
SCIENCE CHINA
Information Sciences

March 2026, Vol. 69, Iss. 3, 132101:1–132101:18

https://doi.org/10.1007/s11432-024-4409-6

c© Science China Press 2026 info.scichina.com link.springer.com

. RESEARCH PAPER .

Blockchain-assisted multi-keyword searchable provable
data possession for cloud storage

Ying MIAO, Keke GAI* & Liehuang ZHU

School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Received 20 December 2024/Revised 19 February 2025/Accepted 23 April 2025/Published online 4 January 2026

Abstract Keyword searchable provable data possession (PDP) is a type of schemes that aim to achieve a higher level capability in

auditing, as most existing PDP schemes fail in having satisfied ability in auditing integrity of data containing the same types of properties.

However, these schemes encounter a few challenges. One challenge is that files that users need to auditing will be lost since using single

keywords may fail in achieving an accurate search. The other challenge is the integrity of the outsourced data is threatened by those

attacks targeting at the Cloud Server (CS) side, such as the integrity loss of search results, pre-matching attacks, and pre-computation

attacks. In this paper, we propose a scheme entitled multi-keyword searchable PDP (MKPDP) that aims to improve the accuracy of

searchable files auditing and guarantee the integrity of data containing a specific kind of properties that participate in the auditing

process. Specifically, we have developed an index matrix combining with a tag index to achieve multi-keyword files searchability. A

blockchain-based data storage is constructed to store index information, which ensures the integrity of the searching files and prevents

CS from using incomplete searching results to generate proof information. Our security analysis and evaluations have demonstrated that

the proposed MKPDP is provably secure and efficient.

Keywords multi-keyword searchability, provable data possession, blockchain, cloud storage

Citation Miao Y, Gai K K, Zhu L H. Blockchain-assisted multi-keyword searchable provable data possession for cloud storage. Sci

China Inf Sci, 2026, 69(3): 132101, https://doi.org/10.1007/s11432-024-4409-6

1 Introduction

Cloud services enable data owners and users to access data remotely without geographical restrictions, thereby
facilitating data-driven collaboration and application development [1,2]. Key advantages of cloud computing include
cost-effective storage and scalable capacity, which have made it a widely adopted solution for both individuals and
organizations [3]. However, despite these benefits, security concerns remain, particularly regarding the integrity and
completeness of data stored remotely. Data loss can occur due to unexpected events such as hardware failures or
malicious attacks, and such incidents have become increasingly common in recent years. To address the challenge of
verifying the integrity of remotely stored data, the concept of provable data possession (PDP) was introduced [4,5].

PDP provides an efficient mechanism that allows users to verify the integrity of their cloud-stored data without
downloading the entire dataset [6, 7]. In a typical PDP protocol, a data owner (DO) divides a file into multiple
blocks and generates an authenticator for each block. The file and its authenticators are then uploaded to the
cloud. During verification, the DO (or a designated third party auditor, TPA) randomly selects a subset of blocks,
issues a challenge to the cloud server (CS), and verifies the server’s response to determine whether the data remains
intact. Over time, various PDP schemes have been developed to suit different contexts-supporting single [8] or
multiple users [9–11], handling single copy data [12], and multiple copy data [13], privacy protection in the auditing
process [14–16], auditing for dynamic data [17, 18], and auditing from centralized system to distributed storage
system [19, 20].

As organizations increasingly migrate to the cloud, ensuring the integrity of data with specific properties becomes
more critical [21]. For example, in the medical field, the integrity of research-relevant datasets is essential for disease
studies. Medical databases are typically large and dynamic, containing diverse data from numerous patients.
Similarly, biological databases store extensive information such as genome sequences, protein structures, and gene
expression profiles, all systematically organized for convenient access by researchers. In many cases, researchers
are only interested in the integrity of data related to a particular disease or condition—not the entire dataset.

*Corresponding author (email: gaikeke@bit.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4409-6&domain=pdf&date_stamp=2026-1-4
https://doi.org/10.1007/s11432-024-4409-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4409-6
https://doi.org/10.1007/s11432-024-4409-6

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:2

Figure 1 Sketch of keyword searchable PDP model.

However, they may not know the exact size or structure of the relevant subset within the evolving database.
Keyword-searchable PDP has emerged as a promising approach to address this need.

In recent years, researchers have proposed keyword searchable PDP schemes [22–24]. As shown in Figure 1,
these schemes have keywords to construct indexes that match authenticators. Instead of requiring explicit file
identifiers, the CS retrieves matching files via a trapdoor mechanism, allowing the TPA to verify the integrity
of all files associated with a given keyword. However, existing schemes often suffer from two major limitations:
(1) they do not support dynamic file operations, meaning index structures become invalid when files are updated,
and (2) they support only single-keyword searches, which reduces audit precision and efficiency, and may cause
relevant files to be overlooked. To address these shortcomings, there is a need for multi-keyword searchable PDP
schemes that enable more accurate and flexible integrity auditing. However, designing such schemes poses several
significant security challenges.

(1) Integrity of search results. The TPA and users are unaware of the exact number of relevant files in the
database. How can the TPA verify the integrity of returned results and detect any omitted files?

(2) Preventing pre-matching attacks. In some schemes, the CS can match authenticators to indexes in advance.
In scheme [22, 23], one part of the proof information is T =

∏

i∈Swk

∏

j∈Q σ
vj
i,j ·

∏

j∈QΩ
vj
wk,j

, where Swk
is the set

searched by the CS to be audited, Q is the set of challenge data blocks, vj is a random value chosen by the TPA,
σi,j is the authenticator, and Ω

vj
wk,j

is the index. However, we find this method is not safe. The equation also holds

T =
∏

i∈Swk

∏

j∈Q σ
vj
i,j ·
∏

j∈Q Ω
vj
wk,j

=
∑

j∈Q((
∏

i∈Swk

(σi,j) ·Ωwk,j))
vj , which means that given the set Swk

, the CS

can match the index and authenticator ahead of time. This undermines full verification and allows the CS to reuse
stored intermediate values, even if the indexes are privacy-preserving but structurally static. With just one audit,
the CS can get the specific content index of Swk

. Then, the CS matches the index and authenticator based on
the set Swk

ahead of time, which can be represented as {(
∏

i∈Swk

σi,j) · Ωwk,j}wk∈W,j∈[1,n], and discards the index

{Ωwk,j}wk∈W,j∈[1,n] and the authenticator {σi,j}i∈[1,v],j∈[1,n], where W is the keyword set, n is the total number of
separated data blocks, and v is the number of total files. In this way, the CS saves storage overhead and can pass
verification.

