 1+η/2),

limt→Tc
x(t) → 0. The system (1) is globally predefined-time stable. Additionally, Tc > 0 is a predefined-time

constant and η ∈ (0, 1).

Lemma 2 ([36]). If x1, x2, . . . , xm ∈ R+, and 0 < a 6 1, b > 1, then

m
∑

i=1

xai >

(

m
∑

i=1

xi

)a

,

m
∑

i=1

xbi > m1−b

(

m
∑

i=1

xi

)b

.

Definition 1 ([37]). Consider a predefined-time PPF

χi(t) =

{

(χ0i − χ∞i)exp(̟i(t)) + χ∞i, 0 6 t < Ti,

χ∞i, t > Ti,
(3)

where χ̇i(t) = {(χ0i − χ∞i) ˙̟ i(t)exp(̟i(t)), 0 6 t < Ti|0, t > Ti}, ̟i(t) = − liTit
Ti−t , 0 < χ∞i < χ0i. 0 < Ti < ∞,

and li > 1. Here, Ti is the time taken for the function to converge from χ0i to χ∞i.

Definition 2 ([6]). A bounded signal Φ(t) ∈ Rm×n satisfies the IE condition

∫ Te

Te−td

ΦT(r)Φ(r)dr > σI, (4)

for ∃Te, td, σ ∈ R+, t ∈ [Te − td, Te], σ is the excitation strength.

Definition 3 ([6]). A bounded signal Φ(t) ∈ Rm×n satisfies the PE condition

∫ t

t−td

ΦT(r)Φ(r)dr > σI, (5)

for ∃ td, σ ∈ R+ and ∀t > 0, σ are the excitation strength.

Remark 1. The use of a time-varying scaling transformation to drive tracking errors within a preset range offers
several advantages. First, it enables precise tracking performance by dynamically adjusting the scaling factors based
on the current state of the tracking errors. This ensures that errors remain within an acceptable range, thereby
enhancing the system’s accuracy and reliability. Second, the time-varying nature of the scaling transformation allows
the system to adapt to changes in operating conditions or external disturbances, maintaining robust performance.
This adaptability is particularly valuable in dynamic environments where system behavior may vary significantly
over time. Moreover, driving tracking errors into a predefined range provides better control over system output,
which is beneficial for applications that demand tight regulation or strict performance criteria. Overall, the time-
varying scaling transformation offers a powerful and flexible approach to achieving accurate and robust tracking in
control systems.

Remark 2. Compared with the PE condition, the IE condition imposes more relaxed requirements. The PE
condition demands that the system input signal remain sufficiently active over time to ensure accurate parameter
identification. However, such stringent requirements can be difficult or costly to meet in practical applications. In
contrast, the IE condition only requires that the input signal contain sufficient information within specific time
intervals to update the system parameters, thereby reducing the continuous demand on the system input. This
makes the IE condition more feasible in practice, particularly in resource-constrained or complex environments.
Furthermore, although the PE condition was originally proposed to guarantee accurate parameter identification, such
strictness is not always necessary. Certain learning algorithms perform better under tailored excitation conditions,
making the IE condition more suitable for those cases. By relaxing excitation requirements, the IE condition
supports learning performance while easing the continuous input demand, offering clear advantages in practical
scenarios. This flexibility makes the IE condition a valuable excitation strategy in CL.

In this study, qd(t) ∈ Rn is the reference signal trajectory, satisfying the condition qd(t), q̇d(t), q̈d(t) ∈ L∞, and θ̂

is employed for the estimation for θ. Based on the above definition, e(t) = q(t)− qd(t) and θ̃ = θ− θ̂ were obtained.
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3 Main results

3.1 Universal time-varying asymmetric-error transformation

The prescribed function, ψ(·) : (di, d̄i) → (−∞,∞), is denoted as follows:

ψ(x) = ln

(

d̄i(x− di)

−di(d̄i − x)

)

. (6)

Notably, Eq. (6) is strictly monotonically increasing for any scalar variable, x, where ψ(0) = 0, limx→di
ψ(x) =

−∞, and limx→d̄i
ψ(x) = ∞.

