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Abstract Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Most existing methods treat ISMTS as syn-

chronized regularly sampled time series with missing values, neglecting that the irregularities are primarily attributed to variations in

sampling rates. In this paper, we introduce a novel perspective that irregularity is essentially relative in some sense. With sampling rates

artificially determined from low to high, an irregularly sampled time series can be transformed into a hierarchical set of relatively regular

time series from coarse to fine. We observe that additional coarse-grained, relatively regular time series not only mitigate the irregularly

sampled challenges but also incorporate broad-view temporal information, thereby serving as a valuable asset for representation learning.

Therefore, following the philosophy of learning that sees the big picture first, then delving into the details, we present the multi-scale

and multi-correlation attention network (MuSiCNet), combining multiple scales to iteratively refine the ISMTS representation. Specif-

ically, within each scale, we explore time attention and frequency correlation matrices to aggregate intra- and inter-series information,

naturally enhancing the representation quality with richer and more intrinsic details. Across adjacent scales, we employ a representation

rectification method containing contrastive learning and reconstruction results adjustment to further improve representation consistency.

Experimental results demonstrate that MuSiCNet consistently achieves competitive performance with state-of-the-art methods across

four key ISMTS tasks: classification, interpolation, forecasting, and anomaly detection.

Keywords irregularly sampled multivariate time series, time series analysis, attention mechanism, multi-scale learning, representation

learning
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1 Introduction

Irregularly sampled multivariate time series (ISMTS) are ubiquitous in realistic scenarios, ranging from scientific
explorations to societal interactions [1–7]. The causes of irregularities in time series collection are diverse, including
sensor malfunctions, transmission distortions, cost-reduction strategies, and various external forces or interventions.
Such ISMTS data exhibit distinctive features, including intra-series irregularity, characterized by inconsistent in-
tervals between consecutive data points, and inter-series irregularity, marked by a lack of synchronization across
multiple variables. The above characteristics typically result in the lack of alignment and uneven count of observa-
tions [8], invalidating the assumption of a coherent fixed-dimensional feature space for most traditional time series
analysis models.

Recent studies have attempted to address these challenges by treating ISMTS as synchronized, regularly sampled
multivariate time series (RSMTS) data with missing values, focusing on imputation strategies [2, 9–15]. However,
direct imputation is difficult, especially when sampling is sparse. Inaccurate imputation results can distort underly-
ing relationships and introduce significant noise, which can greatly reduce the accuracy of analysis tasks [3,16–18].
The latest developments circumvent imputation and aim to address these challenges by embracing the inherent con-
tinuity of time, thus preserving the continuous temporal dynamics dependencies within the ISMTS data. Despite
these innovations, most of the methods above are merely solutions for intra-series irregularities, such as recurrent
neural networks(RNNs)- [3,19,20] and neural ordinary differential equations (neural ODEs)-based methods [21–24]
and the unaligned challenges presented by inter-series irregularities in multivariate time series remain unsolved.

Delving into the nature of ISMTS, we discover that the intra- and inter-series irregularities primarily arise from
inconsistency in sampling rates within and across variables. We argue that irregularities are essentially relative
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Figure 1 Comparative visualization of multi-scale time series data with various sampling rates. Scale L depicts the original selected repre-

sentative time series in the P12 Dataset to show the inter- and intra-series irregularities. Scale 1 to scale L − 1 illustrate the effect of applying

different sampling rates from low to high.

in some sense, and by artificially determined sampling rates from low to high, ISMTS can be transformed into a
hierarchical set of relatively regular time series from coarse to fine. Taking a broader perspective, setting a lower
and consistent sampling rate within an instance can synchronize sampling times across series and establish uniform
time intervals within each series. This approach can mitigate both types of irregularity and emphasize long-term
dependencies. As shown in Figure 1, the coarse-grained scales 1 and 2 exhibit balanced placement of observation
timestamps across all variables in the instance, providing clearer overall trends. However, lower sampling rates may
lead to information loss and sacrifice detailed temporal variations. Conversely, with a higher sampling rate as in
scale L, more real observations contain rich information and prevent artificially introduced dependencies beyond
the original relations during training. Nonetheless, the significant irregularity in fine-grained scales poses a greater
challenge for representation learning.

To bridge this gap, we propose MuSiCNet, a multi-scale and multi-correlation attention network, to iteratively
optimize ISMTS representations from coarse to fine. Our approach begins by establishing a hierarchical set of coarse-
to fine-grained series with sampling rates from low to high. At each scale, we employ a custom-designed encoder-
decoder framework called multi-correlation attention network (CorrNet) for representation learning. Different from
most existing methods that focus mainly on intra-series relationships, our CorrNet encoder (CorrE) captures em-
beddings of continuous time values by using an attention mechanism with correlation matrices to aggregate both
intra- and inter-series information. This approach is crucial not only because every observation in ISMTS, given the
sparse sampling, is valuable for representation learning, but also due to the fact that correlated variables provide
deeper insights for a given query timestamp. Specifically, we construct frequency-domain correlation matrices using
the Lomb-Scargle periodogram-based dynamic time warping (LSP-DTW), which effectively tackles the challenge of
computing correlations in ISMTS. This strategy enables the aggregation of inter-series information, facilitating more
effective representation learning. Across scales, we employ a representation rectification operation from coarse to
fine to iteratively refine the learned representations with contrastive learning and reconstruction results adjustment
methods. This ensures accurate and consistent representation and minimizes error propagation throughout the
model. Benefiting from the aforementioned designs, MuSiCNet explicitly learns multi-scale information, enabling
good performance on widely used ISMTS datasets, thereby demonstrating its ability to capture proper features for
ISMTS analysis. Our main contributions can be summarized as follows.

•We find that irregularities in ISMTS are essentially relative in some sense and multi-scale learning helps balance
coarse- and fine-grained information in ISMTS representation learning.

•We introduce CorrNet, an encoder-decoder framework designed to learn fixed-length representations for ISMTS.
Notably, our proposed LSP-DTW can mitigate spurious correlations induced by irregularities in the frequency
domain and effectively aggregate inter-series information.
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Figure 2 Overview of MuSiCNet framework, as shown in (a), containing three main components for better representation learning, including

hierarchical structure {X(l)}L
l=1, representation learning using CorrNet within scale ℓ(l)cons, and rectification operation across adjacent scales

ℓ(l)recon ; (b) visualizes the encoding process in CorrNet for scale l, which relies on τ
(l) to aggregate intra-series information, and then relies on

cdi,(·) to fuse inter-series information from other variables for dith dimension; (c) visualizes the calculation process of the correlation matrix,

which transfers the time domain into the frequency domain with LSP, and then utilizes DTW to calculate the similarity weight.