(3) Preventing proof pre-aggregation. Some schemes allow CS to pre-aggregate proof components across files
or blocks. In schemes [22–24], another part of the proof information is µ =

∑

i∈Swk

∑

j∈Q cij · vj , where ci,j
is the challenged data blocks. However, the method is not safe as well. The equation can be derived as µ =
∑

i∈Swk

∑

j∈Q cij · vj =
∑

j∈Q vj(
∑

i∈Swk

cij), which means that given the set ωwk,j, the CS can pre-aggregating

stored files by
∑

i∈Swk

cij . The CS only needs to store the pre-aggregating value, which can be represented as

{
∑

i∈Swk
cij}wk∈W,j∈[1,n], to pass the verification.

To overcome the limitations of prior work, we leverage the inherent advantages of blockchain, namely openness,

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:3

transparency, immutability, and traceability [1, 20, 25, 26], and make the following key contributions.
(1) To improve the accuracy of searchable file auditing and guarantee the integrity of data containing specific prop-

erties, we design a multi-keyword searchable PDP. Specifically, we analyze the security issues in existing keyword-
searchable PDP schemes, focusing on search result integrity and the risks of pre-matching and pre-computation
attacks by the CS. We identify specific vulnerabilities in these schemes and find that they cannot resist pre-matching
and pre-computation attacks.

(2) To improve the integrity of the searching files, we employed blockchain to store index information and
guarantee the integrity of searching files. Both the CS and the TPA participate in searching and matching. Once
the CS does not utilize the complete files to generate the proof information, the results cannot pass verification
from the TPA. To overcome the problems of matching and calculation in advance by the CS, the TPA participates
in matching and conducts verification. To prevent the CS from pre-aggregating stored files, we ensure that every
challenged file and data blocks are involved in generating proof by including random numbers.

(3) We provide concrete security analysis for correctness, multi-keyword searchability, data privacy, keyword
privacy, and file dynamics. Theoretical and performance analysis demonstrated that the proposed multi-keyword
searchable PDP does not incur much cost in the authenticator and index generation phase while maintaining safety.

The remainder of the paper is organized as follows. Sections 2 and 3 present related work and preliminaries,
respectively. Section 4 explains the system model and security model. We provide the specific construction of
MKPDP in Section 5. We conduct security analysis, theoretical analysis, and performance evaluation in Sections
6–8, respectively. Finally, the discussion and conclusion are presented in Sections 9 and 10.

2 Related work

2.1 Privacy protection in provable data possession

Data privacy protection. To protect data privacy, many schemes employ masking to blind the proof information,
thereby preventing the TPA from retrieving data block information during the auditing process [6]. Recently, Huang
et al. [8] employed random masking technology to obscure the auditing proof. Additionally, they used permutations
to mask the file index, ensuring audit frequency and data privacy. Wang et al. [9] adopted ciphertext-policy attribute-
based encryption (CP-ABE) for privacy-preserving in smart health applications. Their approach encompassed a
policy-hiding method, effectively ensuring privacy security during cloud auditing for smart health. Liu et al. [19]
used a method for distributed and privacy-preserving data integrity auditing in 5G-enabled software-defined edge
computing. Their approach involved blinding the proof information to improve privacy.

Data owner’s identity privacy protection. To safeguard the identity of the DO, numerous schemes use
anonymous identity techniques. Li et al. [12] adopted blind technology and anonymous identity to guarantee the
privacy of IoT data. Their method incorporated an algebraic signature and homomorphic hash functions to enhance
auditing efficiency. Gai et al. [14] used random masking technology to obscure the auditing proof and safeguarded
DO identity privacy through the private key generator. Zhang et al. [10] offered diverse forms of identity anonymity
while permitting de-anonymity in cases of malicious behavior. They employed vector commitment to enable data
integrity verification and privacy protection. Moreover, some schemes safeguard DO privacy through the distinctive
properties of signatures. Ring signatures enable users to maintain anonymity during signature operations; the
signer’s identity is not directly disclosed. Tian et al. [15] used a ring signature based on the learning with errors
problem to achieve post-quantum security. Qi et al. [27] designed a linkable homomorphic authenticable ring
signature to achieve anonymity of group data owners. Zero-sum set (ZSS) signature protects the signer’s identity
and the confidentiality of signature content. Goswami et al. [16] employed ZSS signatures as authenticators to
safeguard data privacy. Additionally, it used faked data recovery techniques to restore original block elements at
the block level.

2.2 Data dynamic technique in provable data possession

To achieve data dynamic operations, various methods were employed at the block level, including deletion, insertion,
and modification [28]. Shen et al. [17] adopted a double link table and a location array to achieve dynamic
management. Guo et al. [18] employed an implicitly-indexed balanced Merkle tree to attain dynamic proof of data
possession. A single authenticated tree was shared among multiple replicas, enabling batch auditing of multiple
replicas within a single time auditing. Xu et al. [29] used an extended double-linked list information table to enable
data dynamic management. Li et al. [11] utilized dynamic group cooperation files, where any user within the group
could monitor the identity of the signer and timestamps based on the file’s state information. Peng et al. [30]

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:4

embedded multi-set hash functions into data tags to enable dynamic auditing. They designed a multi-functional
data tag aimed at achieving data deduplication. Guo et al. [13] employed a modified Merkle hash tree, consolidating
all copies of a raw block into the same leaf node. This approach allowed multi-copy data auditing and dynamic data
management. Moreover, they designed a key generation and update strategy to enable group user revocation. Liu
et al. [31] employed a quad Merkle hash tree to allow dynamic management and enhance computing and storage
efficiency. In addition, they employed blockchain technology to ensure auditing reliability.

