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Abstract Cross-lingual cross-modal retrieval (CCR) has recently emerged as a significant research area, focusing on aligning visual

content with non-English captions without relying on human-annotated non-English cross-modal data pairs. Most CCR methods extend

existing English-only datasets with other languages via machine translation (MT) to establish correspondence between vision and non-

English. Regrettably, these cheaply collected datasets inevitably contain numerous mismatched vision and non-English data pairs,

a.k.a noisy correspondence (NC). The presence of NC renders the supervision information unreliable, leading to a significant decline in

retrieval performance. Furthermore, most existing methods attempt to improve alignment between visual and non-English representations

by combining information from multiple views. However, these approaches often overlook the need for consistency across these views,

capturing view-specific and task-irrelevant information, which exacerbates bias in the optimization direction. To address the issues, we

propose an uncertainty-aware and mutual learning (UML) framework, which integrates a novel dual-view uncertainty-aware learning

(DUL) paradigm and an efficient adaptive mutual learning (AML) loss. The DUL effectively models alignment uncertainty to assess and

mitigate the effects of NC. Specifically, it employs evidential deep learning to obtain accurate cross-modal alignment uncertainty, which

is then combined with labels softened by Fisher information to impose appropriate penalties for retrieval. To mitigate the exacerbation

problem, we derive the AML loss, which aims to ensure effective aggregation between all modalities of a clean pair, while effectively

separating the non-English representation of a noisy pair from its visual and English representations. Our UML consistently outperforms

previous methods in supervised, domain generalization, and robustness settings across three challenging benchmarks.

Keywords cross-lingual cross-modal retrieval, noisy correspondence, uncertainty-based learning, mutual information

Citation Liu Y, Chen H P, Yang X, et al. UML: uncertainty-aware and mutual learning for noise-robust cross-lingual cross-modal

retrieval. Sci China Inf Sci, 2026, 69(3): 132107, https://doi.org/10.1007/s11432-024-4696-2

1 Introduction

The world exhibits diversity due to its multimodal and multilingual attributes. Although multimodal research has
made significant progress with the introduction of vision-language pre-training, most existing studies [1, 2] remain
heavily focused on English. This is mainly due to the lack of human-annotated non-English captions. Consequently,
there has been a growing interest in more general cross-lingual cross-modal retrieval (CCR), which seeks to identify
visual content relevant to non-English queries without relying on human-annotated non-English cross-modal data
pairs. In contrast to traditional cross-modal retrieval [3, 4], CCR boasts multilingual retrieval capabilities.

Recently, most research [5–9] in CCR employs machine translation (MT) techniques to generate pseudo-parallel
data pairs, as depicted in Figure 1(a). Specifically, CCLM [5] and UC2 [6] endeavor to achieve cross-modal alignment
by developing large-scale vision-language datasets (e.g., CC3M [10]), along with the formulation of pertinent pre-
training objectives. CL2CM [8] improves the alignment between vision and non-English by transferring knowledge
from the cross-lingual network to the cross-modal network. Unfortunately, as shown in Figure 1(a), even with the
most advanced MT technology, the translation of non-English captions may still contain various forms of noise,
including spelling and grammatical errors, and even alterations in original semantics. Such noise can lead to a
mismatch between vision and non-English, known as noisy correspondence [11], ultimately resulting in suboptimal
performance.
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Figure 1 (Color online) (a) CCR methods are trained with noisy non-English captions caused by MT. During inference, human-labeled

non-English captions are utilized to retrieve relevant visual content. Drawbacks of existing methods are as follows: (b) unreliable supervision

information of NRCCR [7] and DCOT [9], and (c) scattered intra-instance representation of NRCCR [7]. The same color indicates the same

instance.

To date, in the field of CCR, only a few efforts [7,9] have been made to tackle the noisy correspondence problem
caused by MT. NRCCR [7] is the pioneering work to investigate this problem, which aims to learn the correct
association between visual and non-English representations. Specifically, NRCCR adopts multi-view self-distillation
to generate soft pseudo objects to learn noise-robust non-English representations. Additionally, NRCCR aligns
visual and non-English features via a cyclic semantic consistency module and adversarial learning. Later, DCOT [9]
formulates the noisy correspondence learning in CCR as an optimal transport problem to avoid overfitting to
noisy pairs. However, these methods may produce unreliable supervision information because: (1) the filtered
non-English representation may lose useful information; (2) DCOT relies on cumbersome parameter design. For
instance, in Figure 1(b), the video and the translated Chinese query are obviously mismatched; unfortunately,
NRCCR and DCOT yield high similarity scores, leading to incorrect alignment. Moreover, most CCR approaches
[6–9] independently optimize the representation of different views (e.g., cross-lingual or cross-modal views), which
undoubtedly introduces view-specific and task-irrelevant information. This will increase the semantic gap and
amplify the optimization direction bias caused by unreliable supervision. As shown in Figure 1(c), we employ
t-SNE to visualise the representations of 15 randomly selected videos and their corresponding 10 Chinese captions
from the VATEX test set. It can be observed that the amplified optimization bias problem leads to very scattered
representations of different modalities for the same instance. These observations and insights raise a critical research
question that motivates this study: “How can we obtain reliable supervision and comprehensive semantic information
to facilitate noise-robust CCR?”