•We are not limited to a specific analysis task and attempt to propose a task-general model for ISMTS analysis,
including classification, interpolation, forecasting, and anomaly detection.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 presents a detailed
introduction to the proposed MuSiCNet. Section 4 presents extensive experiments to demonstrate the effectiveness
of MuSiCNet. Section 5 concludes the paper with key findings.

2 Related work

2.1 Irregularly sampled multivariate time series analysis

An effective approach for analyzing ISMTS hinges on the understanding of their unique properties. Most existing
methods treat ISMTS as RSMTS with missing values, such as [2, 9–13, 15, 25]. However, most imputation-based
methods may distort the underlying relationships, introducing unsuitable inductive biases and substantial noise due
to incorrect imputation [3,16,17], ultimately compromising the accuracy of downstream tasks. Some other methods
treat ISMTS as time series with discrete timestamps, aggregating all sample points of a single variable to extract a
unified feature for each variable [16,26,27]. These methods can directly accept raw ISMTS data as input but often
struggle to handle the underlying relationships within the time series. Recent progress seeks to overcome these
challenges by recognizing and utilizing the inherent continuity of time, thereby maintaining the ongoing temporal
dynamics present in ISMTS data [19–23,28].

Despite these advancements, existing methods mainly suffer from two main drawbacks: they primarily address
intra-series irregularity while overlooking the alignment issues stemming from inter-series irregularity, and they rely
on assumptions tailored to specific downstream tasks [4, 25], hindering their ability to consistently perform well
across various ISMTS tasks.
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2.2 Multi-scale time series modeling

Multi-scale and hierarchical approaches have demonstrated their utility across various fields, including computer
vision (CV) [29,30], natural language processing (NLP) [31,32]. Recent innovations in the time series analysis domain
are mostly for RSMTS, with many approaches integrating multi-scale modules into the Transformer architecture
or graph neural network (GNN) to enhance analysis capabilities. For Transformer, Scaleformer [33] employs an
iterative refinement framework that progressively corrects forecasts across multiple temporal scales, enhancing
overall accuracy while keeping computational costs low. Meanwhile, Pathformer [34] introduces adaptive pathways
within a Transformer, dynamically routing information at various time scales to simultaneously capture short-term
fluctuations and long-term trends for improved forecasting. Moreover, Pyraformer [35] utilizes a pyramidal attention
mechanism to efficiently aggregate information across different scales, effectively modeling long-range dependencies
with reduced computational complexity. For GNN, MTSF-DG [36] leverages dynamic graph modeling to capture
evolving inter-series dependencies over multiple scales, thereby adapting to changing relationships among time series
and boosting forecast accuracy. Additionally, MSGNet [37] uses a GNN architecture to learn multi-scale correlations
across multiple time series, effectively extracting both global and local dynamics to enhance multivariate forecasting
performance.

Nevertheless, while the aforementioned methods are designed for RSMTS, the application of multi-scale modeling
for ISMTS data, along with the effective exploitation of cross-scale information, remains less unexplored. As far
as we know, Refs. [38, 39] are among the earlier studies on multi-scale ISMTS learning. Ref. [38] addresses multi-
resolution signal issues by distributing signals across specialized branches with different resolutions, where each
branch employs a flexible irregular time series network (FIT) to process high- and low-frequency data separately.
Warpformer [39], on the other hand, is a transformer-based model that stacks multiple Warpformer layers to produce
multi-scale representations, combining them via residual connections to support downstream tasks. These studies
typically focus on either specific tasks or particular model architectures. In contrast, our design philosophy originates
from ISMTS characteristics rather than being tied to a specific feature extraction network structure. Warpformer
emphasizes designing a specific network architecture but involves high computational costs and requires manually
balancing the trade-off between the number of scales and the dataset. These are challenges that our MuSiCNet
avoids entirely.

3 Proposed MuSiCNet framework

As previously mentioned, our work aims to learn ISMTS representations for further analysis tasks by introducing
MuSiCNet, a novel framework designed to balance coarse- and fine-grained information across different scales.
The overall model architecture illustrated in Figure 2(a) indicates that the effectiveness of MuSiCNet can be
guaranteed to a great extent by (1) hierarchical structure, (2) representation learning using corrnet within scale, and
(3) rectification across adjacent scales. We will first introduce the problem formulation and notations of MuSiCNet,
and then discuss key points in the following subsections.

3.1 Problem formulation

Our goal is to learn a nonlinear embedding function fθ, such that the set of ISMTS data X = {X1, . . . ,XN}
can map to the best-described representations R = {R1, . . . ,RN} for further ISMTS analysis. The nth sample
Xn ∈ R

Tn×D in X is a D-dimensional sample, and its real observation length is Tn. We drop the data case index
n for brevity when the context is clear.

3.2 Multi-scale data acquisition

By downsampling the original instance, a hierarchical set of relatively regular series is obtained, forming a hierar-
chical structure ranging from coarse to fine with the original series:

Xmulti = {M
(l) ⊙Avgl(X)}L−1

l=1 ∪ {M
(L) ⊙X} = {X(1), . . . ,X(L)} (1)

with corresponding observation time set Tmulti = {t(1), . . . , t(L)}. Since MuSiCNet adopts a masked modeling-
based reconstruction representation learning approach introduced in the following subsection, a random masking
set {M (1), . . . ,M (L)} is applied to the instance at each scale. For simplicity, an improved average pooling operation
Avg is selected as the downsampling method, where the average is taken over the observed values based on the real
observation counts.
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3.3 CorrNet architecture within scale

Drawing inspiration from notable advances in NLP [40, 41] and CV [42–44], masked modeling for time series
data aims to learn robust representations for various downstream tasks. CorrNet comprises an encoder–decoder
architecture based on continuous-time interpolation. At each scale l, the CorrNet encoder (CorrE) learns a set of

latent representations R(l) = [r
(l)
1 , . . . , r

(l)

U(l) ] of length U (l) from randomly masked ISMTS data X(l) ∈ R
T (l)×D by

leveraging intra-series and inter-series correlations via multi-time attention and a correlation matrixC. Additionally,
CorrNet decoder (CorrD), a simplified version of CorrE without the correlation matrix, generates a reconstructed

output X̂(l) from R(l) that matches the dimensions of the input t(l). We apply the same CorrNet iteratively at each
scale and emphasize that all scales share a single encoder, which reduces model complexity and ensures consistency
in feature extraction across various scales.