2.3 Blockchain technique in provable data possession

To improve transparency and decentralization, blockchain technology played a pivotal role in data integrity auditing
[7]. Zhang et al. [32] used message-locked encryption to achieve data deduplication. Their approach utilized smart
contracts to establish user ownership and facilitate automatic off-chain data integrity auditing. Song et al. [33]
attained simultaneous low-entropy data privacy, deduplication, and integrity. Their approach utilized blockchain
technology to facilitate key recoverability and limit local key storage costs. Zhang et al. [34] used polynomial
commitment to enable multiple copies auditing for a single file. They enhanced a batch auditing scheme across
multiple copies of multiple files, leveraging blockchain to assist the auditing work. Liu et al. [35] introduced the
concept of auditing and file frequency prediction in group-sharing data. Their approach used blockchain to ensure
the traceability and tamper-resistance of auditing information. Li et al. [20] employed vector commitment technology
to achieve lightweight auditing. Their approach utilized smart contracts to limit privacy leakage and performance
risks associated with the TPA. Li et al. [25] utilized hash operations to lower costs and achieved auditing in an
edge computing environment with potentially malicious nodes. Their approach leveraged blockchain technology to
replace the function of the TPA. Liu et al. [26] utilized an Nary tag commitment tree to integrate all information
into the authenticator, allowing block-level deduplication. Their approach achieved a blockchain-enabled compact
auditing and deduplication protocol.

2.4 Keyword-based provable data possession

Recently, keyword-based auditing to improve auditing efficiency has emerged as a method. Gao et al. [22] proposed
a keyword-based data auditing scheme to preserve sensitive information privacy. In their approach, they designed an
index and trapdoor to achieve searchability. Xue et al. [23] introduced auditing frequency and designed a keyword-
based remote auditing scheme. In their approach, they used a bloom filter to achieve fuzzy matching. However,
despite its advantages, the scheme [22, 23] did not support data dynamic management. Shen et al. [24] achieved
a keyword-based remote data integrity auditing system that promotes full data dynamics. However, the scheme
encountered a security vulnerability in which malicious users could pre-treat files containing the same keyword to
pass verification. Moreover, these schemes primarily cater to single keyword searches and do not allow for the
diverse search requirements of users. Our solution improves the accuracy of keyword searches while ensuring the
integrity of the search results in auditing.

3 Preliminaries

Bilinear pairing. In the multiplicative cyclic group G1 and GT , the bilinear map e : G1 ×G1 → GT satisfies the
following.

(1) Bilinearity: for any α, β ∈ Z∗
q , u, v ∈ G1, e(u

α, vβ) = e(u, v)αβ .
(2) Non-degeneracy: e(g, g) 6= 1, where g is a generator of G1.
(3) Computability: for any u, v ∈ G1, it is easy to retrieve e(u, v).
Discrete logarithm (DL) problem. Given (g, gx) ∈ G1, in which x ∈ Z∗

q is private. The DL assumption is
that it is computationally infeasible to retrieve x.

Computational Diffie-Hellman (CDH) problem. Given (g, gx, gy), in which x, y ∈ Z∗
q are private. The

CDH assumption is that it is computationally infeasible to retrieve gxy.

4 System model and security model

4.1 Design goals

In order to design a multi-keyword searchable provable data possession, the scheme should satisfy some goals.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:5

(1) Audiring soundness. Only when all files which contain the specific keyword are stored intactly and
participated in the proof generation, the proof can pass the auditing.

(2) Multi-keyword searchability. The DO can audit the data through several keywords. The CS searches the
files containing the keywords and generates the corresponding proof from the searched files. The TPA can correctly
conduct the auditing of files containing the specific keywords. The integrity of the search result can be guaranteed.

(3) Resist pre-matching and pre-computation attacks. The CS cannot match the authenticator and the
index in advance. Even if the CS performs a pre-matching of the authenticator and index, it does not threaten the
integrity of the data. The CS cannot pre-aggregate the stored files and only utilizes the aggregated middle value to
generate proof information and pass verification.

(4) The integrity of the searching results. If the CS uses incomplete search results to generate proof
information, it will not pass verification.

4.2 System model

The system architecture of MKPDP, as shown in Figure 2, includes four entities: DO, CS, TPA, and blockchain.
(1) CS. The CS possesses large storage spaces and has strong computational capabilities. The CS provides

storage and management services for the DO. The CS also provides data integrity checking service for the DO.
When receiving a challenge request based on the trapdoor information, the CS decrypts the index matrix and
searches the files which contain the keyword. Then, the CS generates the proof based on all matched files and
returns the proof to the TPA.

(2) DO. The DO uploads large amounts of files to the CS for storage. The DO first retrieves some related
keywords for the file. Based on the keywords, the DO generates an index matrix and computes the keyword
information to match the authenticators. Then the DO retrieves the index switch and generates the authenticator
for the data block. The DO uploads the file name, the index switch and the encrypted index matrix to the blockchain
and outsources the data and the authenticator to the CS. When the DO wants to check the file with some keywords,
the DO generates the corresponding trapdoor and sends the trapdoor to the TPA.

(3) TPA. The TPA accepts the delegation request, replaces the DO, and conducts the checking task on time.
The TPA generates the challenge information and sends the trapdoor information and the challenge information to
the CS. After receiving the proof information from the CS, the TPA can conduct the audit of files which contain
the keyword and inform the result to the DO.

(4) Blockchain. Blockchain, as an intermediate connecting entity, provides a public, transparent and unforgeable
platform for the system model. Blockchain stores the basic file information, index switch, and encrypted matrix.
The update information of the file, including add file and delete file, is synchronized on the blockchain.