To answer this, we present a novel framework called uncertainty-aware and mutual learning (UML) for noise-
robust CCR. In particular, we adopt an innovative dual-view uncertainty-aware learning (DUL) paradigm to model
and consider the alignment uncertainty brought by noisy correspondence, thus providing reliable supervision. Specif-
ically, DUL first parameterizes the bidirectional evidence from two views (i.e., vision-English and vision-non-English)
into a Dirichlet distribution based on cross-modal similarity to obtain alignment uncertainty. Then, we dynamically
identify clean and noisy pairs based on the learned evidence, and combine the uncertainty with the label softened
by Fisher information to impose appropriate penalties for both clean and noisy pairs. Additionally, to mitigate
the exacerbation problem, we propose an adaptive mutual learning (AML) loss. Concretely, AML maximizes the
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mutual information between multi-view representations of a clean pair, allowing the model to retain the necessary
information while eliminating irrelevant distractors. For a noisy pair, AML minimizes the mutual information be-
tween its non-English representation and its visual and English representations to avoid overfitting noise. Finally,
we integrate the advantages of DUL and AML to enhance the accuracy and robustness of the model. Our primary
contributions are summarized as follows.

• We devise a novel UML framework to address a pressing and pervasive noisy correspondence caused by MT
for cross-lingual cross-modal retrieval.

• A novel DUL strategy is proposed to model and consider alignment uncertainty brought by noise, which
effectively improves the robustness and reliability of the model. To the best of our knowledge, our DUL is the first
method that endows evidential deep learning and Fisher information with cross-lingual cross-modal retrieval.

• We design an AML loss to learn comprehensive and reliable intra-instance representations of clean pairs and
mitigating noise fitting.

• Extensive experiments demonstrate the superiority and robustness of our UML on three widely-used cross-
lingual cross-modal benchmark datasets.

2 Related work

2.1 Cross-lingual cross-modal retrieval

The CCR extends traditional cross-modal retrieval [3,4,12,13] to the multilingual domain, aiming to address the issue
of unavailable manually labeled non-English data. Most existing approaches [5–9, 14, 15] align visual information
and multilingual text by mapping them into a common semantic space. Earlier approaches [14, 16] aim to collect
multilingual parallel corpora. For instance, M3P [14] proposes a pre-trained model that integrates multilingual,
multimodal, and multi-task learning, aiming to build a unified framework that can align visual contents with multiple
languages. MMP [16] extends HowTo100M [17] into a multilingual version to enable zero-shot cross-lingual transfer
of vision-language models. In addition, some methods [5,6,15] propose new optimization objectives and pre-training
tasks to enable models to capture better alignment between vision and language. For example, CCRk [15] proposes
the 1-to-K contrast learning paradigm, which improves the consistency of the retrieval model. UC2 [6] is the first
to propose a pre-training model based on machine translation enhancement, which learns cross-lingual cross-modal
representation by focusing primarily on images and complementing with English. Although these methods achieve
promising performance, they implicitly assume that all cross-modal pairs are correctly aligned within the training
data. In fact, due to the high cost of collection and annotation as well as the noise introduced by MT, collecting
extremely clean large-scale data is expensive or even impossible. Even the most advanced MT tools still inevitably
include spelling mistakes, grammatical errors, and altered original semantics (see Figure 1(a)). Therefore, it is
important to explore robust CCR with noisy correspondence [11].

2.2 Learning with noisy correspondence

Noisy correspondence [11] refers to the situation where data pairs are incorrectly assumed to be correctly aligned
despite being semantically mismatched. Noisy correspondence learning aims to mitigate the effects of this mis-
correspondence and produce robust representations. It has garnered significant interest, focusing on several key
areas: cross-modal retrieval [11, 18], person reidentification [19], multi-view clustering [20, 21], and so forth. These
methods primarily follow a similarity-guided multi-step framework. Initially, they estimate the distribution of
instance-level loss/similarity in the entire dataset. Subsequently, they select clean samples for training. To the
best of our knowledge, only a few efforts [7–9] have attempted to tackle noisy correspondence caused by machine
translation for cross-lingual cross-modal retrieval. NRCCR [7] and DCOT [9] respectively employ a cross-attention
module and optimal transport theory to implicitly diminish the influence of noisy pairs, which may lead to the
loss of semantic information and unreliable noise identification. Furthermore, these methods hope to facilitate the
alignment between vision and non-English by combining complementary information frommultiple views (e.g., cross-
lingual or cross-modal views). However, they overlook the consistency between multiple views, which inevitably
captures retrieval-irrelevant information, leading to optimization direction bias.

2.3 Uncertainty-based learning

Over the last decade, uncertainty quantification [22, 23] has attracted significant attention in deep learning. Deep
neural networks (DNNs) often provide overconfident deterministic predictions and lack uncertainty estimates, which
affects the credibility of the prediction results. Early study [22] uses Bayesian neural networks (BNNs) to replace the
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distribution of deterministic weight parameters to measure uncertainty. Subsequently, evidential deep learning [24]
is developed by adopting the Dirichlet distribution and treating output as evidence to quantify belief mass and
uncertainty by jointly exploiting the Dempster-Shafer theory of evidence (DST) [25] and subjective logic [26].
Evidential deep learning (EDL) has gradually been applied to computer vision and multimodal learning [27–29].
For example, DCEL [29] utilizes EDL to alleviate uncertain cross-modal alignment caused by significant intra-class
variation. Unlike these methods, UML dynamically models uncertainty via EDL and Fisher information, provides
reliable supervision signals, and gradually improves cross-lingual transfer capabilities via a dynamic dual-view
learning strategy.

3 Methodology

3.1 Preliminary

The CCR task aims to retrieve relevant visual content (i.e., images or videos) using non-English queries during
inference, while relying solely on human-annotated vision-English pairs during training. Similar to NRCCR [7] and
DCOT [9], we utilize machine translation to generate translated non-English captions for training. Formally, the
cross-lingual cross-modal dataset D consists of N triplet sample pairs, denoted as D = {(Vi, Si, Ti)}Ni=1, where Vi,
Si, and Ti represent the ith visual content, English caption, and non-English caption, respectively. We define Fv,
Fs, and Ft as the encoders for visual, English, and non-English content, respectively. The embedded features of
(Vi, Si, Ti) are denoted as (vi, si, ti). Following previous studies [7,9], we use human-annotated non-English captions
as queries during inference.

