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Abstract The advanced persistent threat (APT) has become a major challenge in cybersecurity due to its concealment, persistence,

and complexity. Traditional passive defense methods, owing to their static and reactive characteristics, struggle to provide sufficient

protection against APT attacks. By contrast, active defense solutions have gained increasing attention due to their ability to shift the

defender from passivity to taking the initiative. Deception defense is a widely used active defense method to prevent threats in advance

by deploying deception resources. Despite its development, existing deception methods often assume that the defender and the APT

attacker take actions simultaneously. In practice, due to his advanced nature, the APT attacker can first observe the defender’s strategy

through reconnaissance and then make his best responses to the defender’s strategy. In this paper, we develop a game model to accurately

characterize this worst-case scenario from the defender’s perspective. Specifically, we establish a Stackelberg game, called cyber deception

Stackelberg game (CDSG), where the defender first announces the allocation strategy of limited deception resources to a set of services

with the anticipation that the APT attacker will best respond to her strategy, and the attacker determines his action after observing

the defender’s strategy. In the game model, we also consider that different types of deception resources have varied probabilities of

successfully capturing the APT attacker. Given the game model, we then devise a gradient descent based algorithm to solve CDSG for

the equilibrium, which offers the defender a robust deception resource allocation strategy. Finally, experiments are conducted to verify

the effectiveness of the deception defense strategy in defending against APT attackers and its superiority over several baselines.
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1 Introduction

In today’s digital era, networks have become an indispensable and integral component of human society, pro-
foundly shaping personal lifestyles, business operations, and governmental governance models. The Internet and
various information systems not only enable seamless global communication and collaboration, but also underpin
the operation of critical infrastructures, such as healthcare, energy, and transportation [1]. As society’s reliance on
networks and digital technologies continues to deepen, ensuring the security and stability of cyberspace has become
increasingly critical.

However, with the rapid advancement of network technologies, cyber threats have also exhibited trends of in-
creasing scale and complexity. From financial fraud and data breaches to attacks targeting critical infrastructures,
malicious actors exploit system vulnerabilities to carry out disruptive activities, steal sensitive information, or pur-
sue political and economic gains [2,3]. Among these threats, APT [4] stands out as one of the most serious challenges
in the field of cybersecurity due to its stealthiness, persistence, highly targeted nature, and sophisticated attack
techniques. APT attackers typically target high-value entities such as government agencies, military organizations,
and multinational corporations, aiming to maintain long-term unauthorized access to or disrupt their systems. The
risks posed by such attackers not only threaten corporate security but also have serious implications for national
development.
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Passive defense, such as firewalls and intrusion detection systems, mainly relies on fixed rules and known features
of cyber attacks. However, APT attacks often use zero-day vulnerabilities, social engineering, and advanced stealth
techniques, and constantly adjust strategies during the attack to evade detection tools and defense systems [5]. This
makes it difficult for passive defense to identify these changing attack activities. In addition, APT attackers will
also establish persistent channels by implanting backdoors, Web Shells, and intranet proxies, making it difficult for
passive defense to detect their subsequent activities.

Therefore, as discussed earlier, relying solely on passive defense can no longer effectively resist APT attacks, and
building an active defense system has become an inevitable choice [6]. The core difference between active defense
and passive defense lies in the change in their response methods, from simple passive responses to active threat
perception and countermeasures [7]. Especially when facing complex and highly concealed attack scenarios, threat
perception capability is crucial in the defense system. Compared with traditional defense methods, by deploying
deception defense resources such as honeypoints [8] in the network, it is possible to perceive the threatening behavior
of the attacker in advance before the attacker completes the penetration [9, 10]. In addition, deception defense can
also mislead attackers. By guiding attackers to false targets for observation, the technical tools and attack strategies
used by them are exposed, providing key clues for subsequent defense response and attack tracing [11].

Since APT attacks are persistent, attackers often conduct long-term detection, penetration, and attacks on target
systems. This persistence makes static deception defense measures easily ineffective when facing APT attacks. If
defense resources remain unchanged, attackers can gradually identify bait resources through repeated probing,
thereby avoiding deception traps and causing deception defense failure. More seriously, smart attackers may also
deliberately detect identified deception resources, causing a large amount of log redundancy and interfering with
the judgment of defenders. Moreover, the resources of defenders are often limited. Deploying too many deception
resources will affect the normal operation of the network. Thus, it is impossible to deploy deception resources
for every service in the network. In order to deal with the above challenges, the deception defense system must
introduce a dynamic decision-making mechanism to more effectively and efficiently deploy the limited deception
resources.