The DO uploads the data and authenticators to the cloud, and uploads the file name, index, and encryption
matrix to the blockchain. Then the DO entrusts a TPA to conduct an audit and send the trapdoor information to
the TPA. The TPA initiates a challenge to the CS, and the CS generates proof information and returns it to the
TPA. The TPA obtains the relevant information of the file from the blockchain, verifies the proof information, and
sends the verification result information to the DO.

4.3 Definition

Definition 1. MKPDP consists of eight algorithms.
(1) (W,Ia×a)← SysIni(F) : With the files F = {Fi}i∈[1,v] to be stored, the algorithm retrieves a keyword set

W for F and establishes an index matrix Ia×a for the file.
(2) (param, (pk, sk))← Setup(1κ) : With a security parameter λ, the algorithm outputs the system param-

eters param and the secret key (x, l, o, sk).
(3) ({Ωi}i∈[1,v],Addr,EI)← IndexGen(F,Ia×a) : With the secret key x, the file set F , the keyword set W ,

and the index matrix Ia×a, the algorithm updates the index matrix Ia×a, encrypts the matrix to EI and generates
the blind address Addr for the index matrix. The algorithm generates the match index {Ωi}i∈[1,v] for each file.

(4) ({FIDi, Si, φi}i∈[1,v])← AuthGen(F) : With the secret key x and the file set F , the algorithm generates
the index switch set Si(i ∈ [1, v]) and the authenticator φi(i ∈ [1, v]).

(5) (Tw)← TrapdoorGen : With the key word set W , the algorithm generates the trapdoor information Tw.
(6) (Chal)← ChalGen(Tw) : With the trapdoor information Tw, the algorithm generates the challenge infor-

mation Chal.
(7) (Proof)← ProofGen(Chal,Addr,EI{φi, {mi,j}j∈[1,n]}i∈[1,v]) : With the challenge information Chal,

the encrypted matrix Ev, the index switch set Si, and the file set F , the algorithm generates the proof information
Proof .

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:6

Figure 2 System model of MKPDP.

(8) (true/false)← ProofVerify(Proof,Chal) : With the index switch set Si, the trapdoor information Tw,
the encrypted matrix Ev and the proof information Proof , the algorithm verifies the proof information.

4.4 Threat model

In MKPDP, we consider the security in keyword searchability and data integrity auditing. In the threat model, the
DO is honest and the CS is semi-honest. The CS stores the data from the DO and conducts the auditing requests
from the TPA. The CS tries to probe the contents of the data through the search trapdoor. The CS may use
incomplete search files to generate the proof information but pass the checking. The TPA is semi-honest. The TPA
executes the auditing honestly and does not collude with the CS in the challenge information generation. The TPA
tries to probe the contents of the data through the proof information.

(1) The integrity loss of search results. The CS tries to utilize partial matched files to generate the audit proof
but passes the TPA’s check.

(2) The pre-computation attacks. The CS tries to match the index and authenticator ahead of time and only
stores the intermediate values instead of the original index and authenticator values to pass the verification. The
CS tries to pre-aggregate stored files and stores the pre-aggregating values instead of the original files to pass the
verification.

4.5 Security model

The security model formalizes the game between an adversary A and a challenger C. The game content is described
as follows.

(1) SysIni and Setup phase. C conducts SysIni and Setup algorithm to conduct system initialization retrieve
system public parameters. Then S returns param to A.

(2) Query phase. A makes queries for index information, the authenticator information and the trapdoor
information, and the challenge information and the proof information. S conducts IndexGen, AuthGen, TrapdoorGen,
and ProofGen algorithms to retrieve the corresponding information and sends the information to A.

(3) Challenge phase. C conducts the challenge, and transmits Chal = (Tw, c, k1, k2) to A for requesting the
proof information.

(4) Forgery phase. A produces the corresponding auditing proof which contains all files with keyword wk. If
the proof passes verification, A wins in the game.

In the security model, we assume that the challenge information has not been queried before.

The main notations utilized in MKPDP scheme are summarized in Table 1.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:7

Table 1 Notations in MKPDP.

Notation The meaning Notation The meaning

e The bilinear map satisfies: e : G1 × G1 → GT SEwk
The file index set of keyword wk

G1,GT
Two multiplicative cyclic groups with

the same prime order p
FIDi The unique name of file Fi

g, u Two different generators in group G1 WFi
The file Fi’s keyword set

H1, H2, H3, h1 Four hash functions in different functionality V,Ev The index vector and it is encrypt version

sk, x, l, o
The DO’s secret key with

different usage
Addr The address vector for the index vector

pk The public key of the DO mij The file Fi’s j-th block

ssgsk(·) The signature Si The file Fi’s index switch set

fkey(·), ψkey(·), πkey(·)
The pseudo random permutation

and pseudo random function
σi,j The data block mij ’s authenticator

v The number of all files Tw The trapdoor

n The split number of files φi The file Fi’s authenticator set

F = {Fi}i∈[1,v] The file set Chal The challenge

W = {w1, w2, . . . , wm} The keyword set Proof The proof

5 The proposed MKPDP scheme

5.1 Overview

The multi-keyword searchable provable data possession permits the TPA to check multiple files which contain the
keywords in one audit task. The user can conduct “add” file and “delete” file operations. The data integrity
checking can be conducted when the file is updated. To achieve multi-keyword searchable provable data possession,
one of the challenges is how to guarantee that all files that meets the condition are utilized to generate the proof
information. That is, the integrity of the search result should be guaranteed. In previous schemes, there is no method
to guarantee the integrity of the search results. When CS utilizes partial files to generate the proof information,
CS can also pass the verification.

5.2 Construction of MKPDP

(1) (W,Ia×a)← SysIni(F). Suppose that there are v files stored in CS. All files {Fi}16i6v contain K keywords.
The keyword set can be represented asW = {w1, w2, . . . , wK}. In order to prevent the number of files and keywords
from leaking to the CS, the DO initiates an index matrix Ia×a, where a ≫ v, a ≫ K, as shown in Figure 3. The
DO initiates all elements in Ia×a to 0. Each row in Ia×a represents the keyword information. Each column in Ia×a
represents the file information. Note that Ia×a = {vw1 , vw2 , . . . , vwK

, vK+1, . . . , va}, where vi(i ∈ [1, a]) represents
row vectors.