Time embedding. The time embedding encoding function TE adopts the embedding approach proposed in
mTAND [1], which extends the position encoding mechanism used in Transformer [45] models to continuous time.
The ith component of the embedding is defined as follows, with each output having a dimension of dr:

TEi(t) =

{

ω0 · t+ α0, if i = 0,

sin (ωi · t+ αi) , if 0 < i < dr,
(2)

where ωi and αi are learnable parameters.
CorrNet encoder. In CorrE, a multi-correlation attention module is employed to learn representations by

integrating both intra-series and inter-series correlations. Prior studies have demonstrated the effectiveness of
temporal attention mechanisms in ISMTS learning [1, 26, 28, 46]. However, most existing methods mainly focus on
the interaction between observations of a single variable and their corresponding sampling times, thereby overlooking
the sparse nature of ISMTS and failing to fully utilize real observations. To address this limitation, we generate
fixed-dimensional representations at each query (Q) timestamp by using all real sampling time timestamps and their
corresponding observations as keys (K) and values (V). We further introduce a correlation matrix C constructed
using the frequency information among variables. This matrix quantifies the similarity between different variables,
capturing latent structural information that allows for the aggregation of representations across similar variables,
thereby enhancing the utilization of available temporal data and improving representation quality.

The overall workflow of this module is illustrated in Figure 2(b). Given ISTS data X(l) as input, the CorrNet
encoder CorrE(·) generates multi-time attention embeddings that incorporate both intra-variable and inter-variable
relationships, as detailed in the following computation process.

CorrE(Q
(l)
T ,K

(l)
T ,X(l)) = A

(l)
T X(l)C,

A
(l)
T = softmax(Q

(l)
T K

(l)
T /dr),

(3)

in which A
(l)
T is computed based on the temporal attention mechanism. The query matrices Q

(l)
T and the key-value

matrix K
(l)
T are the time embedding matrices. Since, for a given query, the relevant variables should receive higher

weights to provide more valuable information, different input dimensions are assigned distinct temporal embedding
weights via the correlation matrix C, providing extra information on the correlation between multiple variables.

Because the continuous functions defined in the CorrE module are incompatible with neural network architectures
designed for fixed-dimensional vectors, we follow the approach in [1] to discretize the output at a predefined set

of reference time points, τ (l) = [τ
(l)
1 , . . . , τ

(l)

U(l) ], thereby generating the final representation. This process converts
the continuous output into a fixed-dimension vector, making it suitable for subsequent neural network processing.

Accordingly, we have Q
(l)
T = TE(τ (l)) and K

(l)
T = TE(t(l)) with learnable parameters.

Correlation matrix extraction. The correlation matrix is essential for deriving reliable and consistent correla-
tions between multiple variables within ISMTS, which must be robust to the inherent challenges of variable sampling
rates and inconsistent observation counts at each timestamp in ISMTS. Most existing distance measures, such as
Euclidean distance, dynamic time warping (DTW) [47], and optimal transport/Wasserstein distance [48], risk gen-
erating spurious correlations in the context of ISMTS. This is due to their dependence on the presence of both data
points for the similarity measurement, and the potential for imputation to introduce unreliable information before
calculating similarity, which will be explored further in Subsection 4.6 of our experiments.

At an impasse, the Lomb-Scargle periodogram (LSP) [49, 50] provides enlightenment to address this issue. LSP
is a well-known algorithm for generating a power spectrum and detecting the periodic component in irregularly
sampled time series. It extends the Fourier periodogram approach to accommodate irregularly sampled scenar-
ios [51], eliminating the need for interpolation or imputation. This makes LSP a great tool for simplifying ISMTS
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analysis. Compared to existing methods that measure similarity between discrete raw observations, LSP-DTW, an
implicit continuous method, utilizes inherent periodic characteristics and provides global information to measure
the similarity.

As demonstrated in Figure 2(c), we first convert the ISMTS into the frequency domain using LSP and then apply
DTW to evaluate the distance between variables. The correlation between Xdi

and Xdj
is

cdidj
= DTW

(

LSP(Xdi
),LSP(Xdj

)
)

= min
π

∑

(m,n)∈π

(

LSP(Xdi
)[m]− LSP(Xdj

)[n]
)2

, (4)

where π is the search path of DTW. We calculate the correlation matrix C by iteratively performing the aforemen-
tioned step for an instance. Notably, we compute the correlation matrix using LSP-DTW only once per instance,
without iteratively applying it, and it is not calculated in model training or inference.

CorrNet decoder and reconstruction loss. CorrD is a simplified version of CorrE without the correlation
matrix, intending to reconstruct the input sequence based on the learned representation. Its computation is defined
as follows:

CorrD(Q
′(l)
T ,K

′(l)
T ,R(l)) = A

′(l)
T R(l),

A
′(l)
T = softmax(Q

′(l)
T K

′(l)
T /dr),

(5)

where Q
′(l)
T = TE(t(l)) and K

′(l)
T = TE(τ (l)) with learnable parameters.

The reconstruction loss is computed as the mean squared error (MSE) between the reconstructed values and the
original values at the masked time points. For the nth sample, the loss function is expressed as

ℓ(l)recon = ‖M (l) ⊙ (X̂(l) −X(l))‖22. (6)

By aggregating over N samples, the overall reconstruction loss for the lth layer is obtained as L
(l)
recon.

3.4 Rectification strategy across scales

Following the principle that adjacent scales exhibit similar representations and coarse-grained scales contain more
long-term information, the rectification strategy is a key component of our MuSiCNet framework. While the coarse-
grained series ignores detailed variations for high-frequency signals and focuses on much clearer broad-view temporal
information, the fine-grained series retains detailed variations for frequently sampled series. As a result, iteratively
using coarse-grained information for fine-grained series as a strong structural prior can benefit ISMTS learning.

Therefore, we implement a dual rectification strategy across adjacent scales to enhance representation learning.
First, the reconstruction result at scale l is designed to align closely with the result at the (l − 1)th scale, which
means the reconstruction results at scale (l − 1) can be used to adjust the results at scale l using MSE,

ℓ
(l)
adj = ‖Avgl(X̂

(l))− X̂(l−1)‖22. (7)

By calculating N times, the overall reconstruction loss for the lth layer is obtained as L
(l)
adj.