Further, the inverse function of ψ(x) is given by the following:

ψ(x)−1 =
did̄i(exp(x) − 1)

diexp(x) − d̄i
. (7)

It can be inferred that ψ(x)−1
x→∞ → (di, d̄i) and ψ(x)−1(0) = 0. Thus, the prescribed performance can be

rewritten as

diχi(t) < ei(t) < d̄iχi(t), (8)

where χi(t) is the PPF, the position-tracking error, e = q − qd, is the desired trajectory, and di and d̄i can be
described, as follows:

di =

{

− ϑi, ei(0) > 0,

− 1, ei(0) < 0,
d̄i =

{

ϑi, ei(0) > 0,

1, ei(0) < 0,
(9)

where ϑi ∈ (0, 1) is a constant with respect to the adjustable overshoot, e(t) = [e1(t),. . .,en(t)]
T, and ei(0) is the

initial position-tracking error.
To analyze the latter content, the following auxiliary variable, ̺i, is designed:

̺i =
ei
χi
. (10)

In Eqs. (6) and (10), we introduce the ith component of ζ, as follows:

ζi = ψ(̺i). (11)

The time derivative of (11) is given, as follows:

ζ̇i = βi(ėi + αiei), (12)

and

αi = −χ̇i/χi, βi = υ(̺i)/χi. (13)

From Definition 1, as χi > 0 and χ̇i 6 0, it follows that αi > 0. Additionally, by combining (13) with χ−1
i >

χ−1
0i > 0, we obtain

βi > 2χ−1
0i . (14)

Thus, the vector form of (12) can be described by the following equation:

ζ̇ = γ1ė+ γ2, (15)

where ζ̇ = [ζ̇1, . . . , ζ̇n]
T ∈ Rn, γ1 = diag{γ1i} ∈ Rn×n, γ2 = [γ21, . . . , γ2n]

T ∈ Rn, γ1i = βi,γ2i = βiαiei, i = 1, . . . , n.
Based on (13) and (14), we obtain γ1i > 0, yielding the positive definiteness of matrix γ1. Moreover, γ1 and γ2 are
readily accessible for subsequent controller designs.
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Based on (15), Eq. (1) can be rewritten as

H(q)γ−1
1 ζ̈ + (Hd(γ−1

1 )/dt+Dγ−1
1 )ζ̇ + F q̇ +Hd(q̇d − γ−1

1 γ2)/dt+D(q̇d − γ−1
1 γ2) + g(q) = τ. (16)

Consider (16) with γ−1
1 , the following can be achieved:

M(q, γ1)ζ̈ + C(q,q̇, γ1, γ̇1)ζ̇ + ℑ(q, q̇, γ1, γ̇1, γ2, γ̇2) = γ−1
1 τ, (17)

where M = γ−1
1 Hγ−1

1 , C = γ−1
1 Hd(γ−1

1 )/dt+ γ−1
1 Dγ−1

1 , ℑ = γ−1
1 [D(q̇d − γ−1

1 γ2) + F q̇ + g +Hd(q̇d − γ−1
1 γ2)/dt].

Remark 3. Properties 1–3 confirm that the system, (17), exhibits the following attributes. (1)M(q, γ1) and H(q)
have similar properties. Both are positive definite matrices, and there exist c1 ∈ R+ and c2 ∈ R+ such that c1I 6

M(q, γ1) 6 c2I. (2) Similarly, xT(Ṁ(q, γ1)−2C(q, q̇, γ1, γ̇1))x = 0, x ∈ Rn×1. The matrix, Ṁ(q, γ1)−2C(q, q̇, γ1, γ̇1),
is skew-symmetric. (3) The dynamical equation, (17), is linear, comprising a set of unknown physical parameter
vectors θ.