Game theory, as a systematic decision-making analysis method, has been widely used to help defenders achieve
optimal defense in dynamic environments [12,13]. Although existing game-theoretic based deception defenses have
achieved some success, they are overly optimistic when facing APT, as they fail to fully consider the characteristics
of APT attacks.

To better deal with APT, a cyber deception Stackelberg game model (CDSG) is proposed in this paper. The
model aims to optimize the deployment strategy of cyber deception resources to combat APT under resource
constraints. Unlike other network threats, APT is characterized by its long duration and strong concealment.
Therefore, CDSG assumes that APT attackers are sufficiently powerful and considers the most pessimistic scenario:
the defender has no information about the attacker, while the attacker has complete knowledge of the defender’s
strategy before taking any action and responds with the best strategy. The defender minimizes the lower bound of
loss by minimizing the maximum loss. The main contributions of this study are summarized as follows.

• Taking the characteristics of APT attacks and limited defense resources into account, a cyber dynamic deception
method based on the Stackelberg game is proposed. This method captures the sequential relationship in which the
defender always deploys deception resources in the system first, while the APT attacker conducts information
gathering before launching an intrusion.

• To solve the Nash equilibrium of the game, we first transform the problem into a constrained optimization
problem, and then solve the problem by constructing a gradient descent method.

• Experiments are conducted using the configuration of a real subnet, and the effectiveness of CDSG was validated
through numerical simulations and comparisons with different decision-making methods. The experimental results
demonstrate that CDSG significantly reduces the maximum loss across all services by coordinating different types
of deception resources, and it performs even better when the quantity of resources is relatively small.

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3 describes the
modeling process of CDSG in detail. Then, the solution of the optimal deception strategy is introduced in Section
4. We evaluate and compare CDSG in Section 5. Finally, Section 6 summarizes this work and discusses potential
future work.

2 Related work

In this section, we comprehensively review previous studies related to our work.
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2.1 Game theory for APT and deception defense

Game theory is widely used to model the interaction between attackers and defenders in cybersecurity [14,15]. Feng
et al. [16] enhanced the MTD strategy by incorporating information leakage, proposing a Bayesian Stackelberg
game model to study the optimal moving strategies of the defender. They also demonstrated how signaling can
be used to influence the attacker’s behavior, thereby achieving a more efficient active defense. Liu et al. [17]
proposed an APT deception game to describe the interactions between the defender and the attacker. To reduce
computational complexity, they simplified the problem of finding the optimal deployment strategy into a decoy
credential sequence problem and a decoy credential allocation problem. Wan et al. [18] proposed a hypergame
model to address structural uncertainties in APTs. In this model, multiple APT attackers and a single defender
engage in repeated games based on their perceptions. Zhang et al. [19] proposed an APT competitive game to
demonstrate how strategy adjustments can reduce information leakage. Additionally, two learning mechanisms
were introduced to assist the defender in identifying appropriate defense levels and efficiently allocating resources.

Many methods combine the SIR epidemic model to describe the evolution of node states in the attack and
defense game. Yang et al. [20] modeled the APT repair problem as a game problem and obtained effective repair
strategies through SIR models and differential game theory. Mi et al. [21] introduced Gaussian noise to characterize
the stochastic effects during strategy execution and established a stochastic differential game model for attack-
defense scenarios by integrating the SIR epidemic model. The optimal defense strategy is determined by solving
for the saddle-point equilibrium, thereby achieving real-time defense decision-making. Bi et al. [22] addressed the
lateral movement phase of the APT attack in the Industrial Internet of Things (IIoT) by establishing a node-
level state evolution model and a Stackelberg game model, thereby proposing an effective APT defense strategy.
Considering the different protection capabilities of different devices in IIoT, Ref. [23] classified the devices and
constructed differential games to solve the optimal defense strategy. He et al. [24] utilized the SIR model to derive
the differential equations of node states in a deception defense system and employed the deep Q-network to solve
for the optimal configuration of deception assets. However, due to the stealthiness of APT attacks, it is difficult to
accurately obtain the node states during the attack-defense process.

Given the constraints of technology, information, and other factors, both players may not be able to make optimal
decisions during the game. Tan et al. [25] developed an evolutionary model for moving target defense strategies
based on the Wright-Fisher process, taking into account the bounded rationality of both attackers and defenders.
Jin et al. [26] addressed the differences and limitations in cognitive abilities between attackers and defenders,
integrating regret minimization algorithms with evolutionary game theory to propose a decision-making method for
cyber attack-defense games under bounded rationality. In [27], the authors introduced the decision-maker’s degree
of irrationality and the level of environmental security into the replicator dynamics equation of the differential game.