Second, contrastive learning is leveraged to ensure coherence between adjacent scales. Pulling these two repre-
sentations between adjacent scales together and pushing other representations within the batch B apart, not only
facilitates the learning of within-scale representations but also enhances the consistency of cross-scale representa-
tions. Taking into consideration that the dimensions of R(l) and R(l−1) are different, we employ a gated recurrent
unit (GRU) as a decoder to uniform dimension as h(l) and h(l−1) before contrastive learning.

ℓ(l)cons = −
∑|B|

i=1
log

exp(h
(l)
i · h

(l−1)
i )

∑|B|
j=1(exp(h

(l)
i · h

(l−1)
j ) + I[i6=j] exp(h

(l)
i · h

(l)
j ))

, (8)

where the I is the indicator function. After computing this over all samples in the batch, we obtain the overall

contrastive loss L
(l)
cons for the lth layer.

The advantage of the two operations lies in their ability to ensure a consistent and accurate representation of
the data at different scales. This strategy significantly improves the model’s ability to learn representations from
ISMTS data, which is essential for tasks requiring detailed and accurate time series analysis. Last but not least,
this method ensures that the model remains robust and effective even when dealing with data at varying scales,
making it versatile for diverse applications.
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3.5 ISMTS analysis tasks

The overall loss is defined as (9), incorporating an optional task-specific loss component,

L =
1

L

L
∑

l=1

L(l)recon +
1

L− 1

L
∑

l=2

(λ1L
(l)
adj + λ2L

(l)
cons). (9)

Supervised learning. We augment the encoder-decoder CorrNet by integrating a supervised learning compo-
nent that utilizes the latent representations for feature extraction. In this paper, we specifically concentrate on
classification tasks as a representative example of supervised learning. Y = {1, 2, . . .} denotes the label space. The
loss function is

Lcls =
1

|Y |

|Y |
∑

y=1

1

ny

ny

∑

i=1

ℓCE(CLS(h
(L)
i ), y), (10)

where |Y | denotes the number of classes, ny denotes the number of samples in yth class, CLS(·) denotes the
projection head for classification, and ℓCE(·) denotes the cross-entropy loss.

Unsupervised learning. For our unsupervised learning example, we choose interpolation, forecasting, and
anomaly detection. The loss function for interpolation and anomaly detection is defined as

Lint = Lanom =

N
∑

n=1

‖M (L) ⊙ ((X̂(L)
recon)n −X(L)

n )‖22. (11)

This equation essentially represents the reconstruction outcome at the finest scale as L
(L)
recon in (6), making the inter-

polation task fit seamlessly into our model with minimal modifications. Therefore, it is unnecessary to incorporate
an additional loss function into our overall loss function (9).

While the loss function for forecasting is defined as

Lfore =

N
∑

n=1

‖(Mfore)n ⊙ ((X̂
(L)
fore)n − (Xfore)n)‖

2
2. (12)

As observations might be missing in the groundtruth data, to measure forecasting accuracy, we average an
element-wise loss function Lfore over only valid values using (Mfore)n.

3.6 Pseudo code for MuSiCNet

The pseudo code is provided in Algorithm 1 using classification as an example. The interpolation and anomaly
detection task can be obtained by removing the projection head fcls and the classification loss term Lcls from the
total loss in line #20. For forecasting tasks, the projection head will be replaced with ffore and the task loss will
be changed to Lfore as in (12).

4 Experiment

In this section, we demonstrate the effectiveness of the MuSiCNet framework for time series classification, interpo-
lation, and forecasting. Notably, for each dataset, the window size is initially set to 1/4 of the time series length and
then halved iteratively until the majority of the windows contain at least one observation. Our results are based
on the mean and standard deviation values computed over 5 independent runs. Bold indicates the best performer,
while underline represents the second best.

4.1 Summary of benchmarks

We adopt the data processing approach used in Raindrop [16] for the classification task, mTANs [1] for the in-
terpolation task, and GraFITi [4] for the forecasting task. The aforementioned processing methods serve as the
usual setup, which our method also follows for fair comparison. However, it’s important to note that we do not
incorporate static attribute vectors (such as age, gender, time from hospital to ICU admission, ICU type, and length
of stay in ICU) in our processing. This decision is based on the fact that our model, MuSiCNet, is not specifically
designed for clinical datasets. Instead, it is designed as a versatile, general model capable of handling various types
of datasets, which may not always include such static vectors. The detailed information of baselines is in Table 1.
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Algorithm 1 MuSiCNet algorithm for classification as an example.

Input: Training set X , the corresponding timestamps T , the number of scale layers L, max reference point U (L),
hyper-parameters λ1, λ2, λ3.
Parameters: Encoder model fCorrE, decoder model fCorrD, GRU model fGRU, projection head fcls.
Output: Encoder model fCorrE, GRU model fGRU, projection head fcls.

1: C ← (4) with X and T ;
2: for X, t in X , T do

3:
{

X(1), . . . ,X(L)
}

←
{

M (l) ⊙Avgl (X)
}L−1

l=1
∪ {M (L) ⊙X};

4: {t(1), . . . , t(L)} ←
{

M (l) ⊙Avgl (t)
}L−1

l=1
∪ {M (L) ⊙ t};

5: ℓrecon ← 0;
6: for l ← 1 to L do

7: U (l) ← U (L)/2(L−l);
8: τ (l) ←

{

k
U(l) · T

∣

∣ k = 0, 1, . . . , U (l) − 1
}

;

9: r(l) ← fCorrE

(

X(L),C, τ (l)
)

;

10: h(l) ← fGRU

(

R(l)
)

;

11: X̂
(l)
recon ← fCorrD

(

R(l), t(l)
)

;

12: ℓrecon ← ℓrecon+ (6) with X(l) and X̂(l);
13: end for

14: ℓadj, ℓcons ← 0, 0;
15: for l ← 2 to L do

16: ℓadj ← ℓadj+ (7) with X̂(l−1) and X̂(l);
17: ℓcons ← ℓcons+ (8) with h(l−1) and h(l);
18: end for

19: Lcls ← (10) with h(L);
20: Loverall ←

1
L
Lrecon +

λ1

L−1Ladj +
λ2

L−1Lcons + λ3Lcls;
21: Update overall network parameters;
22: end for

Table 1 Statistics of the ISMTS datasets used in our experiments. “#Avg. obs.” denotes the average number of observations for each sample.