M(q, γ1)ξ̇ + C(q, q̇, γ1, γ̇1)ξ + ℑ(q, q̇, γ1, γ̇1, γ2, γ̇2) = W̄T(q, q̇, γ1, γ̇1, γ2, γ̇2, ξ, ξ̇)θ, (18)

where W (q, q̇, γ1, γ̇1, γ2, γ̇2, ξ, ξ̇) is the regressor matrix. Based on the above analysis, we reformulate the dynamical
equation, (1), obtaining an equivalent “unconstrained” system (17).

Remark 4. Following the quantitative formulation of the transient and steady-state performance constraints of
the controlled system, we further introduced upper and lower bound constraints into the control system, thereby
increasing the complexity of designing the corresponding controller. To achieve the subsequent controller design,
the constrained nonlinear system must be converted into an unconstrained one. Additionally, finding an error-
transformation function that enables homeomorphic mapping is key to achieving an equivalent transformation from
the performance-constrained space to an unconstrained space. Compared with the original system, the transformed
nonlinear system is unconstrained. Therefore, utilizing this new transformed system reduces the complexity of
controller designs. As a homeomorphic mapping exists between the original and new systems, the subsequent
controller design must only ensure that the states of the mapped system are bounded without relying on the
constraint conditions of the original system. Notably, constraints do not necessarily change the control structure
that is designed for the transformed nonlinear system. In this study, we offered a supplementary explanation.

3.2 NCLPTC design

Here, we design a novel CLPTC strategy. The objective is to achieve PTC and parameter identification without
encountering singularities. Notably, this is accomplished under the lenient, weak IE condition. According to
Property 3, the robotic model (1) can be writen as follows:

τ =WT(q, q̇, q̈)θ. (19)

One may observe that the regressor matrix W (q, q̇, q̈) includes the joint acceleration (q̈), which is sensitive to
measurement noise. To reduce reliance on acceleration information (q̈), the following linear filter [9] is adopted:

τ̇f (t) = α(τ(t) − τf (t)), (20)

ẆT
f (q, q̇) = α(WT(q, q̇, q̈)−WT

f (q, q̇)), (21)

where τf (0) = 0, α ∈ R+ is a filtering constant, τf (t) andWf (q, q̇) are the filtered counterparts of τ(t) andW (q, q̇, q̈),
respectively, and the initial condition is WT

f (0) = 0. The filtered robotic model is expressed as follows:

τf =WT
f (q, q̇)θ. (22)

By multiplying both sides of (22) by Wf (q, q̇) and integrating the resulting equality over the interval [t− td, t], we
obtain

Θ(t) =

∫ t

t−td

Wf (q(ϕ), q̇(ϕ))W
T
f (q(ϕ), q̇(ϕ))dϕ, (23)

Θ(t)θ =

∫ t

t−td

Wf (q(ϕ), q̇(ϕ))τf (ϕ)dϕ, (24)
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where Θ(t) is called the excitation matrix. If the IE condition is satisfied, then according to Definition 1, there exist
positive constants Te, td, and σ such that Θ(Te) > σI.

Next, a prediction error (ε) and a modified excitation matrix (Θ̄(t)) are defined as follows:

ε(t) =

{

Θ(Te)θ −Θ(Te)θ̂,

Θ(t)θ −Θ(t)θ̂,
Θ̄(t) =

{

Θ(Te), t > Te,

Θ(t), t < Te.
(25)

According to (25), we immediately obtain

ε(t) = Θ̄(t)θ̃. (26)

Subsequently, the parameter composite learning law is formulated as follows:

˙̂
θ = ΓP

(

Θ̄T π

2ηTc

((

1

2
εTΓ−1ε

)−
η
2

+

(

1

2
εTΓ−1ε

)

η
2
)

Γε+ W̄T(q, q̇, γ1, γ̇1, γ2, γ̇2, ζ̇r, ζ̈r)s

)

, (27)

where W̄T(q, q̇, γ1, γ̇1, γ2, γ̇2, ζ̇r, ζ̈r) is the regressor matrix. For ease of computation, we replaced W̄T(q, q̇, γ1, γ̇1, γ2,
γ̇2, ζ̇r, ζ̈r) with W̄

T. Notably, s is the NFPTSM, which will be discussed below. Γ ∈ Rm×m are the feedback gain
matrices. In the preceding section, we designed PTCL. Based on this, we designed the predefined-time controller
as shown in Figure 1 and discussed in the next section.