In specific scenarios, Xiao et al. [28] applied prospect theory to cloud storage defense, examining the interactions
between defenders and subjective APT attackers under both pure and mixed strategies, and proposed a defense
strategy based on Q-learning. Regarding the integration of information and physical systems in power grids, Ge
et al. [29] proposed an optimal allocation method for smart grid defense resources based on game theory. They
designed a two-layer game model for resource optimization: one layer involves an evolutionary game between defense
nodes and attackers, while the other layer is a non-cooperative game among multiple defense nodes. Aiming at
APT attacks in the Industrial Internet of Things, Tian et al. [30] proposed a dynamic bounded rational honeypot
APT game model based on SDN. To describe bounded rationality, they employed prospect theory to characterize
players’ utilities when they have incomplete information about their opponent.

Additionally, Ye et al. [31] integrated differential privacy with game theory, proposing the use of a differential
privacy-based approach to add noise to the system’s configuration. Dong et al. [32] incorporated intuitionistic fuzzy
theory into attack-defense games to more accurately depict the uncertainties and subjective preferences inherent
in such games. He et al. [33] extended the single-stage FlipIt game model by introducing discount factors and
transition probabilities, thereby constructing a multi-stage cyber deception model.

2.2 Other method

In addition to game theory, attack graphs and reinforcement learning (RL) have also been often used to optimize
deception defense strategies. Ngo et al. [34] used attack graphs to model the active directory to help understand and
respond to complex active directory attack environments. They combined mixed integer programming and heuristic
methods to solve the problem of honeypot deployment in large-scale active directory attack graphs and generate
near-optimal interception plans. Yoon et al. [35] proposed a three-layer attack graph to analyze the vulnerability
and topology information of the network, helping identify high-risk hosts and attack paths, and providing decision
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support for MTD to ensure better protection of critical assets. To defend against reconnaissance attacks in cloud
environments, Li et al. [36] proposed a defense deception framework based on deep RL to generate optimal deception
strategies to confuse reconnaissance attacks. Zhang et al. [37] proposed a host address mutation method based on
deep RL for the reconnaissance phase to reduce the number of scan hits by attackers. To find adaptive policies for
MTD, Eghtesad et al. [38] proposed a POMDP model. Ref. [39] proposed a grouped multi-agent deep reinforcement
learning defense algorithm to divide all defenders into cooperative groups and allow defenders within each group to
jointly optimize defense strategies by sharing information and experience. In [40], the authors leveraged multi-agent
reinforcement learning to improve the effectiveness of MTD in web application protection. Zhu et al. [41] solved the
optimal strategy for the multi-defender multi-attacker scenario based on multi-agent deep reinforcement learning.

2.3 Summary

In summary, the existing game theory based methods mainly solve Nash equilibrium according to the attacker’s
strategy space and maximize the overall expected effect. The attack graph based method mainly builds an attack
graph based on known vulnerabilities to find the key path. Methods based on deep reinforcement learning need to
establish a Markov decision process, which requires knowledge of the state space of the system and the transition
probabilities between states. However, it seems too “optimistic” for complex attacks such as APT. APT is concealed
and often uses zero-day vulnerabilities or other complex attack methods. It is difficult to build an attack graph
and obtain all the attacker’s strategy space. Meanwhile, APT attacks are very complex; it is difficult to accurately
construct the state space and action space of APT attacks. Therefore, in this paper, based on the characteristics
of APT, we construct a Stackelberg game from the goal of optimizing the lower limit of loss, and solve the optimal
deception strategy by minimizing the maximum loss of the protected system.

3 Cyber deception Stackelberg game model

In the defense against APT attacks, defenders typically deploy defensive resources in advance, aiming to increase
the cost of attacks and delay their progress as much as possible. Attackers, after observing or inferring the defensive
strategy, will choose the optimal attack path, which consequently results in a dynamic strategic game between
the two sides. The core characteristic of the Stackelberg game lies in its “leader-follower” relationship, where the
leader acts first and designs strategies to maximize its own payoff, while the follower observes or infers the leader’s
strategy and makes rational and optimal responses based on its own interests. This is highly consistent with the
solution to the optimal strategy for deception resource deployment in APT confrontation. Through Stackelberg
game modeling, this dynamic sequence relationship can be effectively described, and defenders can be helped to
formulate the optimal defense strategy by analyzing the possible responses of attackers, thereby maximizing the
security of the system and increasing the cost to attackers. Therefore, CDSG models the problem of deception
resource deployment using the Stackelberg game and derives the optimal deception resource deployment strategy
by solving for the game’s equilibrium. Specifically, in CDSG, the defender, as the leader, acts first by deploying
deception resources in the network. The APT attacker, as the follower, takes action after observing the defender’s
deployment. Furthermore, to fully capture the high technical sophistication and difficulty in defending against
APT attackers, they are considered to be smart enough to know the deployment strategy of deception defense when
taking action, and will always choose the service with the highest intrusion benefit based on the deception strategy.
The main notations mentioned in the method and their explanations are listed in Table 1.