Tasks Datasets #Samples #Variables #Avg. obs. #Classes Imbalanced Missing ratio (%)

P12 11988 36 233 2 True 88.4

P19 38803 34 401 2 True 94.9Classification

PAM 5333 17 4048 8 False 60.0

Interpolation PhysioNet 4000 37 2880 – – 78.0

USHCN 1100 5 263 – – 77.9

MIMIC-III 21000 96 274 – – 94.2Forecasting

PhysioNet12 5333 37 130 – – 85.7

MSL 1 55 32657 – – 30.0

Anomaly PSM 1 25 74188 – – 30.0

SMD 1 38 396706 – – 30.0Detection

SWAP 1 25 75702 – – 30.0

4.2 Time series classification

Datasets and experimental settings. We use real-world datasets from the healthcare and human activity
domains to evaluate classification performance. (1) P12 [52] records temporal measurements of 36 sensors of 11988
patients in the first 48-hour stay in ICU, with a missing ratio of 88.4%. (2) P19 [53], with a missing ratio up to
94.9%, includes 38803 patients that are monitored by 34 sensors. (3) PAM [54] contains 5333 segments from 8
activities of daily living that are measured by 17 sensors, and the missing ratio is 60.0%. Importantly, P19 and P12
are imbalanced binary label datasets.

Here, we follow the common setup by randomly splitting the dataset into training (80%), validation (10%),
and test (10%) sets, and the indices of these splits are fixed across all methods. Consistent with prior research,
we evaluate the performance of our framework on classification tasks using the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for the P12 and P19 datasets,
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Table 2 Comparison with the baseline methods on the ISMTS classification task.

P12 P19 PAM
Method

AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 83.3± 0.7 47.9± 3.6 80.7± 3.8 42.7± 7.7 83.5± 1.5 84.8± 1.5 86.0± 1.2 85.0± 1.3

Trans-Mean 82.6± 2.0 46.3± 4.0 83.7± 1.8 45.8± 3.2 83.7± 2.3 84.9± 2.6 86.4± 2.1 85.1± 2.4

GRU-D 81.9± 2.1 46.1± 4.7 83.9± 1.7 46.9± 2.1 83.3± 1.6 84.6± 1.2 85.2± 1.6 84.8± 1.2

SeFT 73.9± 2.5 31.1± 4.1 81.2± 2.3 41.9± 3.1 67.1± 2.2 70.0± 2.4 68.2± 1.5 68.5± 1.8

mTAND 84.2± 0.8 48.2± 3.4 84.4± 1.3 50.6± 2.0 74.6± 4.3 74.3± 4.0 79.5± 2.8 76.8± 3.4

IP-Net 82.6± 1.4 47.6± 3.1 84.6± 1.3 38.1± 3.7 74.3± 3.8 75.6± 2.1 77.9± 2.2 76.6± 2.8

DGM2-O 84.4± 1.6 47.3± 3.6 86.7± 3.4 44.7± 11.7 82.4± 2.3 85.2± 1.2 83.9± 2.3 84.3± 1.8

MTGNN 74.4± 6.7 35.5± 6.0 81.9± 6.2 39.9± 8.9 83.4± 1.9 85.2± 1.7 86.1± 1.9 85.9± 2.4

Raindrop 82.8± 1.7 44.0± 3.0 87.0± 2.3 51.8± 5.5 88.5± 1.5 89.9± 1.5 89.9± 0.6 89.8± 1.0

Warpformer 83.4± 0.9 47.2± 3.7 88.8± 1.7 55.2± 3.9 94.3± 0.6 95.8± 0.8 94.8± 1.0 95.2± 0.6

ViTST 85.1± 0.8 51.1± 4.1 89.2± 2.0 53.1± 3.4 95.8± 1.3 96.2± 1.3 96.1± 1.1 96.5± 1.2

FPT 84.8± 1.1 50.7± 3.0 87.3± 2.9 51.6± 3.6 94.0± 1.4 95.3± 0.9 94.7± 1.1 94.9± 1.1

Time-LLM 84.4± 1.8 50.2± 1.6 85.1± 2.6 50.1± 3.4 93.4± 1.2 94.2± 1.3 94.7± 1.0 94.4± 1.1

PrimeNet 84.9± 0.6 49.8± 2.7 84.4± 1.3 39.7± 3.1 95.3± 0.5 96.1± 0.3 95.5± 0.6 95.7± 0.4

MuSiCNet 86.1± 0.4 54.1± 2.2 86.8± 1.4 45.4± 2.7 96.3± 0.7 96.9± 0.6 96.9± 0.5 96.8± 0.5

given their imbalanced nature. For the nearly balanced PAM dataset, we employ Accuracy, Precision, Recall, and
F1 Score. For all of the above metrics, higher results indicate better performance.

Main results. We compare MuSiCNet against 10 state-of-the-art methods for classification, including Trans-
former [45], Trans-Mean, GRU-D [2], SeFT [26], mTAND [1], IP-Net [55], DGM2-O [17], MTGNN [56], Rain-
drop [16], and ViTST [27], Warpformer [39]. In addition, we include comparisons with pre-trained language
model (PLM)-based approaches, such as FPT [57] and Time-LLM [58], as well as the CRL-based ISMTS model,
PrimeNet [28]. Since mTAND is proven superior over various RNN-based models, such as RNNImpute [2], Phased-
LSTM [59], and ODE-based models like LATENT-ODE and ODE-RNN [60], we primarily focus on mTAND and
omit detailed results for those earlier models.

As indicated in Table 2, MuSiCNet demonstrates good performance across three benchmark datasets, underscor-
ing its effectiveness in typical time series classification tasks. Notably, in binary classification scenarios, MuSiCNet
surpasses the best-performing baselines on the P12 dataset by an average of 1.0% in AUROC and 3.0% in AUPRC.
For the P19 dataset, while our performance is competitive, MuSiCNet stands out due to its lower time and space
complexity compared to ViTST. ViTST converts 1D time series into 2D images, potentially leading to significant
space inefficiencies due to the introduction of extensive blank areas, especially problematic in ISMTS. In the more
complex task of 8-class classification on the PAM dataset, MuSiCNet surpasses current methodologies, achieving a
0.5% improvement in accuracy and a 0.7% increase in precision.

Notably, the consistently low standard deviation in our results indicates that MuSiCNet is a reliable model.
Its performance remains steady across varying data samples and initial conditions, suggesting strong potential for
generalizing well to new, unseen data. This stability and predictability in performance enhance the confidence in
the model’s predictions, which is particularly crucial in sensitive areas such as medical diagnosis in clinical settings.