(2) (param, (pk, sk))← Setup(1κ).

• The DO chooses two different multiplicative cyclic groups G1 and GT with the same prime order p, two
generators g, uG1, and a bilinear pairing e : G1 ×G1 → GT .

• The DO picks four different hash functions: H1–H3 : {0, 1}∗ → G1, h1 : {0, 1}∗ → Z∗
q .

• The DO randomly picks x ∈ Z∗
q as his secret key. Then, the DO generates y = gx as his public key. The

DO picks a key l ∈ Z∗
q as a pseudo random permutation key and o ∈ Z∗

q as a pseudo random function key. The
DO picks a secret key and public key pair (sk, pk) and utilizes sk to generate the signature for the information.
The signature algorithm can be represented as ssgsk(·), where ‘·’ denotes the message. The DO randomly selects
g, u ∈ G1 as public values.

• The DO selects a pseudo random permutation fkey(·) : {0, 1}∗ → {0, 1}a with a key key. The DO selects a
pseudo random permutation ψkey(·) : {0, 1}∗ → [1, n] with a key key. The DO selects a pseudo random function
πkey : {0, 1}∗ → Z∗

q with key.

• The DO publishes the system parameters param = {G1,GT , p, g, u, y, pk, e,H1, H2, H3, h1, fkey(·), ψkey(·),
πkey(·), ssgsk(·)}.

(3) ({Ωi}i∈[1,v],Addr,EI)← IndexGen(F,Ia×a).

• For each file Fi ∈ {Fi}16i6v containing the keyword wk, the DO writes corresponding i-th bit of the index
vector to 1: vwk

[i] = 1.

• For each keyword wk ∈ W , the DO initializes an empty set SEwk
= ∅. If vwk

[i] = 1 for any i ∈ [1, v], the DO
adds the corresponding file index i into set SEwk

.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:8

Figure 3 (Color online) Index matrix.

• For each file Fi ∈ {Fi}16i6v, the DO initializes an empty set WFi
= ∅. Then the DO parses keywords of each

file Fi ∈ {Fi}16i6v into keyword set WFi
= {wb1 , . . . , wbl , . . . , wbt}. Suppose ti is the total number of keywords in

file Fi. Note that the number of keywords in each file can be different.

• For each file Fi{Fi}16i6v, the DO generates the keyword information as HFi =
∏ti
l=1H1(wbl), wbl ∈ WFi

.
Then, the DO generates the match index Ωi = (HFi ·H2(FIDi))

−x for each file Fi{Fi}16i6v, where FIDi is the
identifier of file Fi. The match index of all files can be represented as Ω = {Ωi}i∈[1,v].

• For each keyword wk ∈ W , the DO computes πo(wk) as the blind address assigned to each row within the
index matrix. For j ∈ [K + 1, a], the DO randomly selects γk ∈ Z∗

q as blind address for the vector vk. All blind
addresses can be represented as a set Addr = {πo(w1), πo(w2), . . . , πo(wK), γK+1, . . . , γa}.

• For each keyword wk ∈ W , the DO performs encryption on the index vector, resulting in evπo(wk) = vwk
⊕

fl(πo(wk)). For j ∈ [K + 1, a], the DO performs encryption evγj = vj ⊕ fl(πo(γj)). The encrypted version of Ia×a
can be represented as a matrix EI = {evπo(w1), evπo(w2), . . . , evπo(wK), evγK+1, . . . , evγa}. A better understanding of
the index matrix and index information can be seen in Figure 3.

For instance, suppose that file F1 contains keyword w2 and w4, file F2 contains keyword w1, w3 and w4,
and file F3 contains keyword w2 and w5. The keyword set of F1 is WF1 = {w2, w4}. The keyword set of
F2 is WF2 = {w1, w3, w4}. The keyword set of F3 is WF3 = {w2, w5}. The key information of F1 is HF1 =
∏2
l=1H1(wbl) = H1(w2) · H1(w4) and the match index is ω1 = (HF1 · H2(FID1))

−x. The key information of F2

is HF2 =
∏3
l=1H1(wbl) = H1(w1) · H1(w3) ·H1(w4) and the match index is ω2 = (HF2 ·H2(FID2))

−x. The key

information of F3 is HF3 =
∏2
l=1H1(wbl) = H1(w2) ·H1(w5) and the match index is ω3 = (HF3 ·H2(FID3))

−x.

(4) ({FIDi, Si, φi}i∈[1,v])← AuthGen(F).

• The DO firstly splits each file F = {Fi}i∈[1,v] into n blocks denoted as Fi = {mi,j}j∈[1,n]. Then the DO creates
the index switch set Si = {θi,j}j∈[1,n](i ∈ [1, v]), where θi,j denotes θi,j = (j, aui,j) and j denotes the block index
of file Fi.

• The DO computes the authenticator σi,j = (HFi ·H2(FIDi) ·H3(aui,j) · umi,j)x for each data block mi,j(i ∈
[1, v], j ∈ [1, n]) by utilizing the authenticator index aui,j . Let φi = {σij}j∈[1,n] be the authenticator set of the file
Fi(i ∈ [1, v]).

The DO sends {FIDi, Si, Addr, EI ,Ω}i∈[1,v] to the blockchain according to the smart contract as shown in Algo-
rithm 1. The DO sends {φi, {mi,j}j∈[1,n]}i∈[1,v] to the CS. The CS verifies the authenticator by e(

∏v
i=1

∏n
j=1 σi,j , g) =

e(
∏v
i=1

∏n
j=1(HFi ·H2(FIDi) ·H3(aui,j) · u

mi,j), y). If it holds, the CS accepts the data and the authenticator.

(5) (Tw) ← TrapdoorGen. When the DO wants to check files with h different file keywords and the tar-
get keyword set can be represented as W ′ = {w1, w2, . . . , wh}, the DO generates the search trapdoor as Tw =
{(πo(wi), fl(πo(wi)))}i∈[1,h]. The DO sends the trapdoor information to the TPA.