3.2 Dual-view uncertainty-aware learning

3.2.1 Alignment uncertainty modeling

Recently, uncertainty quantification [22,23] has attracted widespread attention in various fields, addressing overcon-
fidence in deterministic predictions and improving the credibility of results. A notable approach is EDL [24], which
integrates Dempster-Shafer theory of evidence [25] and subjective logic [26]. The fundamental concept of EDL
is that models not only offer predictions but also provide evidence regarding the credibility of these predictions.
The paradigm of EDL is the following. Firstly, EDL collects evidence for each class to establish prior Dirichlet
distributions of class probabilities. Then, it utilizes subjective logic theory [26] to quantify predictive uncertainty.

Building upon the above EDL paradigm, we model the cross-lingual cross-modal alignment uncertainty. Specif-
ically, for a given triplet (Vi, Si, Ti), we take the visual content Vi as the centre, and consider its relations with
English Si and non-English Ti as two views. As illustrated in Figure 2, we model the alignment uncertainty of
both views (i.e., V ↔ T and V ↔ S views) simultaneously. Note that we mainly address the alignment uncertainty
between visual and non-English features caused by translation noise. Meanwhile, we model the uncertainty caused
by the inherent semantic ambiguity between vision and English to achieve accurate alignment between them, which
in turn guides the alignment between visual and non-English features. For clarity, we use the modeling of alignment
uncertainty between vision and non-English (i.e., V ↔ T view) as an example.

Firstly, we predict the evidence for each cross-modal alignment. Evidence measures the amount of support
collected from the data, which means the degree of support for associating the retrieved cross-modal samples with
a given query. An inverse relationship exists between the level of uncertainty and the amount of relevant evidence
collected. Concretely, for a pair of global-level features (vi, tj), we exploit the evidence extractor fe to extract the
corresponding evidence eij , which is defined as

eij = fe(Sim(vi, tj)) = exp(tanh(Sim(vi,tj)/τ)), (1)

where τ is a scaling parameter and is set to 0.1, which empirically balances expressiveness and stability. Sim(·)
represents a cosine similarity measure. Thus, we extract bidirectional evidence evti , which contains vision-to-non-
English evidence ev2ti = {eij}Kj=1 and non-English-to-vision evidence et2vi = {eji}Kj=1. K denotes the batch size.

Then, we employ subjective logic theory [26] to assign a belief mass bij to each query and an overall uncertainty
mass ui based on the collected cross-modal evidence as follows:

bij =
eij

Di
=
αij − 1

Di
and ui =

K

Di
, (2)
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Figure 2 (Color online) Overview of the proposed UML. The images, English captions, and non-English captions are first encoded as feature

representations. Then, the evidence extractor fe is used to collect the dual-view bidirectional evidence evs and evt parameterized into Dirichlet

distributions αvs and αvt, respectively. By making the probability of cross-modal alignment pvs (pvt) approximate to yvs (yvt) softened by

Fisher information, an appropriate penalty is assigned to each pair. Besides, we devise an AML loss to further strengthen the comprehensiveness

and robustness of features.

where Di =
∑K

j=1 αij and ui = 1 −
∑K

j=1 bij . Di can be regarded as intensity of Dirichlet distribution, and the

belief mass assignment bi = {bij}Kj=1 represents subjective opinions corresponding to the Dirichlet distribution with

parameters αi = {αij}Kj=1, where αij = eij + 1.
Intuitively, retrieval between vision and non-English is analogous to classifying instances, the query similarity is

equivalent to probability alignment. By employing the Dirichlet distribution parameterized over evidence, we define
the density of each probability assignment, allowing the modeling of second-order probabilities and alignment
uncertainty between vision and non-English [26]. Essentially, the Dirichlet distribution serves as a probability
density function modeling the potential values of alignment probabilities. The density function is parameterized by
αi, defined as follows:

Dir(pi|αi) =

{

1
B(αi)

∏K
j=1 p

αij−1
ij , for pi ∈ SK ,

0, otherwise,
(3)

where pi ∈ SK are the alignment probabilities, B(αi) represents the K-dimensional beta function, and SK is the
K-dimensional unit simplex [30].

3.2.2 Uncertainty learning for CCR

Previous methods [7,28,31] usually regard the matching between different modalities of the same sample as a simple
K-way classification task, where a query is assigned a hard one-hot label corresponding to its positive cross-modal
counterpart. This assumes that the ground-truth labels are independent, neglecting any potential correlations
between unpaired instances. However, the essence of cross-modal retrieval is to capture the semantic relationships
between different modalities, extending beyond mere classification. Simplifying the CCR task into a single-label
classification problem may ignore the potentially valuable inter-modal relationships, resulting in the alignment
between vision and non-English more challenging.