4.3 Time series interpolation

Datasets and experimental settings. PhysioNet [61] contains 37 variables recorded during the first 48 h after
ICU admission. We use all 8000 instances for the interpolation task, where the overall missing ratio is 78.0%.

We randomly split the dataset into a training set, encompassing 80% of the instances, and a test set, comprising
the remaining 20% of instances. Additionally, 20% of the training data is reserved for validation purposes. The
performance evaluation is conducted using MSE, where lower values indicate better performance.

Main results. For the interpolation task, we compare it with RNN-VAE, L-ODE-RNN [60], L-ODE-ODE [21],
mTAND-full, NIERT [62], and TimeCHEAT [63].

For the interpolation task, models are trained to predict or reconstruct values for the entire dataset based on a
selected subset of available points. Experiments are conducted with varying observation levels, ranging from 50%
to 90% of observed points. During test time, models utilize the observed points to infer values at all time points in
each test instance.

As illustrated in Table 3, MuSiCNet demonstrates superior performance, highlighting its effectiveness in time
series interpolation. This can be attributed to its ability to interpolate progressively from coarse to fine, aligning
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Table 3 Comparison with the baseline methods on the ISMTS interpolation task on PhysioNet, reported as MSE ×10−3.

Method 50% 60% 70% 80% 90%

RNN-VAE 13.418± 0.008 12.594± 0.004 11.887± 0.005 11.133± 0.007 11.470± 0.006

L-ODE-RNN 8.132± 0.020 8.140± 0.018 8.171± 0.030 8.143± 0.025 8.402± 0.022

L-ODE 6.721± 0.109 6.816± 0.045 6.798± 0.143 6.850± 0.066 7.142± 0.066

mTAND-Full 4.139± 0.029 4.018± 0.048 4.157± 0.053 4.410± 0.149 4.798± 0.036

NIERT 2.868± 0.021 2.794± 0.030 2.656± 0.041 2.577± 0.086 2.709± 0.157

TimeCHEAT 4.185± 0.030 3.981± 0.016 3.657± 0.022 3.642± 0.036 3.686± 0.009

MuSiCNet 0.918± 0.025 0.919± 0.064 0.938± 0.014 0.992± 0.008 0.965± 0.008

Table 4 Experimental results for forecasting the next three time steps. – indicates no published results.

Method USHCN MIMIC-III PhysioNet12

DLinear+ 0.347± 0.065 0.691± 0.016 0.380± 0.001

NLinear+ 0.452± 0.101 0.726± 0.019 0.382± 0.001

Informer+ 0.320± 0.047 0.512± 0.064 0.347± 0.001

FedFormer+ 2.990± 0.476 1.100± 0.059 0.455± 0.004

NeuralODE-VAE 0.960± 0.110 0.890± 0.010 –

GRUSimple 0.750± 0.120 0.820± 0.050 –

GRU-D 0.530± 0.060 0.790± 0.060 –

T-LSTM 0.590± 0.110 0.620± 0.050 –

mTAND 0.300± 0.038 0.540± 0.036 0.315± 0.002

GRU-ODE-Bayes 0.430± 0.070 0.480± 0.480 0.329± 0.004

Neural Flow 0.414± 0.102 0.490± 0.004 0.326± 0.004

CRU 0.290± 0.060 0.592± 0.049 0.379± 0.003

GraFITi 0.272± 0.047 0.396± 0.030 0.286± 0.001

MuSiCNet 0.268± 0.038 0.475± 0.031 0.312± 0.000

with the intuition of multi-resolution signal approximation [64].

4.4 Time series forecasting

Datasets and experimental settings. (1) USHCN [65] is an artificially preprocessing dataset containing mea-
surements of 5 variables from 1280 weather stations in the USA. The missing ratio is 78.0%. (2) MIMIC-III [66] is
a dataset that rounds the recorded observations into 96 variables, 30-minute intervals, and only uses observations
from the 48 h after admission. The missing ratio is 94.2%. (3) PhysioNet12 [61] comprises medical records from
12000 ICU patients. It includes measurements of 37 vital signs recorded during the first 48 h of admission, and
the missing ratio is 80.4%. We use MSE to measure forecasting performance, with lower values indicating better
performance.

Main results. We evaluate our approach against a range of ISMTS forecasting models, including the graph-based
method GraFITi [4]; ODE- and RNN-based models such as GRU-ODE-Bayes [19], Neural Flows [67], CRU [20],
NeuralODE-VAE [60], as well as GRUSimple, GRU-D, and TLSTM [68]. Additionally, we compare our results with
attention-based models, including mTAND. Moreover, it is of significant interest to assess the performance of well-
established multivariate time series forecasting models under the ISMTS. To achieve this, we introduce missing value
indicators as additional channels, thereby enabling the joint processing of both the time series and the corresponding
missing data information. Therefore, we compare our method with variants of Informer [69], Fedformer [70],
DLinear, and NLinear [71], denoted as Informer+, Fedformer+, DLinear+, and NLinear+, respectively. This
experiment is conducted following the setting of GraFITi, where for the USHCN dataset, the model observes for
the first 3 years and forecasts the next 3 time steps, and for other datasets, the model observes the first 36 h in the
series and predicts the next 3 time steps.

As shown in Table 4, MuSiCNet consistently achieves competitive performance across all datasets, maintaining
accuracy within the top two among baseline models. While GraFITi excels by explicitly modeling the relationship
between observation and prediction points, making it superior in certain scenarios, MuSiCNet remains competitive
without imposing priors for any specific task.
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Table 5 Experimental results of anomaly detection.

Method MSL PSM SMD SWAP

Transformer 78.68 76.07 79.56 69.70

DLinear 84.88 93.55 77.10 69.26

mTAND 82.12 92.90 78.83 69.10

t-patchGNN 74.34 92.45 59.61 65.72

MuSiCNet 82.70 94.09 80.12 69.87

4.5 Time series anomaly detection

Datasets and experimental settings. We use 4 widely-used anomaly detection benchmarks from the service
monitoring and space and earth exploration applications. (1) SMD [72] is a five-week dataset collected from a
large Internet company, featuring 38 dimensions. (2) PSM [73] comprises data collected internally from multiple
application server nodes at eBay, with 26 dimensions. (3) Both MSL (Mars Science Laboratory rover) and SMAP
(Soil Moisture Active Passive satellite) are publicly available NASA datasets [74] with 55 and 25 dimensions re-
spectively, containing telemetry anomaly data derived from spacecraft monitoring systems as reported in incident
surprise anomaly (ISA) reports.