To guarantee CLPTC without encountering singularities, NFPTSM, s = col{si}, is constructed, as follows:

si = ζ̇i +
ωi

Tsi
ki|ζi|

λiζ
2
i

1+µiζ
2
i sign(ζ1i), (28)

where ωi > (1/ki(θi − 1) + 1/kie
−

λi
2e ), with ζi ∈ R, λi > 0, and µi > 0 such that ιi =

λi

1+µi
> 1.

Remark 5. This study presents a novel finding on global robust predefined-time stability using constant and state-
dependent variable exponent coefficients. To the best of our knowledge, these coefficients have not been previously
used in predefined-time stability analysis. By adopting the sliding mode control (SMC) method, we achieve global
robust asymptotic stability for a class of uncertain robotic systems. Furthermore, robust predefined-time stability
of the sliding-mode variable system is realized using constant exponential coefficients in the sliding-mode variable
and the controller. By introducing state-dependent variable exponential coefficients into both components, we
also achieve global robust predefined-time stability. The proposed sliding-mode controller is time-independent,
nonsingular, robust to finite disturbances, and easy to implement. Compared with the constant exponent strategy,
the use of variable exponential coefficients allows robust predefined-time SMC. Achieving predefined-time stability of
the global system using sliding-mode control is challenging due to the singularities that may arise with the simplest
sliding-mode variables. However, by simultaneously using variable exponential coefficients in both the sliding-mode
variable and controller, we propose a simple solution to eliminate these singularities.

Remark 6. Note that the function, ϕi : ζi → |ζi|
λiζ

2
i

1+µiζ
2
i = exp(

λiζ
2
1i

1+µiζ2
i

ln(|ζi|)), is continuous at ζi = 0 with

ϕi(0) = 1. Therefore, the right-hand side of (28) is locally bounded. Consider the following quadratic Lyapunov
function:

Vi(ζi) = ζ2i . (29)

The equation yields

V̇i(ζi) = −2
ωi

Tsi
ki|ζi|

λiζ
2
i

1+µiζ
2
i

+1
. (30)

Consider the case, Vi(ζ1i) > 1. We then have
λiζ

2
i

1+µζ2
i

+1 >
λi

1+µi
+1 > 2. As |ζi| > 1 and ιi =

λi

1+µi
> 1, it exhibits

V̇i(ζi) 6 −2
ωi

Tci
ki|ζi|

ιi+1
6 −2

ωi

Tci
kiVi(ζi)

ιi+1

2 . (31)

Furthermore, ki > 0 and θi+1
2 > 1 ensure that all the solutions beginning from V (ζi) > 1 reach the set, V (ζi) 6 1,

in a predefined time, T1i 6
Tci

ωiki(ιi−1) .

In case Vi(ζi) 6 1, we obtain

V̇i(ζi) = −2
ωi

Tci
ki|ζi|

λiζ
2
i

1+µiζ
2
i , (32)
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Figure 1 (Color online) Schematic of the proposed control strategy.

where 1 + µiζ
2
i > 1 and |ζi| 6 1. We obtain min(|ζi|

λiζ
2
i

1+µiζ
2
i ) > min(|ζi|

λiζ
2
1i) = e

−λi
2e , and subsequently

V̇i(ζi) 6 −2
ωi

Tci
kie

−λi
2e |ζi| 6 −2

ωi

Tci
kie

−λi
2e Vi(ζi)

1
2 . (33)

With kie
−λi
2e > 0, all the solutions starting from Vi(ζi) 6 1 reach the origin in a uniform time T2i 6

Tci

ωikie
−λi
2e

.