To address this, we introduce the Fisher information matrix to soften the hard one-hot labels, thereby providing
a softer target that facilitates the establishment of comprehensive relationships between modalities. Concretely,
given a pair (Vi, Ti), its definitive hard one-hot label li can be derived based on the collected bidirectional evidence
(i.e., ev2ti and et2vi ) as follows:

li =

{

1, if i = argmax(ev2ti + et2vi ),

0, otherwise.
(4)

Later, we soften the hard one-hot label li to the target variable yi. Following [32], the Fisher information matrix can
measure the amount of information that the alignment probabilities pi carry about the concentration parameters
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αi of a Dirichlet distribution that models pi. The class label with higher evidence is associated with lower Fisher
information. Hence, we employ the inverse of the Fisher information matrix (I(αi)

−1) as the variance of the
generative distribution of yi. Intuitively, a class label that has higher evidence is assigned a larger variance, so that
more contextual information can be preserved. Thus, we assume that the alignment target variable yi follows a
multivariate Gaussian distribution:

yi ∼ N (pi, σ
2I(αi)

−1), (5)

where pi ∼ Dir(αi), σ
2 is the scalar used to adjust covariance value, and I(αi) is referred to as the Fisher

information matrix for Dir(αi). Ultimately, the mean square error loss (MSE) is exploited to make the alignment
probabilities pi approach the softened ground-truth yi. The density of pi conforms to the parameterized Dirichlet
distribution αi. The loss Le

i can be formulated as follows:

Le
i (αi,yi) = LI-MSE

i − ϕ · L
|I|
i , (6)

where

LI-MSE
i =

K
∑

j=1

(

(

Yij −
αij

Di

)2

+
αij (Di − αij)

D2
i (Di + 1)

)

ψ(1)(αij), (7)

L
|I|
i =

K
∑

j=1

logψ(1)(αij) + log



1−
K
∑

j=1

ψ(1)(Di)

ψ(1)(αij)



 , (8)

and ϕ = 0.01. ψ(1)(·) is a trigamma function with ψ(1)(x) = d
dxψ(x). Therefore, the uncertainty loss Lvt

u between
vision and non-English can be expressed as

Lvt
u (vi, ti, l

vt
i ) = Le

i

(

αv2t
i , lvti

)

+ Le
i

(

αt2v
i , lvti

)

. (9)

Similarly, we can compute the uncertainty loss Lvs
u between vision and English by

Lvs
u (vi, si, l

vs
i ) = Le

i

(

αv2s
i , lvsi

)

+ Le
i

(

αs2v
i , lvsi

)

. (10)

Furthermore, to address the model’s limited ability to recognize noisy correspondence during the initial stages of
training, we devise a dynamic dual-view learning strategy. Specifically, in the early phases of training, we prioritize
the vision-English view, which serves as a corrective guide for aligning vision with non-English. As training advances,
we progressively shift focus towards enhancing the alignment between vision and non-English, thereby enhancing
the model’s cross-lingual transfer capabilities. Finally, the dual-view uncertainty-aware loss Lu can be formulated
as

Lu(vi, si, ti, l
vs
i , l

vt
i ) =σ (t) · Lvs

u (vi, si, l
vs
i ) + (1 − σ (t)) · Lvt

u (vi, ti, l
vt
i ), (11)

where σ (t) = max(γ, 1 − λ · t
E ). Here, t and E denote current and total epoch, respectively. γ and λ are hyper-

parameters. By combining EDL and the Fisher information matrix, DUL quantifies the alignment uncertainty
between modalities and dynamically adjusts label weights to improve the robustness.

3.3 Adaptive mutual learning

Existing methods [8, 9] independently optimize different pairing views (e.g., cross-lingual (T ↔ S) or cross-modal
(V ↔ T ) views) of a given (Vi, Si, Ti) triplet, while ignoring the consistency of the different views. This can amplify
the optimization direction bias issue, especially in the presence of noisy correspondence. To solve this problem,
we propose an AML loss, as illustrated in Figure 2. It optimises clean and noisy pairs separately, leveraging
information theory to achieve comprehensive semantic aggregation and reduce the semantic gap. Overall, AML
consists of two key components: the clean aggregation module and the noise disentanglement module. The clean
aggregation module aims to remove views discrepancies to obtain a comprehensive representation, while the noise
disentanglement module aims to push away incorrect alignment. Specifically, as depicted in Figure 2, given a
(Vi, Si, Ti) triplet, we can first obtain the predicted correspondence label lvti corresponding to the (Vi, Ti) pair
according to (4). If lvti is equal to 1, the triplet will be judged as belonging to the clean subset Dc, otherwise it is
judged as belonging to the noise subset Dn. The division can be formulated as

{

Dc ⊇ (Vi, Si, Ti), lvti = 1,

Dn ⊇ (Vi, Si, Ti), lvti = 0.
(12)

So far, we refine sample filtration based on more accurate evidence, which can be used to adaptively adjust sample
contributions in subsequent training.
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3.3.1 Clean aggregation module

For clean pairs, our objective is to integrate the complementary features of multiple views while minimizing view-
specific and task-irrelevant information. To achieve this, we focus on ensuring the semantic consistency of the two
cross-modal views (i.e., V ↔ T and V ↔ S), which can eliminate view-specific information and obtain comprehen-
sive task-relevant information. Specifically, for a triplet (Vi, Si, Ti) ∈ Dc, we consider si and ti as two observations
of vi from different viewpoints and define consistency from the perspective of information theory as

min I(vi; ti)− I(vi; si), (13)

where I(∗) represents mutual information. I(vi; ti) and I(vi; si) indicate the visual representation vi (i.e., current
task-related information) contained in the non-English representation ti and the English representation si, respec-
tively. To minimize the disparity between I(vi; ti) and I(vi; si), we introduce the multi-view consistency loss Lc,
leveraging variational mutual-learning [33] to equate (13) to

Lc(vi, si, ti) =
1

2
[JS[qv2ti ||qv2si ] + JS[qt2vi ||qs2vi ]], (14)

where JS denotes the Jensen-Shannon divergence. The qv2ti (qt2vi ) and qv2si (qs2vi ) represent the vision to non-English
(non-English to vision) and vision to English (English to vision) softmax-normalized similarity, respectively. In
practice, Eq. (14) encourages the two cross-modal views to learn from each other, thereby reducing view-specific
redundant information and enhancing robustness against view changes.