(6) (Chal)← ChalGen(Tw). When the TPA receives the trapdoor information, it randomly selects k1, k2 ∈ Z∗
q ,

challenge block numbers c, and transmits the challenge information Chal = (Tw, c, k1, k2) to the CS. Then the TPA
computes the auditing information ahead of time.

• The TPA generates the challenge information {C = {(j1, vij)}j1∈[1,n],i∈[1,v]}, where j1 = ψk1(β) for β ∈ [1, c]
and vij = πyi(j) for yi = πk2(i), i ∈ [1, v], j ∈ [1, c]. Suppose Q1 = {j1 = ψk1(β)}β∈[1,c].

• For each blind address {πo(wi)}i∈[1,h] from the trapdoor, the TPA checks whether πo(wi) exists, if so, the
TPA locates the row evπo(wi). Suppose the TPA locates ζ(1 6 ζ 6 h) rows, and the located row set to be
U = {evπo(w1i)}16i6ζ . For each evπo(w1i) ∈ U , the TPA obtains the plaintext vectors V = {vw1i}16i6ζ , where

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:9

Algorithm 1 Smart contract.

Require: Set the initial state State := Init; call SysIni, Setup, IndexGen algorithms to obtain public parameters param; secret key (x, l, o, sk),

keyword set W , index matrix Ia×a, encrypted matrix EI , and the blind address Addr; match index {Ωi}i∈[1,v].

1: Define a structure of the auditing task taskID, fileName, indexStatus;

2: the participant address addrDO,addrTPA, addrCS;

3: Create: Task;

4: Assert State := Init;

5: Assert balance[DO] 6 $deposit + Create.gasLimit ∗ gasPrice;

6: Assert balance[DO] := balance[DO] − deposit − Create.gas ∗ gasPrice;

7: State := Created;

8: Send Create.gas ∗ gasPrice to the miner;

9: function: newTask(FID, addrDO,addrTPA, addrCS);

10: task=tasks[taskID];

11: task.fileName=FID;

12: task.addressDO=addrDO;

13: task.addressTPA=addrTPA;

14: task.addressCS=addrCS;

15: task.indexStatus=true;

16: function: IndexGen(taskID, Addr,EI ,Ω = {Ωπo(wk)}k=1,2,...,m);

17: Require (tasks[taskID].addressTPA == msg.sender);

18: Require (tasks[taskID].indexStatus == true);

19: task.Addr=Addr;

20: task.E I=EI ;

21: task.index=Ω;

22: task.indexStatus=false;

23: function: addFile(taskID, FIDz , Sz, EI′ ,Ωz);

24: Require (tasks[taskID].addressDO == msg.sender);

25: task.updatefile.push(FIDz);

26: task.updatefile.push(Sz);

27: task.update.push(EI′);

28: task.updatefile.push(Ωz);

29: function: deleteF ile(taskID, EI′);

30: Require (tasks[taskID].addressDO == msg.sender);

31: task.updatefile.push(EI′).

vw1i = evπo(w1i) ⊕ fl(πo(w1i)).

• For 1 6 i 6 ζ, the TPA begins by initializing an empty set Ti = ∅. For each j ∈ [1, ζ], if vwi
[j] = 1, the TPA

includes j in the set Ti. For 1 6 i 6 ζ, the TPA generates T = T1 ∪ T2 ∪ · · · ∪ Tζ .
(7) (Proof)← ProofGen(Chal,Addr,EI ,{φi, {mi,j}j∈[1,n]}i∈[1,v]).

• The CS generates the challenge information {C = {(j2, eij)}j2∈[1,n],i∈[1,v]}, where j2 = ψk1(β) for β ∈ [1, c]
and eij = πxi

(j) for xi = πk2(i), i ∈ [1, v], j ∈ [1, c]. Suppose Q2 = {j2 = ψk1(β)}β∈[1,c].

• For each blind address {πo(wi)}i∈[1,h] from the trapdoor, the CS checks whether πo(wi) exists, if so, the
CS locates the row evπo(wi). Suppose the CS locates γ(1 6 γ 6 h) rows, and the located row set to be W =
{evπo(w2i)}16i6γ . For each evπo(w2i) ∈ V , the CS obtains the plaintext vectors X = {vw2i}16i6γ , where vw2i =
evπo(w2i) ⊕ fl(πo(w2i)).

• For 1 6 i 6 γ, the CS begins by initializing an empty set Ri = ∅. For each j ∈ [1, a], if vwi
[j] = 1, the CS

includes j in the set Ri. For 1 6 j 6 γ, the CS generates R = R1 ∪R2 ∪ · · · ∪ Rγ .

• According to the challenge set Q and the retrieved index set Sw, the CS produces proof information Proof =
{T, µ}, where µ =

∑

i∈R

∑

j∈Q2
eij ·mi,j and T =

∏

i∈R

∏

j∈Q2
σ
eij
i,j .

• The CS randomly selects r ∈ Z∗
q and generates R = gr. Then the CS blinds µ by utilizing r and R as

µ1 = µ− rh1(Tw, R) for guaranteeing the data privacy.

The CS transmits the proof Proof = {T, µ1, R} to the TPA.

(8) (true/false)← ProofVerify(Proof,Chal).

• After obtaining Proof , the TPA requests the index switch set Si of the file Fi(i ∈ T), searches the match
index Ωi, i ∈ T and finds the authenticator indexes aui,j(i ∈ T , j ∈ Q1) of challenged blocks mi,j(i ∈ T , j ∈ Q1).