3.1 Basic setting

As shown in Figure 1, during network planning, the network is usually divided into several functional subnets based
on functions, departmental roles, etc. For instance, in the context of a school’s network design, the network is often
segmented into subnets for dormitories, teaching buildings, libraries, and other functional zones. This division serves
as an effective and secure strategy, as it not only facilitates network management but also reduces potential security
risks and lateral attack paths by isolating different subnets. Once attackers gain access to the internal network, they
tend to conduct reconnaissance and perform lateral movements across the network. Therefore, deploying deception
defenses within each subnet is essential to detect and respond to attackers’ lateral movements.

Although deploying deception defense resources in each subnet is necessary, in practical applications, a functional
subnet typically contains a large number of services. Deploying deception resources incurs costs related to hardware,
software, and management, making these resources inherently limited. As a result, it is not feasible to deploy
deception resources to protect every service. Therefore, when deploying deception defenses in each subnet, a critical
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Table 1 Main notations in CDSG.

Notation Explanations

L, F
Players in the CDSG, L represents the leader, i.e., the defender, and F

represents the follower, i.e., the attacker.

N The set of services in a subnet.

n The number of services in a subnet.

R,C
The vector of reward for successful intrusion

and cost for failure.

ri, ci
Reward for success of attacking service i

and cost for failure.

k The number of types of deception resources.

S
The number of all types of deception resources, a

k-dimensional vector.

sj The number of j-th deception resources.

B
Deception resource attraction ability,

a k-dimensional vector.

bj

When the j-th deception resource protection service is used,

if an attacker attacks the service, the probability

of being attracted and discovered.

p1(i)

The probability that service i deploys deception resources,

and the attacker is attracted by the resources

when attacking service i, resulting in

the attack failure.

p2(i)

The probability that service i deploys deception resources, but

it does not attract attackers, and the

attacker successfully invades service i.

p3(i)

The probability that service i does not deploy

deception resources and the attacker successfully

invades service i.

ps(i)
The probability that an attacker successfully

invades service i.

pf (i)
The probability that an attacker fail to

invades service i.

UL(i), UF (i)
The utility function of attacker and

defender on service i.

pi,j
The probability of deploying a deception

resource of type j on service i.

Ii The importance of the service i.

question arises: what strategy should be adopted to allocate deception resources to protect the services within the
subnet such that the defensive effect is maximized?

3.2 Model formulation

Based on the problem given in the previous section, we formally describe our CDSG. As shown in Figure 2, within a
subnetN , there are n services, each providing different functions to users. Different types of deception resources have
varying levels of effectiveness in deceiving the attacker. The defender will first deploy deception resources within
the subnet. For example, when only ports are opened, the information provided is limited, and the attacker can
easily detect that they are targeting a fake objective. However, if the deployed deception resource is an application,
it is much harder for the attacker to identify that it is a fake target. The deception effect of a deception resource
is defined as the deception resource’s attraction ability. Specifically, if the attraction ability of a certain deception
resource is 0.5, it means that when an attacker attacks a service, if this service deploys this type of deception
resource for protection, the probability that the attacker is attracted by the deception resource and thus detected
is 0.5. At the same time, we classify the defender’s deception resources according to the difference in deception
resource attraction ability. Specifically, let k be the number of deception resource types, B = [b1, b2, . . . , bk] is a
vector of length k, and bi represents the attraction ability of the i-th type of deception resource to attract attackers.
Since each type of resource consumes different amounts of resources, the availability of each type of resource may
not be the same, and the deception resources run independently without affecting each other. The quantity of
deception resources is represented by S = [s1, s2, . . . , sk], where si denotes the number of deception resources of
type i. Due to resource constraints, we set sj < n, 1 6 j 6 k. In the defender’s mixed strategy, the probability
that the defender deploys the j-th type of deception resource for service i is denoted by pi,j. Then, the defender’s

strategy is denoted as p = (pi,j)
16j6k
16i6n . From the constraint of the number of resources, we have 0 < pi,j < 1.

The APT attacker will act after the defender. When carrying out an intrusion, the attacker will choose one
service from the n services to target. Each service has a different level of importance in the business system, and
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Figure 1 Example of network planning.