Finally, system (28) reaches the origin in a predefined time Tsi(x0) 6 T1i + T2i. This means that Tsi(x0) 6
Tci

ωi
( 1
ki(θi−1) +

1

kie
−

λi
2e

). Select ωi > ( 1
ki(θi−1) +

1

kie
−

λi
2e

), we have Tsi(x0) 6 Tci.

This indicates that the NFPTSM converges to the origin within the predefined time.
Based on (17), (28) and Property 6, the following can be achieved:

M(q, γ1)ṡ+ C(q, q̇, γ1, γ̇1)s = γ−1
1 τ − W̄Tθ. (34)

Thus, the control law is designed as follows:

τ = −γ1

((

π

2ηTc

((

1

2
sTΓ−1s

)−η/2

+

(

1

2
sTΓ−1s

)η/2))

Ms+ W̄Tθ̂

)

, (35)

where matrices Γ−1 ∈ Rn×n are positive and diagonal-definite.
Applying (34) to (35) yields the closed-loop dynamics, as follows:

M(q, µ1)ṡ+ C(q, q̇, µ1, µ̇1)s = −W̄Tθ̃ −
π

2ηTc

(((

1

2
sTΓ−1s

)−η/2

+

(

1

2
sTΓ−1s

)η/2)

Ms

)

. (36)

3.3 Stability analysis

The following results can be obtained based on Subsection 3.2.



Zeng X D, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132201:8

Theorem 1. For the robotic system, (1), with the parameter-learning law, (27), and the controller, (35), there
exists Te > 0, which satisfies the IE condition, Θ(Te) > σI, σ, td ∈ R+. Based on this, we obtained the following.
(1) ei is always stable in (diχi, d̄iχi) and converges to (diχ∞i, d̄iχ∞i) at Ti. (2) θ̃ and e converge to zero within a
predefined time, Tf , during which Tf 6 Ts+Tc+Te, Ts = max{Ts1, . . . , Tsn}. Further, Tc = max{Tc1, . . . , Tcn} are
known positive constants.
Proof. First, consider the Lyapunov candidate function V1:

V1 =
1

2
sTM(q, γ1)s. (37)

By differentiating V1 and using (34), one achieves

V̇1 = sT
(

γT1 τ − W̄Tθ +
1

2
Ṁs−Ds

)

. (38)

Based on Properties 4 and 5, we obtained

V̇1 = sT(γT1 τ − W̄Tθ). (39)

Substituting the control law, (35), into (39) yields

V̇1 = sTȲ Tθ̃ −
π

2ηTc
sTπMs, (40)

where π = (12s
TΓ−1s)−

η
2 + (12s

TΓ−1s)
η
2 .

Second, considering the Lyapunov candidate function V2:

V2 =
1

2
sTM(q, γ1)s+

1

2
θ̃TΓ−1θ̃. (41)

The derivative of V2 can be obtained as

V̇2 = −sT
π

2ηTc
πMs+ θ̃(sTW − Γ−1 ˙̂θ). (42)

Relying on the characteristics of the projection operation in [38], the parameter update law guarantees θ̂(t) ∈ Ωcθ

with θ̂(0) ∈ Ωcθ and θ̃(sTY −Γ−1 ˙̂θ) 6 −θ̃Θ̄T π

2ηTc
((12ε

TΓ−1ε)−η/2+(12ε
TΓ−1ε)η/2)Γ−1ε. Employing the predefined-

time CL update law (27), and Eq. (26) yields

V̇2 6−
π

2ηTc

((

1

2
sTMs

)1−η/2

+

(

1

2
sTMs

)1+η/2)

−
π

2ηTc

((

1

2
εTΓ−1ε

)1−η/2

+

(

1

2
εTΓ−1ε

)1+η/2)

.