3.3.2 Noise disentanglement module

If a triplet (Vi, Si, Ti) ∈ Dn, it indicates the presence of noisy correspondence between Ti and Vi. Consequently,
during the optimization of the representation, the noisy non-English text Ti must be moved away from the vision
Vi and English text Si to prevent fitting the noise. To this end, we propose a disentanglement loss Ln for noisy
pairs based on conditional mutual information [34, 35], which can be defined as

max I (vi; si | ti) , (15)

where I (vi; si | ti) denotes the amount of visual-relevant information in the English feature si, excluding information
from the noisy non-English feature ti. Intuitively, we retain only the information that the correspondence is correct.
However, directly estimating (15) is typically impractical. Previous studies [34, 36] have highlighted significant
challenges in estimating mutual information, primarily due to the curse of dimensionality. Thus, we first factorize
(15) as follows:

I (vi; si | ti) = I (vi; si)− I (si; ti) + I(si; ti|vi), (16)

where I (vi; si) measures the relevance of the visual feature vi and English feature si, I (si; ti) indicates the de-
pendence between English feature si and non-English feature ti, and I(si; ti|vi) represents the task-irrelevant
information in both si and ti. Heuristically, optimizing for the task objective typically results in task-specific
information overshadowing the irrelevant. Therefore, we can assume that task-irrelevant information will become
negligible upon sufficient training [37, 38]. This simplifies (16) to

I (vi; si | ti) → I (vi; si)− I (si; ti) . (17)

In our experiments, we employ the variational self-distillation [33] to estimate (17), thus the disentanglement loss
Ln can be expressed as

Ln(vi, si, ti) =
1

2
[KL[qv2si ||qs2ti ] + KL[qs2vi ||qt2si ]], (18)

in which KL is the Kullback-Leibler divergence. Ln can preserve the correct correspondence while avoiding over-
fitting noisy correspondence. Finally, the learning objective for the adaptive mutual information loss Laml can be
expressed as

Laml(vi, si, ti, l
vt
i ) =lvti · Lc(vi, si, ti)− (1− lvti ) · Ln(vi, si, ti). (19)

By integrating Lc and Ln, Laml significantly enhances the model’s ability to capture correct matches while effectively
suppressing noise interference.
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3.4 Training objective

Our model is trained by minimizing the combination of the dual-view uncertainty-aware loss Lu in (11) and the
adaptive mutual information loss Laml in (19). To sum up, the total loss function is defined as

Ltotal =
1

K

K
∑

i=1

(Lu + β · Laml), (20)

where β is a trade-off parameter. Overall, the optimization steps of the proposed UML are summarized in Algorithm
1.

Algorithm 1 Optimization algorithm for UML.

Input: Noisy training dataset D = {(Vi, Si, Ti)}
N
i=1

, batch size K, max epochs E, learning rate η, hyper-parameters γ, λ, β.

Output: Trained cross-modal matching modelM.

1: for epoch t← 1 to E do

2: Sample minibatch B ⊂ D with size K;

3: Learn the common representations of vision (i.e., images or videos) modality v, non-English text modality t, and English text modality

s;

4: //Subsection 3.2: dual-view uncertainty-aware learning

5: Compute the dual-view uncertainty-aware loss using (11);

6: //Subsection 3.3: adaptive mutual learning

7: Use (12) to split D into clean pairs Dc and noisy ones Dn;

8: //Subsection 3.3.1: clean aggregation module

9: Compute the multi-view consistency loss Lc by (14) for Dc;

10: //Subsection 3.3.2: noise disentanglement module

11: Compute the disentanglement loss Ln by (18) for Dn;

12: Compute the adaptive mutual information loss Laml by (19);

13: //Subsection 3.4: training objective

14: Compute the total loss Ltotal according to (20);

15: Update θ ← θ − η∇θLtotal via Adam optimizer;

16: end for

17: ReturnM with optimized parameters θ∗.

4 Experiments

In this section, we conduct a comprehensive comparative analysis with prior methods. We perform ablation studies
to assess the efficacy of our proposed components and provide visualization results to illustrate the reliability and
interpretability of our approach. Our extensive experimental investigations aim to address the following research
questions.

• RQ1: To what extent does the proposed UML alleviate the issue of noisy correspondence (NC)?

• RQ2: What are the roles and impacts on performance of the different components in UML?

• RQ3: What are the learning patterns and insights of UML?

4.1 Experimental settings

Datasets. We perform experiments on two widely-used multilingual image-text matching datasets (i.e., Multi-
MSCOCO [9] and Multi30K [39]), as well as a video-text retrieval dataset (i.e., VATEX [40]). Consistent with
previous methods [7,9], during training we utilize annotated visual-English pairs and non-English captions generated
by Google Translate, while manually labeled non-English queries are evaluated during inference. UML learns a
unified representation across modalities, enabling it to handle missing data during training. If one modality is
absent, UML can process the available data and infer the missing one, maintaining retrieval performance. Below,
we provide a description of the datasets.

• Multi-MSCOCO [9] is a multilingual extension of MSCOCO [41]. It consists of 123287 images, and each
image has 5 English captions. In addition, each image contains 5 Chinese (ch) and Japanese (ja) captions obtained
by machine translation. To establish the dataset partition, we adopt the methodology proposed in [7].

• Multi30K [39] represents a multilingual version of Flickr30K [42], comprising 31000 images. Each image is
associated with 5 captions in English (en) and German (de), and a single caption in French (fr) and Czech (cs).
Following previous work [39], we partition all data into training, validation, and test sets in 29000/1000/1000.
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• VATEX [40] contains more than 41250 videos, each with 10 English and 10 Chinese sentences. Consistent
with previous work [9], we exclusively utilize annotated English captions from the training set and employ machine
translation to generate their corresponding Chinese captions. We follow the similar data partition as [43].