Figure 2 Overview of the attack and defense scenarios described by the model.

the vulnerabilities present in each service vary. Therefore, each service has a unique reward and cost for the attacker.
We define R = [r1, r2, . . . , rn] as the reward for a successful intrusion, and C = [c1, c2, . . . , cn] as the cost of a failed
intrusion. It means that if the attacker chooses to attack service i, they will receive a reward of ri if successful,
otherwise, incur a loss of ci. The length of both vectors is n, and ri is always greater than ci.

Because of the existence of the deception defense, there are three possible outcomes when the attacker targets
service i. (1) Service i has deployed deception resources, and the attacker is deceived by these resources, leading to
a failed attack. (2) Service i has deployed deception resources, but all of these resources do not deceive the attacker,
and the attacker successfully infiltrates the service i. (3) Service i has not deployed any deception resources, and the
attacker successfully infiltrates service i. The probabilities of the three cases are denoted by p1, p2, p3, respectively.
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From the attacker’s perspective, the first scenario is an unsuccessful attack, while the second and third scenarios
are successful attacks. Therefore, for service i, the probability of a successful attack, ps(i), is equal to p1, and the
probability that the attack fails, pf(i), is equal to p2 + p3. The formulas are shown in (1) and (2).

pf (i) =

k∏

j=1

(pi,j · (1− bj)) +

k∏

j=1

(1− pi,j), (1)

ps(i) = 1− pf (i). (2)

For the attacker, the payoff at the i-th service is given by

UF (p, i) = ps(i)ri − pf(i)ci. (3)

For the defender, his task is to minimize system loss by utilizing deception resources. Therefore, the defender’s
payoff at the i-th service is

UL(p, i) = −UF (p, i). (4)

In the attack-defense confrontation, a rational APT attacker always chooses the action strategy that maximizes
their payoff. Therefore, in the cyber deception Stackelberg game, the attacker will always choose to compromise
the service with the highest payoff. The defender, however, has an inherent disadvantage when taking action. Due
to the concealment and complexity of APT attacks, it is impossible to accurately determine which service the APT
attacker will attack. Thus, the optimal deception strategy for the defender can only be to minimize the maximum
payoff of the attacker’s targeted service, in order to reduce network losses to the greatest extent. Consequently, the
optimal deception strategy corresponds to the Nash equilibrium of the Stackelberg game, which can be formalized
as

minmaxUF (p, i).

It can be observed that for the defender, CDSG considers a mixed strategy, while for the attacker, a pure strategy
is considered. Let us now compare the case where the attacker adopts a mixed strategy: the probability of the
attacker targeting services within the subnet is q = [q1, q2, . . . , qn], where qi denotes the probability of the attacker
selecting target i, and

∑n
i=1 qi = 1, meaning the attacker must distribute their attack behavior across all targets

with a total probability of 1. The total payoff for the attacker is the expected value of the payoffs across all targets,
calculated as

UF (p, q) =
n∑

i=1

qiU
F (p, i),

where UF (p, i) is still given by (3). The attacker’s objective is to choose a mixed strategy q to maximize their total
payoff, that is

max
q

UF (p, q)

subject to

n∑

i=1

qi = 1, ∀i ∈ n, qi > 0.

Let x represent the maximum payoff across all services. For ∀i ∈ {1, 2, . . . , n}, we have UF (i) 6 x, Therefore, we
can conclude that ∀q, UF (p, q) 6 x. The attacker always makes the best response when making decisions, so the
attacker’s strategy must be a pure strategy.

4 Solution of optimal deception strategy

From the above description, it can be seen that the core objective of the defender’s optimal deception strategy
is to minimize the maximum payoff that the attacker may achieve under their optimal strategy by adjusting the
resource allocation probability pi,j . This problem involves a nonlinear objective function and constraints, as well
as coupling relationships between multiple variables, making direct solving quite challenging. Therefore, in the
solution process, an auxiliary variable z is first introduced to transform the problem into a single-level optimization
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problem, expressed as
minimize

p,z
z

subject to i ∈ {1, . . . , n}, j ∈ {1, . . . , k},

UF (p, i) 6 z, 0 6 pi,j 6 1,

n∑

i=1

pi,j = sj ,

where UF (p, i) = ps(i)ri − pf (i)ci,

pf (i) =

k∏

j=1

(pi,j · (1− bj)) +

k∏

j=1

(1 − pi,j),

ps(i) = 1− pf .

It can be observed that pf(i) is a non-convex function in the form of a product, and the attacker’s payoff function
is a nonlinear function. Therefore, this is a single-level optimization problem with a nonlinear objective function
and constraints. The constraints include the attacker’s payoff constraint, the total resource constraint, and the
variable range constraint.