(43)

As the IE condition holds that Θ̄(t) > σI, we obtained

V̇2 6−
π

2ηTc

((

1

2
sTMs

)

1−η
2

+ σ2−η

(

1

2
θ̃TΓ−1θ̃

)

1−η
2
)

−
π

2ηTc

((

1

2
sTMs

)

1+η
2

+ σ2+η

(

1

2
θ̃TΓ−1θ̃

)

1+η
2
)

.

(44)

Further, by defining k1 = min{1, σ2−η} and k2 = min{1, σ2+η}, and according to Lemma 2, we obtained the
following:

V̇2 6−
π

2ηTc
k1

((

1

2
sTMs+

1

2
θ̃TΓ−1θ̃

)1−η/2)

−
π

2ηTc
k2

((

1

2
sTMs+

1

2
θ̃TΓ−1θ̃

)1+η/2)

.

(45)
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Figure 2 (Color online) Illustration of the experimental platform.

Employing (41) and (45) yields

V̇2 6 −
π

2ηTc
k
(

V
1−η/2
2 + V

1+η/2
2

)

, (46)

where k = min{k1, k2}.
Based on (46) with Lemma 1, we confirmed that the sliding-mode surface, s, converged to zero in a predefined

time. Based on (10) and (11), we deduced the following:

ei = χiψ
−1(ζi). (47)

Based on Lemma 3, the information presented in (7) regarding ψ−1(0) = 0 and the bounded positivity of χi

confirmed that ei and ζi globally converged to zero in a predefined time.
The preceding analysis revealed that ζi ∈ L∞ holds for t > 0. Consequently, by integrating ψ−1(ζi) ∈ (χ

i
, χ̄i)

from (7), we characterized the range of (47), as follows:

ei ∈ (diχi, d̄iχi). (48)

Additionally, Eq. (48) and Lemma 3 revealed that the position tracking, ei, was always stable in (diχi, d̄iχi). Eq.
(3) confirmed that ei would be stable within (diχ∞i, d̄iχ∞i) at Ti. Furthermore, Lemma 1 and Remark 2 confirmed
that θ̃ and e converged to zero within a predefined time, Tf , during which Tf 6 Ts+Tc+Te, Ts = max{Ts1, . . . , Tsn},
and Tc = max{Tc1, . . . , Tcn} are known positive constants. The proof is completed.

Remark 7. The PPF parameters can be selected based on actual needs. Parameters li and Ti determine the
convergence rate of PPF. If the parameter, χ∞i, is selected to approximately zero, the error, ei, can be as small
as desired. Thus, to achieve optimized performance, we can select a smaller χ∞i. However, it must be noted that
extremely small χ∞i will make the controller suffer from a peaking phenomenon. Other parameters are obtained
through theoretical analysis, as well as by trial and error. To reduce chattering, we utilize the sat(·) function instead
of the sign(·) function.

4 Experiment

For the experiment, we utilized the DENSO robotic arm (Type: VP-6242G; Figure 2). The DENSO VP-6242G
robotic arm is a compact yet powerful industrial robot that is designed for versatility across various applications. It
features a sleek design with a small footprint and reduced loading area, a maximum payload capacity of 2.5 kg, six
movement axes for excellent maneuverability and precision, and a positioning repeatability of 0.02 mm, ensuring
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Figure 3 (Color online) Position-tracking errors under regulation

trajectories with different controllers.

Figure 4 (Color online) Position-tracking errors under trajectories

with different controllers.

high accuracy. Featuring energy-efficient motors rated below 80 W per axis and a total motor capacity of less than
300 W, VP-6242G supports applications such as material handling, palletizing, loading/unloading, and sealing. Its
modular design ensures facile installation and maintenance, allowing for floor- and ceiling-mounted configurations,
and its robust and reliable construction ensures consistent performance and longevity, making it an excellent choice
for automated production lines across diverse industries. To ensure comprehensive comparisons, we conducted
experiments for regulation and tracking scenarios.