• With the keyword tag tagwk
and the authenticator indexes aui,j(i ∈ T , j ∈ Q1), the TPA checks Proof ’s

correctness by

e

(

T ·
∏

i∈T

Ω
∑

j∈Q1
vij

i , g

)

= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ1 ·Rh1(Tw ,R), y



 . (1)

If the equation holds, the files which contain the keyword in set W ′ are intact; otherwise, the files are incomplete.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:10

5.3 Extension

5.3.1 Add file

When the DO wants to add a new file Fz into the cloud, the DO first adds keywords for this file.
(1) The DO initiates a column vector cfz with length of a and sets all elements to 0. If the new file contains

keyword wk(k ∈ [1,K]), the DO sets cfz [k] = 1. The DO updates the (v + 1)-th column of matrix Ia×a to cfz .
Suppose the latest matrix of Ia×a be I ′

a×a = {v′w1
, v′w2

, . . . , v′wK
, v′K+1, . . . , v

′
a}.

(2) The DO retrieves all keywords of file Fz into its corresponding keyword set WFz
= {wb1 , . . . , wbl , . . . , wbtz }.

Suppose tz is the total number of keywords of file Fz . DO computes the keyword information HFz =
∏tz
l=1H1(wbl),

wbl ∈ WFz
. Then the DO calculates the match index Ωz = (HFz · H2(FIDz))

−x for file Fz , where FIDz is the
identifier of file Fz.

(3) For each keyword wk ∈ WFz
, the DO performs encryption on the index vector, resulting in ev′

πo(wk)
=

v′wk
⊕ fl(πo(wk)). For j ∈ [K+1, a], DO performs encryption evγj = v′j ⊕ fl(πo(γj)). The encrypted version of I ′

a×a

can be represented as a matrix EI′ = {ev′
πo(w1)

, ev′
πo(w2)

, . . . , ev′
πo(wK), ev

′
γK+1

, . . . , ev′γa}.

(4) The DO splits file Fz into n blocks denoted as Fz = {mzj}j∈[1,n]. Then the DO generates the index switch
set Sz = {θz,j}j∈[1,n], where θz,j = (j, auz,j), and j indicates the block index of file Fz . The DO computes the
authenticator σz,j = (HFz · H2(FIDz) · H3(auz,j) · umz,j)x for each data block mz,j(j ∈ [1, n]) by utilizing the
authenticator index auz,j. Let φz = {σzj}j∈[1,n] be the authenticator set of the file Fz .

The DO sends an add request {add, FIDz, Sz, EI′ ,Ωz} to the blockchain. The DO sends {φz,
{mz,j}j∈[1,n]} to the CS. The CS verifies the authenticator by e(

∏n
j=1 σz,j , g) = e(

∏n
j=1(HFz ·H2(FIDz)·H3(auz,j)·

umz,j), y). If it holds, the CS accepts the data and the authenticator.

5.3.2 Delete file

Suppose the DO wants to delete file Fz .
(1) The DO retrieves the z-th column of the latest version V ′ and sets the column to 0.
(2) For each keyword wk ∈ WFz

, the DO performs encryption on the index vector, resulting in ev′
πo(wk)

=

v′wk
⊕ fl(πo(wk)). For j ∈ [K + 1, a], the DO performs encryption evγj = v′j ⊕ fl(πo(γj)). The encrypted version of

I ′
a×a can be represented as a matrix EI′ = {ev′

πo(w1)
, ev′

πo(w2)
, . . . , ev′

πo(wK), ev
′
γK+1

, . . . , ev′γa}.

The DO sends {EI′} to the blockchain. The DO sends {delete, FIDz, ssgsk(delete‖FIDz)} to the CS. The CS
verifies the ssgsk(delete‖FIDz) and deletes the corresponding data and authenticators if the signature is correct.

6 Security analysis

Theorem 1 (Correctness). When all files which contain the specific keyword are stored intactly and participated
in the proof generation, the proof can pass the auditing.

Proof. Eq. (1) can be derived as below:

e

(

T ·
∏

i∈T

Ω

∑
j∈Q1

vij

i , g

)

= e





∏

i∈T

∏

j∈Q1

σ
vij
i,j ·

∏

i∈T

(HFi ·H2(FIDi))
−x·

∑
j∈Q1

vij , g





= e





∏

i∈T

∏

j∈Q1

((HFi ·H2(FIDi) ·H3(aui,j) · u
mi,j)x)vij

∏

i∈T

(HFi ·H2(FIDi))
−x·

∑
j∈Q1

vij , g





= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ1 ·Rh1(Tw ,R), y



 .

Theorem 2 (Auditing soundness). Assume that the CDH problem is hard. The CS can pass the auditing
verification if and only if it possesses the intact data.

Proof. Game 0: Game 0 is defined the same as described in the security model.
Game 1: Game 1 is set almost the same as Game 0, except for a change.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:11

Since Proof = {T, µ1, R} is valid produced by the CS, the following equation:

e

(

T ·
∏

i∈T

Ω

∑
j∈Q1

vij

i , g

)

= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ1 · Rh1(Tw,R), y



 (2)

holds. Suppose a forged proof be Proof∗ = {T ∗, µ∗
1, R} and can pass the verification. The following equation:

e

(

T ∗ ·
∏

i∈T

Ω

∑
j∈Q1

vij

i , g

)

= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ
∗
1 · Rh1(Tw,R), y



 . (3)

We can observe that µ1 6= µ∗
1, otherwise T = T ∗. Let ∆µ = µ∗

1 − µ1. If A wins Game 1 with a non-negligible
probability, C can leverage A’s capability to solve the CDH problem. That is, given (g, ga, gb), S is able to retrieve
gab. C randomly picks two values a, d ∈ Z∗

q , and computes u = gagbd, y = ga. S randomly selects xij ∈ G1 for the
challenge i and j.

Dividing (3) by (2), we obtain

e(T ∗/T, g) = e(uµ
∗
1−µ1 , y).

Further, we can obtain

e(T ∗/T, g) = e((ga · gbd)µ
∗
1−µ1 , ga).

Hence, we can obtain gab = ((T
∗

T
)

1
µ∗
1
−µ1 · g−a

2

)
1
a .

The probability that △µ = µ∗
1 − µ1 6= 0 is 1 − 1/q, which is non-negligible. Thus, the CDH can be solved with

the probability 1− 1/q. This contradicts with the assumption: CDH problem is hard.