Due to the nonlinearity and non-convexity of the problem, there may be multiple local optimal solutions, and it
cannot be directly solved using analytical methods or simple optimization algorithms, which is a typical NP-hard
problem. As a result, an iterative optimization approach is adopted to gradually adjust the variable values and
approximate the global or an effective local optimal solution. Specifically, we construct a gradient descent method.
In the optimization process, a reasonable initial value is determined as the starting point for iterative optimization.
Then, the gradient is calculated, and adjustments are made to gradually approach the optimal solution while
satisfying the constraint conditions.

The choice of the initial solution has a significant impact on both the efficiency of the solution process and the
quality of the results. A reasonable initial solution can greatly reduce the number of iterations and accelerate
convergence. To better select the initial values, the importance of the services is introduced. It is determined by the
attack reward and the attack cost and is calculated using the formula: Ii = ri − ci. A very intuitive explanation is
that the greater the importance, the more critical or vulnerable the service is. This means that the service provides
higher benefits to the attacker, making the attacker more inclined to target it. Hence, the initial solution of pi,j
is determined by the importance of services, as calculated by (5). This initialization method prioritizes allocating
more resources to services with higher attack rewards or greater vulnerability.

p0i,j =
sjIi∑n
i=1 Ii

. (5)

After determining the initial solution, iterative optimization is performed using gradient descent on the objective
function. When the change in the value of the objective function reaches a predefined threshold, it is considered
converged, and the process stops. The overall process is described in Algorithm 1.

5 Experiment and analysis

This section takes a specific subnet within a network as an example. A simulation environment is constructed
to evaluate the practical effectiveness of the optimal defense strategy derived from the proposed Stackelberg game
model for cyber deception. First, we outline the specific services in the subnet and the vulnerabilities of each service.
Then, we introduce the method and results of quantifying the attacker’s reward when each service is successfully
invaded and the cost of failed invasion based on the characteristics of the service and its vulnerabilities, as well as
the classification and numerical quantification of deception resources. Finally, the effectiveness of CDSG is verified
by experimental comparison with other methods. In addition, we are surprised to find that in CDSG, different
types of deception resources do not work alone, but they cooperate to protect the system.

5.1 Setup of the experimental environment

To verify the effectiveness of the method, a simulated subnet environment is constructed to simulate the service
configuration in the real network scenario. The subnet includes the following components.

• Database server. Used to store and manage enterprise data, providing efficient and reliable data storage and
access services.
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Algorithm 1 Solving for the optimal deception strategy.

1: Input: The number of service n, the number of resource types k, rewards R, cost C, the ability to deceive for deception resource of each

type B, the number of deception resource of each type S, threshold ǫ, the maximum number of iterations T .

2: Output: The optimal resource allocation scheme p.

3: Initialize the importance vector: ∀i, Ii = ri − ci;

4: // Generate an initial defender strategy p0

5: for j = 1, . . . , k do

6: for i = 1, . . . , n do

7: p0
i,j =

sjIi
∑n

i=1
Ii

;

8: end for

9: end for

10: Calculate z0 based on p0;

11: for t = 0, 1, 2 . . . , T do

12: // Calculate the attacker’s current optimal goal

13: i∗ = argmaxi∈{1,...,n} UF (pt, i);

14: // Compute the gradient

15: ∇pU
F (p, i∗) =

[

∂UF (p,i∗)
∂pi,j

]

i,j

;

16: // Updated defender strategy

17: p(t+1) = p(t) − ηp∇pU
F (p, i∗);

18: p
(t+1)
i,j = max

(

0,min(p
(t+1)
i,j , sj)

)

, 1 6 i 6 n, 1 6 j 6 k;

19: z(t+1) = maxi∈{1,...,n} UF (p(t+1), i);

20: δ = ||p(t+1) − p(t)|| + |z(t+1) − z(t)|;

21: if δ < ǫ then

22: Break;

23: end if

24: end for

25: return pT .

Table 2 Service and vulnerability information.

Service Software CVE ID Vulnerability description

Database MySQL CVE-2024-21176
Causing MySQL server to hang

or crash repeatedly

OA RockOA CVE-2023-1773 Leading to code injection

File MinIO CVE-2023-28432

Causing information leakage and

being able to log in

as an administrator

Mail Exchange server CVE-2023-36439
Gaining remote code

execution privileges

DNS Windows DNS server CVE-2021-26877
Leading to remote

code execution

Security device
IBM security QRadar

EDR
CVE-2024-45100

Resulting in denial

of service

• OA server. A comprehensive software platform offering services to support the organization’s daily office
operations.

• File server. Designed to store and manage various internal enterprise files, which provides file-sharing capabil-
ities and access control over permissions.

• Mail server. Responsible for managing and transmitting internal enterprise emails, including functionalities
such as email storage, sending, receiving, and filtering.