Case 1. Regulation experiments were executed using a desired qd, as follows:
[

q̇di

q̈di

]

=

[

0 1

−36 −12

][

qdi

q̇di

]

+

[

0

36

]

qci, (49)

where i = 1, 2. Our choice of (qc1, qc2) followed that in [6]. The control gains and parameters were selected

as µ1 = µ2 = 1.7, k1 = k2 = 5, Γ = 0.8I, σ = 0.06, td = 1.2 s, Te = 0.3 s, θ̂(0) = [0, 0, 0, 0, 0, 0, 0]T. Let
θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7]

T. The predefined-time was Tc1 = Tc2 = 0.8, with η = 0.5. The prescribed performance
parameters were also selected, As follows: χ01 = 0.5, χ02 = 0.1, χ∞1 = χ∞2 = 0.02, l1 = l2 = 1.5, ϑ1 = ϑ2 = 0.2,
T1 = T2 = 0.9. The fixed-time terminal sliding mode prescribed performance control (FTSMPPC) parameters
in [37] were selected, as follows: r = 2.8, p = 0.9, k = 3, σ = 3.2, δ = 0.02, K0 = [3 0; 0 3], K1 = [0.003 0; 0 0.003],
and K2 = [0.2 0; 0 0.2]. The fixed-time terminal sliding-mode control (FTSMC) parameters [39] were selected, as
follows: p = 0.7, r = 2.3, k = 3, δ = 0.03, σ = 2.5, Ka = [3 0; 0 3], Kb = [2 0; 0 4], and Kc = [6 0, 0 6].

The experimental results demonstrate that all the controllers perform well in trajectory tracking. Notably, the
proposed NCLPTC exhibits a considerably faster convergence rate compared to FTSMPPC and FTSMC. Under
FTSMC, the joint tracking error exhibits significant overshoot, and the tracking errors fail to remain within the
predefined performance bounds (PPBs). Under FTSMPPC, although the tracking errors stay within the PPB.
However, the convergence rate is notably slower than that of NCLPTC. The integration of the PPF in NCLPTC
ensures that the tracking errors consistently stay within PPB. To further demonstrate the superior performance
of the proposed NCLPTC, comparative experiments were conducted with the recently proposed GCLFTC in [19].
The comparative results are presented in Figures 3 and 4. As observed in Figures 3 and 4, the tracking error
converges to zero significantly faster under the proposed NCLPTC scheme than with other methods, and the
tracking error consistently remains within the PPB. The parameter convergence is shown in Figure 5. To facilitate
a clear comparison of the parameter-identification condition, we display the scenarios of ‖θ̂‖ in Figure 6(a). The
estimation values obtained by (27) were realized more rapidly by the proposed control scheme than GCLFTC.
Figure 7 shows the inputs of the different control schemes.

Case 2. The tracking experiments were conducted using a desired qd generated through an inverse kinematics
model [6]







qd1 = arctan

(

xd2
xd1

)

− arctan

(

sin(qd2)

1 + cos(qd2)

)

,

qd2 = arctan(2x2d1 + 2x2d2 − 1).
(50)
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Figure 5 (Color online) Parameter-estimation under a regulation scenario.

Figure 6 (Color online) Parameter-estimation performance. (a) represents the parameter identification condition in Case 1, and (b) represents

the parameter-identification condition in Case 2.

The following control parameters were selected: µ1 = µ2 = 1.3, k1 = k2 = 2, Γ = 0.6I, σ = 0.06, td = 1.2s, Te =
0.5s, θ̂(0) = [0, 0, 0, 0, 0, 0, 0]T. The predefined-time was Tc1 = Tc2 = 0.8, with η = 0.3. The following prescribed
performance parameters were selected: χ01 = 0.9, χ02 = 0.2, χ∞1 = χ∞2 = 0.02, l1 = l2 = 1.7, ϑ1 = ϑ2 = 0.3,
T1 = T2 = 0.9. The FTSMPPC parameters in [37] were selected: r = 2.4, k = 3, p = 0.7, δ = 0.01, σ = 2.5,
K0 = [1 0, 0 1], K1 = [0.015 0, 0 0.015], and K2 = [0.2 0, 0 0.2). The FTSMC parameters in [39] were selected:
p = 0.7, r = 1.6, k = 3, δ = 0.03, σ = 3.5, Ka = [1.5 0; 0 1.5], Kb = [2.5 0; 0 2.5], and Kc = [1.5 0; 0 1.5]. The
scenarios are illustrated in Figures 4, 8, 9, and 6(b). The scenarios exhibit a close resemblance to Case 1, achieving
commendable outcomes regarding tracking-error minimization and parameter convergence.