Evaluation protocol. (1) For cross-lingual video-text retrieval, we adopt the same evaluation metrics as [8],
which include the recall rate at K (R@K), the sum of all recalls (SumR) for both video-to-text and text-to-video
retrieval, and mean average precision (mAP). Here, R@K (K = 1, 5, 10) measures the proportion of correctly
retrieved items among the top K items most similar to the query. (2) For cross-lingual image-text retrieval, we only
report SumR for both image-to-text and text-to-image retrieval.

Implementation details. Following [7], we utilize CLIP (ViT-B/32) as the image encoder [44]. For video
representations, we employ I3D video features [45]. The text encoder is derived from mBERT [46] to generate text
representations. We train the model for a total of 40 epochs with a batchsize of 128. The optimizer is Adam, with
an initial learning rate of 2.5e−5 and a cosine decay scheduler. During training, for Multi30K and Multi-MSCOCO,
we set the hyper-parameters γ, λ, and β to 0.2, 4, and 0.6, respectively. For VATEX, we fix these hyper-parameters
to 0.25, 3, and 0.4, respectively. During inference, we apply the same similarity calculation method as NRCCR [7]
and DCOT [9].

4.2 Comparisons with SOTA methods (RQ1)

In this section, we comprehensively evaluate our UML approach on two widely-used image-text datasets (i.e., Multi-
MSCOCO [9] and Multi30K [39]) and a video-text retrieval dataset (i.e., VATEX [40]). The methods against which
we compare can be broadly categorized into two groups: (1) noise-robust methods, including NRCCR [7], DCOT [9],
and CL2CM [8], and (2) methods that leverage pre-trained models on large-scale datasets, such as M3P [14], UC2 [6],
MURAL [47], MLA [48] and CCLM [5]. To ensure a fair comparison, we directly utilize the results reported in
the respective papers and retrain the baseline models according to the recommended settings to obtain results not
reported in these studies.

4.2.1 Cross-lingual image-text retrieval

Results on Multi30K. According to the comparison results on Multi30K reported in Table 1, we observe the
following. (1) Our UML approach achieves the highest performance compared to other noise-robust methods (i.e.,
NRCCR, DCOT, and CL2CM). Specifically, UML significantly outperforms the strongest baseline, CL2CM, with
an improvement of +1.5% to 3.0% in SumR across all languages, underscoring the suitability of our uncertainty
modeling for learning the noisy correspondence. (2) When applying our uncertainty-aware and mutual learning
strategies to powerful backbones (i.e., SwinTransformer for image encoding and XLM-R for text encoding), UML‡

consistently leads to improvements across all languages. This demonstrates the strong extensibility of UML. Overall,
these observations demonstrate the effectiveness and scalability of our approach for cross-lingual image-text retrieval,
making it a powerful tool for managing real-world complexities in multilingual, multimodal retrieval applications.

Results on Multi-MSCOCO.Table 1 presents the results on Multi-MSCOCO. UML demonstrates a significant
performance advantage over large-scale pre-trained models that do not address noisy correspondence issues. When
compared with the leading baseline CLCM, UML maintains a substantial edge, showing respective improvements of
2.4% and 3.0% in terms of SumR. It is important to note that, unlike German and French in Multi30K, Chinese and
Japanese in Multi-MSCOCO exhibit notable structural differences from English, rendering them more susceptible
to noise during the translation process. Consequently, Multi-MSCOCO presents greater challenges than Multi30K.
UML’s superior performance on Multi-MSCOCO compared to Multi30K further attests to its robustness in handling
noise.

4.2.2 Cross-lingual video-text retrieval

For cross-lingual video-text retrieval, we compare our model with four state-of-the-art (SOTA) methods: MMP,
NRCCR, DCOT, and CL2CM. MMP⋆ indicates that MMP is pre-trained on Multi-HowTo100M [16], while NRCCR,
DCOT, and CL2CM employ robust learning techniques to resist noise from machine translation. Our results, shown
in Table 2, reveal that UML outperforms MMP⋆ by a substantial 4% in R@1, without the need for pre-trained
datasets, highlighting UML’s cost-effectiveness. Furthermore, UML exceeds the best-performing baseline, CL2CM,
by 2.1% in SumR. These findings underscore UML’s exceptional ability to identify noise and achieve more accurate
alignment, surpassing other methods in both robustness and precision.



Liu Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132107:10

Table 1 Performance comparison (SumR) of cross-lingual image-text retrieval on Multi30K and Multi-MSCOCO. “en”, “de”, “fr”, “cs”, “zh”,

and “ja” indicate the English, German, French, Czech, Chinese, and Japanese, respectively. The ⋆ denotes models pre-trained on large-scale

datasets, e.g., CC3M [49]. The ‡ denotes models employing the same initialization parameters in the backbone with CCLM [5]. “–” means that

the result on the dataset is not reported by the paper or its model is unavailable.

Method Backbone (#parameters)
Multi30K Multi-MSCOCO

en2de en2fr en2cs en2zh en2ja

NRCCR [7] mBERT (170M) 480.6 482.1 467.1 512.4 507.0

DCOT [9] mBERT (170M) 494.9 495.3 481.8 521.5 515.3

CL2CM [8] mBERT (170M) 498.0 499.7 485.3 522.0 515.9

UML (ours) mBERT (170M) 505.6 507.9 493.8 534.7 531.6

M3P [14]⋆ XLMR-Large (560M) 351.0 276.0 220.8 332.8 336.0

UC2 [6]⋆ XLMR-Base (278M) 449.4 444.0 407.4 492.0 430.2

MURAL [47]⋆ XLMR-Large (560M) 456.0 454.2 409.2 – 435.0

MLA [48]⋆ CLIP (–) 495.6 510.0 457.2 – 482.4

CCLM [5]⋆ XLMR-Large (560M) 503.4 490.6 481.6 511.2 496.4

DCOT [9]‡ XLMR-Large (560M) 515.2 518.7 512.1 535.6 536.2

CL2CM [8]‡ XLMR-Large (560M) 530.4 536.0 526.3 544.3 546.2

UML‡ (ours) XLMR-Large (560M) 536.4 536.1 530.3 548.6 549.1

Table 2 Performance comparison (R@K, mAP and SumR) of cross-lingual video-text retrieval on VATEX (en2zh). The ⋆ indicates that the

model is pre-trained on a large-scale dataset Multi-HowTo100M [16].