Our experiments adhere to the configuration described in Anomaly Transformer [75] and TimesNet [76]. It is
important to note that, due to the lack of dedicated anomaly detection benchmarks for ISMTS, research in this area
is limited, and the datasets typically employed are not naturally sourced ISMTS data but are generated by masking
datasets. In our study, we follow this practice by applying a random 30% mask to the selected datasets. We partition
the dataset into consecutive, non-overlapping segments using a sliding window approach. Prior studies have utilized
reconstruction as a classical task for unsupervised point-wise representation learning, where the reconstruction error
naturally serves as an anomaly criterion. We evaluate the efficacy of anomaly detection using the F1 score, where
higher values indicate better performance.

Main results. Due to the lack of well-established methods specifically designed for anomaly detection in ISMTS,
we selected two representative models originally developed for RSMTS, including the canonical Transformer [45]
and DLinear [77] as baselines. We also conducted experiments with the influential ISMTS method mTAND and
the recently proposed t-patchGNN [78].

As shown in Table 5, MuSiCNet consistently achieves competitive or superior performance across all four datasets.
In particular, it surpasses both the classical and state-of-the-art ISMTS models, and performs comparably with the
DLinear, the SOTA RSMTS method in 2023, in most cases. These results highlight MuSiCNet’s strong capability
in anomaly detection without the need for task-specific design.

4.6 Correlation results

In this subsection, we focus on validating the necessity, effectiveness, and efficiency of the correlation matrix in the
classification task as an example.

First, we verify the necessity of the correlation matrix using results from all classification datasets in Table 6.
Removing the correlation matrix, i.e., w/o Corr (line 3) led to performance drops across all datasets, with P19
showing the largest decline due to its 94.9% missing rate. This highlights the importance of capturing inter-series
relationships in irregularly sampled time series, making the correlation matrix essential. Replacing the designed
correlation matrix with a learnable one (line 4) also worsened performance, indicating that learning inter-series
relationships purely from the network remains highly challenging and that specialized correlation designs are needed.

Second, we evaluate LSP-DTW against other correlation calculation methods (I-GAK [79], I-DTW [47]) on the
P12 dataset to verify the effectiveness. Interpolation-based methods (I-GAK, I-DTW) distort correlations, leading
to unreliable results as seen in Figure 3. I-GAK shows fictitious correlations based on observation rates, while
I-DTW presents uniformly positive correlations, neither of which captures true data characteristics. In contrast,
LSP-DTW accurately identifies correlations, verified by Table 7, where it outperforms all baselines, demonstrating
the importance of appropriate correlation modeling.

Lastly, we report the computation time for the correlation matrix. The LSP-DTW based correlation matrix is
computed per instance in parallel, with acceptable runtimes (0.137 s for P12, 0.127 s for P19, 0.049 s for PAM). It
is calculated once, making it efficient for the entire learning process.
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Figure 3 (Color online) Visualization of various methods to extract the correlation matrix from P12 dataset. The darker the color, the more

similar the relationship. (a) denotes the average pairwise observation rate (i.e., 1 minus the missing rate), and (b)–(d) denote different correlation

matrices.

Table 6 Classification performance of MuSiCNet to verify the necessity of the correlation matrix.

P12 P19 PAM
Method

AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

w/o Corr 85.5± 0.3 53.0± 2.1 83.6± 0.8 36.7± 2.1 95.7± 0.9 96.2± 0.51 96.5± 0.2 96.3± 0.3

Learnable Corr 85.7± 0.4 53.0± 2.0 83.9± 0.7 35.8± 2.7 96.1± 0.5 96.7± 0.38 96.5± 0.7 96.6± 0.5

MuSiCNet 86.1± 0.4 54.1± 2.2 86.8± 0.4 54.1± 2.2 96.3± 0.7 96.9± 0.6 96.9± 0.5 96.8± 0.5

Table 7 Classification performance of MuSiCNet with different correlation matrices on three datasets to verify the effectiveness.

P12 P19 PAM
Method

AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Ones 66.7± 2.2 25.2± 0.3 81.5± 2.7 41.0± 4.7 63.3± 1.7 66.3± 1.9 66.7± 2.5 65.6± 0.3

Rand 84.7± 0.8 52.2± 3.2 82.3± 2.0 34.8± 1.9 95.1± 0.5 95.8± 0.3 95.5± 0.7 95.6± 0.3

Diag 84.2± 0.8 48.2± 3.4 83.4± 1.1 37.1± 2.3 95.5± 0.4 95.9± 0.3 95.8± 0.3 95.8± 0.3

I-GAK 85.1± 0.6 52.8± 3.0 83.7± 0.9 33.6± 1.7 96.0± 0.3 96.5± 0.6 96.3± 0.4 96.2± 0.3

I-DTW 81.9± 0.6 46.9± 3.0 83.9± 1.3 34.3± 1.1 95.9± 0.5 96.3± 0.5 96.4± 0.5 96.3± 0.5

LSP-DTW 86.1± 0.4 54.1± 2.2 86.8± 0.4 54.1± 2.2 96.3± 0.7 96.9± 0.6 96.9± 0.5 96.8± 0.5

Table 8 Ablation studies on different strategies of MuSiCNet in classification. X(×) indicates that the component has (not) been applied.

Component P12 P19 PAM

Corr matrix Adjustment Contrastive AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

× × × 84.0± 0.8 47.9± 3.4 83.5± 1.0 38.9± 2.4 95.4± 0.2 96.0± 0.4 95.9± 0.3 95.8± 0.3

X × × 85.2± 0.6 52.6± 2.5 84.3± 0.8 37.1± 1.1 95.6± 0.4 96.5± 0.8 96.6± 0.7 96.4± 0.7

X × X 85.4± 0.4 53.0± 2.5 84.6± 0.8 37.1± 1.0 96.0± 0.8 96.4± 0.7 96.3± 0.5 96.3± 0.4

X X × 85.4± 0.6 52.9± 2.8 84.3± 0.7 37.0± 0.8 96.0± 0.8 96.8± 0.7 96.7± 0.7 96.5± 0.7

× X X 85.5± 0.3 53.0± 2.1 83.6± 0.8 36.7± 2.1 95.7± 0.9 96.2± 0.51 96.5± 0.2 96.3± 0.3

X X X 86.1± 0.4 54.1± 2.2 86.8± 0.4 54.1± 2.2 96.3± 0.7 96.9± 0.6 96.9± 0.5 96.8± 0.5

4.7 Ablation analysis and efficiency evaluation

We conduct the ablation study to assess the necessity of two fundamental components of MuSiCNet: the correlation
matrix and the multi-scale learning reflected in reconstruction results adjustment and contrastive learning. As shown
in Table 8, the complete MuSiCNet framework, incorporating all components, achieves the best performance.