Discussion. In the regulation and tracking scenarios, the results demonstrate that the proposed control scheme
ensures that the parameter estimation and tracking errors converge to zero within a predefined time. This per-
formance is primarily attributed to the incorporation of the prediction error in the CL law, which quantifies the
discrepancy between the model’s predicted values and the actual system observations. Compared with traditional
adaptive methods, this approach enhances the speed and accuracy of parameter convergence while improving overall
trajectory tracking performance. Due to the fact that the control force of a physical system cannot be infinitely
large and inertia is inherent in the system, control switching is accompanied by hysteresis. Near the switching
surface, the time lag in switching causes a delay in the precise change of state triggered by the control action. Fur-
thermore, since the magnitude of the control variable gradually decreases with the magnitude of the state variable,
this behavior appears as a decaying triangular wave superimposed on the smooth sliding-mode surface. Conse-
quently, a “dead zone” for state-variable changes is formed in the state space, leading to control discontinuity and,
consequently, the generation of chattering. The combined effect of these factors causes variable-structure control to
exhibit high-frequency chattering in sliding mode. In this study, CL techniques are adopted to address unknown
dynamics. Estimated values and regression matrices are incorporated into the controller to compensate for these
unknown dynamics, thereby reducing reliance on switching terms. In addition, during experiments, the sign func-
tion is replaced with the hyperbolic tangent function to further suppress chattering. These approaches contribute to
a smooth, continuous control process and effectively reduce chattering. In experiments, gains are typically adjusted
to ensure that the system responds quickly and accurately to command changes. Appropriately increasing the gain
can improve the system’s response speed, enabling it to reach a new stable state rapidly. However, if the gain is set
too high, it may lead to instability; if it is too low, the system may remain stable but respond sluggishly. In the
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Figure 7 (Color online) Experimental requested inputs under regulation scenarios. (a), (c), (e), and (g) represent the Joint 1 control inputs of

NCLPTC, GCLFTC, FTSMC, and FTSMPPC, respectively. (b), (d), (f), and (h) represent the Joint 2 control inputs of NCLPTC, GCLFTC,

FTSMC, and FTSMPPC, respectively.

Figure 8 (Color online) Parameter estimation under a tracking scenario.

experimental process presented in this study, the initial gain was set to a small constant value. The parameters were
then gradually increased based on the system’s output response, ensuring that the selected gain produced effective
control performance in practical applications.

5 Conclusion

In this paper, a novel nonsingular SMC method integrating variable-exponent coefficients with NCLPTC and PPC
was presented for the PTC of robotic systems. By employing a simple variable-exponent coefficient in the sliding
variable, the NCLPTC method achieved the prescribed performance without encountering singularities. Coupled
with the predefined-time strategy, the concise relationship between the tuning gains and the predefined stabilization
time was established. It demonstrated that the position-tracking error converged to and remained within the PPB
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Figure 9 (Color online) Experimental requested inputs under the tracking scenario. (a), (c), (e), and (g) represent the Joint 1 control inputs

of NCLPTC, GCLFTC, FTSMC, and FTSMPPC, respectively. (b), (d), (f), and (h) represent the Joint 2 control inputs of NCLPTC, GCLFTC,

FTSMC, and FTSMPPC, respectively.

under a much weaker IE condition within a globally predefined time. The effectiveness and practical implementation
of the proposed control schemes were experimentally demonstrated.
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