Method
T2V V2T

SumR
R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

MMP [16] 23.9 55.1 67.8 – – – – – –

MMP [16]⋆ 29.7 63.2 75.5 – – – – – –

NRCCR [7] 30.4 65.0 75.1 45.64 40.6 72.7 80.9 32.40 364.8

DCOT [9] 31.4 66.3 76.8 – 46.0 76.3 84.8 – 381.8

CL2CM [8] 32.1 66.7 77.3 47.49 48.2 77.1 85.5 35.77 386.9

UML (ours) 33.7 67.8 78.5 49.33 49.1 78.3 87.5 36.85 394.9

Table 3 Performance comparison (SumR) of zero-shot retrieval on Multi30K. “CC3M-MT” indicates the multilingual version of CC3M [49].

“en”, “de”, “fr”, and “cs” denote the English, German, French, and Czech, respectively.

Method Training data en2de en2fr en2cs

M3P [14] CC3M + Wikipedia 220.8 162.6 122.4

UC2 [6] CC3M-MT 375.0 362.4 330.6

CCLM [5] CC3M-MT 409.5 384.4 375.3

NRCCR [7] Multi-MSCOCO 448.7 433.8 411.2

DCOT [9] Multi-MSCOCO 458.9 445.3 424.2

CL2CM [8] Multi-MSCOCO 461.2 447.0 428.9

UML (ours) Multi-MSCOCO 463.7 450.5 433.1

4.2.3 Generalization analysis

To evaluate the generalization ability of UML, we present the results of cross-lingual image-text retrieval under
a zero-shot setting, as shown in Table 3. Specifically, UML is trained on the Multi-MSCOCO dataset and is
evaluated on the Multi30K dataset, allowing us to examine its performance when directly applied to a different
domain without fine-tuning. Compared to large-scale pre-trained models like M3P, UC2, and CCLM, UML achieves
superior results with less training data. These findings suggest that noise-robust learning can reduce reliance on
large-scale datasets, emphasizing its importance. Furthermore, UML consistently outperforms other noise-robust
methods (i.e., NRCCR, DCOT, and CL2CM) by a significant margin, using the same training data. This is largely
due to UML’s ability to identify accurate cross-modal correspondences, leading to improved generalization.

4.2.4 Robustness analysis

To verify the robustness of the UML against noisy correspondence, we perform experiments with different noise ratios
on Multi30K. Since Multi30K is a well-annotated dataset, we artificially generate synthetic noisy correspondence by
randomly disrupting the correspondence between vision and non-English captions like [9] for a specific percentage
(i.e., 20%, 40%, and 60%). In Figure 3, UML consistently outperforms the robust baseline models NRCCR and



Liu Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132107:11

Figure 3 (Color online) Performance comparison (SumR) with different noise ratios on Multi30K. The noise (i.e., 20%, 40%, and 60%) is

introduced by artificially switching the correspondence of (V, T ) pairs, where “0%” indicates that no artificial noise is added. “en”, “de”, “fr”,

and “cs” indicate the English, German, French, and Czech, respectively.

Table 4 Ablation studies for UML’s components on Multi30K and Multi-MSCOCO. “DUL” and “AML” denote the dual-view uncertainty-

aware learning and adaptive mutual learning, respectively.

No.
DUL AML Multi30K Multi-MSCOCO

LI-MSE L|I| Lc Ln en2de en2fr en2cs en2zh en2ja

0 475.2 481.9 473.4 510.4 507.2

1 ✓ 493.8 494.0 481.7 520.9 515.6

2 ✓ ✓ 494.8 496.2 485.4 523.7 519.8

3 ✓ ✓ 497.5 498.3 485.9 526.3 523.6

4 ✓ ✓ ✓ 501.6 499.3 487.2 529.5 527.6

5 ✓ ✓ ✓ 504.2 505.1 489.6 532.7 529.1

6 ✓ ✓ ✓ ✓ 505.6 507.9 493.8 534.7 531.6

DCOT across different synthetic noise ratios. This demonstrates the superior robustness of UML in handling noisy
correspondence. In addition, even with a high noise ratio, UML maintains a strong performance due to its effective
noise mitigation through explicit partitioning.

4.3 In-depth studies of UML (RQ2)

4.3.1 Contributions of the UML’s components

To comprehensively understand UML, we examine its structure with careful scrutiny. Specifically, we explore the
effectiveness of the proposed DUL module and AML loss by analyzing their performance with different backbones
on Multi30K. We report the corresponding performances in Table 4 and summarize our observations as follows.

• Effectiveness of DUL. As demonstrated in Table 4, the initial row (i.e., No. 0) showcases the performance
of the baseline method, which is solely trained using the triplet ranking loss. No. 0 assumes that all pairs are
correctly related and does not incorporate any noise-robust design. In comparison to No. 0, DUL (i.e., No. 2)
notably enhances the model’s performance (+2.5%–4.1%). This observation indicates that DUL offers more reliable
cross-modal supervision by capturing and learning from uncertainty.