• DNS server. Resolves domain names to IP addresses, enabling users to access the enterprise intranet as needed.
• Security device server. Records endpoint behaviors and uses data analysis along with contextual information

to detect anomalies and malicious activities, while logging data related to such threats.
The specific service and the vulnerabilities presented in each service are detailed in Table 2.

5.2 Numerical quantification

In network attack-defense confrontations, the attacker’s behavior is driven by the rewards for successful intrusions
and the losses from failures.

The reward for successful intrusion represents the potential gain for an attacker after successfully breaching a
target service. It reflects the level of interest an attacker has in a particular service. Objectively evaluating the
rewards for intrusion is crucial for better protecting the target network. From the attacker’s perspective, the goals
of successfully intruding into a target service can be classified as follows.

• Stealing sensitive information or data for identity theft or selling on the dark web.
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Table 3 CIA scoring details.

Attribute Level Score Attribute Level Score Attribute Level Score

Confidentiality

Highest 25

Integrity

Highest 25

Availability

Highest 25

Higher 20 Higher 20 Higher 20

Middle 15 Middle 15 Middle 15

Lower 10 Lower 10 Lower 10

Lowest 5 Lowest 5 Lowest 5

Table 4 Attack cost details.

Metric Metric value Numerical value

Attack vector (AV)

Network (N) 0.20

Adjacent network (A) 0.55

Local (L) 0.62

Physical (P) 0.85

Attack complexity (AC)
Low (L) 0.44

High (H) 0.77

Privilege required (PR)

None (N) 0.5

Low (L) 0.68

High (H) 0.85

User interaction (UI)
None (N) 0.62

Required (R) 0.85

• Tampering with data to gain economic benefits, cover up attack traces, inject malicious code, or establish
backdoors for long-term control.

• Disrupting critical services to extort ransom from the target organization or weakening the organization’s
competitiveness or reputation by disrupting business continuity.

From the attacker’s viewpoint, the CIA triad is used to quantify the rewards of a successful intrusion of each
service. The CIA triad is a foundational model in the field of information security, describing the core objectives
of information security. It defines the security attributes and potential threats of an information system based on
three dimensions.

• Confidentiality. The protection of sensitive information from unauthorized access.

• Integrity. The assurance that the data are accurate and untampered.

• Availability. The guarantee that systems and services are accessible and functional.

By quantifying intrusion rewards based on the CIA triad, it is possible to comprehensively reflect the attractiveness
of each service to attackers. Specifically, each attribute is divided into five levels, with specific values shown in
Table 3.

Attack cost is used to quantify the cost of failure, which refers to the loss an attacker incurs when attempting to
compromise a target service but fails to exploit the vulnerabilities. To comprehensively evaluate attack costs, the
common vulnerability scoring system (CVSS) [42] base score is referenced. The base metrics of CVSS include the
exploitability submetric, which consists of attack vector (AV), attack complexity (AC), privileges required (PR),
and user interaction (UI). However, it is important to note that CVSS is designed to measure the severity of
vulnerabilities. A higher CVSS score only indicates that the vulnerability is more severe, but it does not necessarily
mean that the exploitation is more difficult. Therefore, only specific attributes and calculation methods from CVSS
were referenced in the evaluation. Adjustments were made to the specific values to better fit the context of the
attack cost assessment. Detailed scoring adjustments are shown in Table 4. The calculation formula for the cost of
failure is given below:

cost = 82.2× AV×AC× PR×UI. (6)

Finally, the calculation results of the reward for success and the cost for failure for each service are shown in
Tables 5 and 6.

In the experiment, the deception resources were categorized into three types: high, medium, and low interac-
tion, which are based on their effectiveness of deception and deployment costs. High-interaction provides complex
interactions that simulate real service behaviors. It has the highest attractiveness to attackers but also incurs the
highest deployment cost. Medium-interaction offers partial functional interactions, with moderate attractiveness
and deployment costs. Low-interaction only provides static responses, resulting in the lowest attractiveness but
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Table 5 Reward for success for each service.

Service Confidentiality Integrity Availability Reward for success

Database Highest Highest Higher 70

OA Higher Higher Middle 55

File Higher Middle Middle 50

Mail Higher Higher Higher 60

DNS Lower Highest Highest 60

Security device Highest Highest Higher 70

Table 6 Cost for failure for each vulnerability.

CVE ID AV AV PR UI Cost of failure

CVE-2024-21176 N H L N 5.33695

CVE-2023-1773 N L L N 3.049686

CVE-2023-28432 N L N N 2.242416

CVE-2023-36439 A L L N 8.386636

CVE-2021-26877 N L N N 2.242416

CVE-2024-45100 N L H N 3.812107

Figure 3 Iterative optimization process with 6 services. Figure 4 Iterative optimization process with 500 services.

also extremely low deployment costs. The attractiveness to attackers B for each type was set as 0.7, 0.5, and 0.2,
respectively.