We find that the importance of the two components varies across datasets. For example, for P19, the dataset with
the highest missing ratio, we effectively capture the relationships between sequences using the correlation matrix,
maximizing the use of real observations and aggregating relevant information across sequences. As a result, with the
correlation matrix, the classification performance on P19 only drops by around 2 percentage points compared to the
original performance. However, without the correlation matrix, the classification performance on P19 significantly
decreases by about 4 percentage points. In contrast, for P12, where multiple sensors record the same physiological
signals, with synchronized sampling at high frequency, learning the correlation matrix does not play a decisive
role. Instead, multi-scale learning proves to be more important. For PAM, with relatively low missing rates, both
components are equally important. Thus, for the diverse ISMTS datasets, both components are indispensable.

To demonstrate computational complexity, taking P12 in the classification task with a batch size of 50 in
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Figure 4 Efficiency comparisons in terms of training time (s) and memory usage (GB) with the latest advanced models on the P12 dataset.

The closer a circle is to the bottom-right corner and the smaller its area, the higher the model’s classification accuracy, with faster training

speed and lower memory usage.

Figure 4 as an example, our model MuSiCNet achieves a time cost of 0.240 s per batch with 4.2 GB of mem-
ory usage. In comparison, ViTST requires 2.196 s and 40.2 GB, Raindrop uses 0.124 s and 4.8 GB, MTGNN takes
0.1967 s and 4.2 GB, and DGM2-O needs 0.313 s and 9.1 GB. MuSiCNet demonstrates lower time complexity than
most other methods and significantly lower memory usage, particularly compared to ViTST, which also performs
well on classification tasks.

4.8 MuSiCNet parameters and parameter analysis

We present the training hyperparameters and model parameters here. The maximum epoch is set to 300, and
the AdamW optimizer is selected as our optimizer without weight decay. By default, the learning rate is set to
1× 10−3, and the learning rate schedule is cosine decay for each epoch. The batch size for all datasets is set to 50,
the dimension of the encoder output is set to 256, and the dimension of the hidden representations in the GRU is
typically set to 50. The random masking ratio r for each scale is set to 0.1.

Due to inconsistent series lengths, we set the maximum reference point number, K, to 128 for long series, such as
P12, PAM, PhysioNet, and USHCN, to 96 for PhysioNet12, and to 48 for short series, such as PAM and MIMIC-III.

Initially, the window size is set to 1/4 of the time series length and then halved iteratively until the majority of
the windows contain at least one observation.

According to the observed timestamps on each dataset, the number of scale layers L is set to 6, 5, 7, 6, 8, 4, and 5
for P12, P19, PAM, PhysioNet, USHCN, MIMIC-III, and PhysioNet12, respectively. For example, in classification,
for P12, the scales are 4, 8, 16, 32, 64, and raw length. For P19, the scales are 4, 8, 16, 32 and the raw length. And for
PAM, the scales are 4, 8, 16, 32, 64, 128 and the raw length. In all mainstream tasks involved, the hyperparameters
λ1, λ2, λ3 are selected in [1 × 10−3, 1 × 10−2, . . . , 1 × 102]. All the models were experimented using the PyTorch
library on a GeForce RTX-2080 Ti GPU.

To analyze the hyperparameter sensitivity, we conducted the experiments for λ1, λ2, and λ3 with grid search. Due
to the closer relationship between the hyper-parameters of the adjustment term and the contrastive learning term,
i.e., λ1 and λ2, we jointly analyzed λ1 and λ2 while separately analyzing the hyper-parameter of the downstream
task λ3, as illustrated in Figures 5 and 6.

From Figure 5, in general, when lg λ1 and lg λ2 take values around 2 and −2, respectively, our MuSiCNet can
perform well. Specifically, on the one hand, when the hyperparameter of the contrastive term is fixed, increasing
the hyperparameter of the adjustment term, i.e., λ1, from 1 × 10−3 to 1× 102 consistently improves performance.
This trend highlights the critical role of the adjustment term in enhancing model stability and promoting better
generalization. However, further increasing λ1, e.g., greater than 1× 102, may produce a slight performance degra-
dation, since the model may focus too much on inter-scale consistency, leading to the collapse of the representation
space. On the other hand, the contrastive term in the representation space contributes positively when its hyper-
parameter λ2 lies around 1 × 102. This indicates that the contrastive objective effectively encourages consistency
across different representational layers and enhances the expressiveness of representations at the Lth layer.

From Figure 6, we can find that our MuSiCNet becomes effective with a large λ3. This indicates that more
effective representations will be captured when utilizing downstream tasks, matching the general insight. We also
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Figure 5 (Color online) AUCROC performance with varying com-

binations of the hyperparameter of the adjustment term λ1 and the

hyperparameter of the contrastive learning term λ2 in the logarithmic

form on P12.

Figure 6 (Color online) AUCROC performance with varying hyper-

parameters of the downstream task λ3 in logarithmic form on P12.

note that it becomes less sensitive when lgλ3 > −1. Its suitable range may be located in [10, 1× 102].

5 Conclusion

In this study, we introduce MuSiCNet, an innovative framework designed for analyzing ISMTS datasets. MuSiCNet
addresses the challenges arising from data irregularities and shows superior performance in both supervised and
unsupervised tasks. We recognize that irregularities in ISMTS are inherently relative and accordingly implement
multi-scale learning, a vital element of our framework. In this multi-scale approach, the contribution of extra
coarse-grained and relatively regular series is important, providing comprehensive temporal insights that facilitate
the analysis of finer-grained series. As another key component of MuSiCNet, CorrNet is engineered to aggregate
temporal information effectively, employing time embeddings and correlation matrices calculated from both intra-
and inter-series perspectives, in which we employ LSP-DTW to develop frequency correlation matrices that not
only reduce the burden for similarity calculation for ISMT, but also significantly enhance inter-series information
extraction.
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