• Effectiveness of AML. In Nos. 4 and 5, we investigate the clean aggregation module and the noise disen-
tanglement module mentioned in AML. The results demonstrate that better performance can be achieved by using
either of the two. Furthermore, we conduct experiments to analyze the interplay between DUL and AML, with the
findings indicating that their combined use leads to significant performance improvements (+4.3%–6.4%). This is
attributed to AML’s ability to not only improve the semantic consistency of multiple views of clean samples but
also to prevent fitting to noisy samples. Overall, the results underscore that the combined utilization of DUL and
AML can enhance visual representation and improve alignment between visual features and non-English features.

4.3.2 Study of hyper-parameters

The parameters γ and λ in (11) control the intensity of attention in the dynamic dual-view learning strategy across
different views. Meanwhile, the parameter β in (20) balances Lu and Laml. The results of ablation studies on these
hyperparameters are presented in Figure 4. We investigate their impact on UML’s performance in cross-lingual
image-text retrieval using the Multi-MSCOCO dataset and in cross-lingual video-text retrieval using the VATEX
dataset. Across a wide range of hyperparameter values, UML exhibits minimal fluctuations. Notably, variations in
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Figure 4 (Color online) Study of the three hyper-parameters (i.e., γ and λ in (11), and β in (20)).

Figure 5 (Color online) We visualize the uncertainty distribution of clean and noisy pairs at different training stages of our UML, which

is conducted on Multi30K under 40% noise. Thanks to our UML, the uncertainty of clean pairs gradually approaches the left (low) and the

uncertainty of noisy pairs tightly gathers to the right (high). (a) Initial distribution; (b) epoch 20; (c) epoch 40.

these hyperparameters do not lead to significant performance degradation, further demonstrating the robustness of
UML.

4.4 Qualitative analysis (RQ3)

4.4.1 Uncertainty visualization

To visually analyze the evolution of uncertainty during training, as shown in Figure 5, we conduct experiments
under 40% noise ratios on French of Multi30K. The results demonstrate that the uncertainty of clean pairs decreases
gradually as training progresses, while the uncertainty of noisy pairs increases, indicating a clear polarization trend.
This pattern confirms the effectiveness of uncertainty estimation in identifying and handling noisy correspondence.
Notably, leveraging uncertainty provides a natural mechanism to distinguish between clean and noisy pairs, thereby
enhancing the model’s robustness.

4.4.2 Representation visualization

In Figure 6, we utilize t-SNE to visualize the images and non-English representations of NRCCR, DCOT, and
UML. We randomly select 20 images along with their corresponding 5 German captions from the Multi-MSCOCO
test set, assigning the same color to indicate the same instance. We observe that UML achieves more precise and
aggregated intra-instance cross-modal alignment compared to NRCCR and DCOT. This discovery indicates that
UML demonstrates superior performance in capturing and integrating precise cross-modal representations.
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Figure 6 (Color online) A t-SNE visualization is conducted to represent 20 images alongside their corresponding 5 German sentence repre-

sentations on the Multi30K dataset. The same color indicates the same instance.

Figure 7 (Color online) Several retrieved examples of cross-lingual image-text retrieval on Multi30K under 40% noise. We present the top-5

ranked German sentences for each image query, identified as (a)–(c). The correctly matched texts are denoted by a green tick, while incorrectly

matched texts are marked with a red cross. Similarly, for each sentence query, we display the top-3 ranked images from left to right, denoted

as (d)–(f). Correctly matched images are highlighted in green boxes, while incorrectly matched ones are indicated in red boxes. Estimated

uncertainty and similarity (i.e., bold font with bracket in sentences, and green or red font with white background in images) are given in

sub-captions and exemplars, respectively. “ENG” denotes English translations.

4.4.3 Retrieval visualization

To demonstrate the effectiveness of UML, we visualize six representative retrieval cases from Multi30K in Figure 7.
UML retrieves cross-modal samples while estimating the uncertainty of each result. The examples show that uncer-
tainty is generally inversely correlated with retrieval quality-more and higher-ranked correct matches correspond to
lower uncertainty, as illustrated in Figures 7(a), (d) and Figures 7(c), (f). Notably, high similarity does not always
indicate correct retrieval, whereas uncertainty offers a more reliable confidence measure, as shown in Figure 7(c).
By quantifying uncertainty, UML enhances the interpretability.

In addition, Figure 8(a) shows the successful cases of UML on the VATEX dataset. UML provides a more
reasonable estimate of the similarity of the sample pairs. For example (from left to right), as the translation quality
decreases, the similarity given by UML also decreases accordingly. However, the similarity estimates of NRCCR
and DCOT are not accurate. Figure 8(b) shows the failure cases of UML. For the semantic ambiguity caused by
translation errors in the first two cases, UML overestimates the similarity, indicating that it may overfocus on local
semantic alignment and ignore overall semantic learning. Although the translation of the last case is accurate, the
video semantics evolve significantly over time, and UML also makes a wrong judgment. This is mainly because UML
focuses on global feature optimization and has inherent limitations in understanding the temporal characteristics
of videos. Future work will focus on fine-grained semantic alignment to solve the hidden noisy correspondence
problem.

5 Conclusion

This paper investigates the challenges of cross-lingual cross-modal retrieval with NC. To address this problem, we
present a novel UML framework to mitigate the adverse impacts caused by NC. Specifically, the proposed DUL
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Figure 8 (Color online) Several qualitative results of cross-lingual video-text retrieval on VATEX. “ENG” denotes English translations.

(a) The successful cases of UML; (b) the failure cases of UML.

measures and mitigates the impact of unreliable supervision by considering alignment uncertainty modeling. More-
over, we design an AML loss to obtain comprehensive and well-aligned cross-modal representations. Experimental
results demonstrate the effectiveness and robustness of our proposed UML against noisy correspondence. In our
future work, we plan to explore additional strategies to further improve retrieval performance and extend the UML
to a wider range of multimodal analysis tasks [50–52].
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