5.3 Results and analysis

Figures 3 and 4 show the maximum loss of all services. Figure 3 shows the experimental results of the above 6
services with parameters {1,2,4}, {1,3,5}, {2,3,5}, {3,4,5}. Figure 4 corresponds to a large-scale network scenario
containing 500 services. The reward and cost of each service are randomly generated, with values ranging from
[80, 100] and [20, 40], respectively. In the three experiments in Figure 4, the number of deceptive resources is set to
{100, 200, 300}, {200, 300, 400}, and {300, 350, 400}, respectively. Since the number of services in Figure 3 is small,
ǫ is set to 1e−20 with higher accuracy, and ǫ in Figure 3 is set to 1e−6. The results show that the optimization
process can converge quickly. The more deception resources there are, the smaller the maximum loss of all services
will be.

Tables 7–9 show the probabilities of deploying different deception resources for each service when the numbers of
high, medium, and low interaction deception resources are set to {1,0,0}, {0,0,1}, and {1,0,1}, respectively.

From the results of the first two sets of experiments, it can be observed that services with high rewards and low
costs are assigned relatively higher protection weights. In the third set of experiments, the number of each type of
deception resource is the sum of the first two sets. Comparing the results of the three experiments, it is evident
that the experimental results with parameters {1,0,1} are not simply the additive result of the experiments with
parameters {1,0,0} and {0,0,1}, where each protects the system individually. This shows that even though different
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Table 7 Experimental results with parameter {1,0,0}.

Service High Middle Lower

Database 0.3210 0 0

OA 0.0475 0 0

File 0 0 0

Mail 0.1448 0 0

DNS 0.1591 0 0

Security device 0.3277 0 0

Table 8 Experimental results with parameter {0,0,1}.

Service High Middle Lower

Database 0 0 0.4949

OA 0 0 0

File 0 0 0

Mail 0 0 0

DNS 0 0 0

Security device 0 0 0.5051

Table 9 Experimental results with parameter {1,0,1}.

Service High Middle Lower

Database 0.3715 0 0

OA 0.0293 0 0.2989

File 0 0 0

Mail 0 0 0.7011

DNS 0.2201 0 0

Security device 0.3791 0 0

Figure 5 Comparison chart of maximum loss for three different methods.

deception resources operate independently, they work together to protect the system and collectively enhance the
overall security of the system.

Figure 5 compares the experimental results of CDSG with the random method and the maximum payoff-based
method under different parameter settings. The y-axis represents the attacker rewards the largest value among all
services. The random method assigns equal probabilities for all deception resources to protect each service. The
maximum payoff-based method dynamically deploys deception resources to protect the service with the current
highest attacker payoff at each step. Four sets of experiments were conducted with the numbers of high, medium,
and low interaction deception resources set to {1,1,1}, {1,2,4}, {3,4,6}, and {5,5,5}, respectively.

It is evident that, in each parameter setting, CDSG outperforms all other methods in terms of protection effec-



Deng X, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132109:13

tiveness. The value of the service with the highest attacker payoff among all services is consistently the smallest
when using CDSG, and the fewer the resources, the more significant the effect. The reason is that CDSG takes
the rational behavior of attackers into account and optimizes defense strategies to minimize the potential gains of
the attacker. It demonstrates that, in resource-constrained scenarios, even in the worst-case scenario (the attacker
chooses the service with the highest revenue to attack), the attacker’s gains under CDSG are significantly lower
than those of the other two methods. This means that the method can effectively deal with APTs and improve the
risk resistance of the overall system.

6 Conclusion

In view of the strong concealment, long duration, and evolving attack methods of APT attacks, as well as the
constraints of limited deception resources available to the defender, this paper proposes an optimal dynamic de-
ception defense strategy based on the Stackelberg game. It is a more conservative strategy when defending against
APT attacks, aiming to minimize the maximum potential loss across all services by solving the Nash equilibrium
of the Stackelberg game. The effectiveness of this method is validated through the comparative experiment with
other approaches. Additionally, the experiments demonstrated that CDSG improves system protection by enabling
effective cooperation between various types of deception resources.

In future work, efforts will be made to extract traces of attackers from protected systems, combining threat
intelligence, using AI technology to infer the attacker’s attack intentions, and realizing adaptive adjustment of
deception resource strategies based on the attacker’s intentions. At the same time, we only considered rational
attackers. In practice, attackers’ ability could be limited by technology, information, etc., and thus, they may make
bounded rational decisions.
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