Game 2: Game 1 is equivalent to Game 0, except for a change. Assume Proof∗ = {T ∗, µ∗
1, R} is a valid auditing

proof produced by the CS. We get

e

(

T ∗ ·
∏

i∈T

Ω
∑

j∈Q1
vij

i , g

)

= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ
∗
1 · Rh1(Tw,R), y



 .

According to the valid proof Proof = {T, µ1, R}, we get

e

(

T ·
∏

i∈T

Ω
∑

j∈Q1
vij

i , g

)

= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ1 ·Rh1(Tw ,R), y



 .

From Game 1, we obtain that T ∗ = T . Let △µ = µ∗
1 − µ1. DL problem can be solved by C as follows: Given

(g, ga), C can obtain a. S chooses a, β ∈ Z∗
q and calculates u = gagbβ . Since T = T ∗, we have

e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ
∗
1 · Rh1(Tw,R), y



 . = e

(

T ∗ ·
∏

i∈T

Ω
∑

j∈Q1
vij

i , g

)

,

e

(

T ·
∏

i∈T

Ω
∑

j∈Q1
vij

i , g

)

= e









∏

i∈T

∏

j∈Q1

H3(aui,j)
vij



 · uµ1 ·Rh1(Tw,R), y



 .

We can further derive that uµ
∗
1 = uµ1 and u△µ = (gagbβ)△µ = ga△µgbβ△µ = 1. Thus, the DL problem can be

solved by C as ga = g−bβ. The probability that △µ 6= 0 is 1 − 1/q and non-negligible. Thus, the DL problem can
be solved with a non-negligible probability. This contradicts the assumption: the DL problem is hard.

Theorem 3 (Multi-keyword searchability). The DO can audit the data through several keywords. The TPA can
correctly conduct the auditing of files containing the specific keywords. The integrity of the search result can be
guaranteed.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:12

Table 2 Comparison of provable data possession schemes.

Scheme Ref. [22] Ref. [24] Ref. [23] Ours

Public auditing X X X X

Searchable auditing X X X X

Keyword privacy X × X X

Multi-keyword × × × X

Data privacy × × × X

File dynamic × X × X

Proof. In MKPDP, the DO generates the search trapdoor Tw = {(πo(wi), fl(πo(wi)))}i∈[1,h] from the keyword
set W = {w1, w2, . . . , wh}. The CS conducts the search by utilizing the trapdoor. The CS first checks whether
πo(wi), i ∈ [1, h] exists, if so, the CS locates the row evπo(wi), i ∈ [1, h]. After locating the row, the CS decrypts
evπo(wi), i ∈ [1, h] and obtains the file index. All file indexes are collected in set R. All files that meet the matching
conditions in R are used to generate the proof information. Assume that the set R contains the correct and intact
file indexes. When the CS utilizes an incomplete set R∗ ⊂ R, the proof is intact and cannot pass the verification.
All index information is stored on the blockchain and cannot be modified or deleted. The TPA generates the set
T as well and conducts the match of the proof information T . Normally, R = T . Once T does not contain all the
information in T , the checking would fail.

Theorem 4 (Resist pre-matching and pre-computation attacks). The proposed scheme can resist pre-matching
and pre-computation attacks.

Proof. The CS cannot obtain valid information from pre-matching. In the proposed scheme, the authenticator is
represented as σi,j = (HFi ·H2(FIDi)·H3(aui,j)·umi,j)x, and the index is represented as Ωi = (HFi ·H2(FIDi))

−x.
Since the CS does not know the one-to-one correspondence between the authenticator and the index, even if
some tags match the index successfully, suppose the result after matching is expressed as Υ = (H3(aui,j) · umi,j).
The middle value can pass the verification e(Υ, g) = e(H3(aui,j) · umi,j , y). Once the matching is completed,
the authenticator can be associated with the index. However, the CS cannot obtain any information from this
information. The CS cannot infer the data content from the search process. To resist the data content leaking from
the keyword, we design a blind index matrix. First, the length of row and column in Ia×a is much larger than the
number of files (a ≫ v) and the keywords (a ≫ K); thus the CS cannot guess the number of files and keywords.
Second, for j ∈ [1,K], the blind address assigned to each row within the index matrix is πo(wk); the keyword wk is
encrypted by πo(·). The CS cannot derive the content wk from address πo(·). For j ∈ [K + 1, a], the blind address
assigned to each row within the index matrix is γj ∈ Z∗

q ; the CS cannot derive any content from γj ∈ Z∗
q . Thus,

the CS cannot infer the data content from the search process from address γj . Furthermore, for j ∈ [1,K], the
index vector is encrypted by evπo(wj) = vwj

⊕ fl(πo(wj)). For j ∈ [K + 1, a], the index vector is encrypted by
evγj = vj ⊕ fl(πo(γj)). The CS cannot derive any content from evπo(wj), j ∈ [1,K] and evγj , j ∈ [K + 1, a].

The CS cannot pre-aggregate the stored files and only utilizes the aggregated middle value to generate proof
information and pass verification. In our scheme, the aggregate authenticator generated on the CS side is T =
∏

i∈R

∏

j∈Q2
σ
eij
i,j , the information is related to authenticators, and the index is not participated in this process.

Theorem 5 (The integrity of the searching results). The proposed scheme can guarantee the integrity of the
searching results.

Proof. In the verification process, the TPA should generate the aggregate index information
∏

i∈T Ω
∑

j∈Q1
vij

i ; this information is retrieved from the blockchain according to the trapdoor. This search pro-
cess is the same as the process of searching by the CS. This ensures that if the CS does not use all the information
to generate the proof information, the verification will fail.

Theorem 6 (File dynamics). The proposed scheme can achieve file dynamics, including add file and delete file
operations.

Proof. In order to facilitate file dynamics, the column size of the file index matrix a is set significantly larger
than the original storage file size v, denoted as a ≫ v. The DO initiates all elements in Ia×a to 0. When the DO
intends to add a new file Fz to the cloud, the DO modifies the index matrix and inserts a new column vector cfz
with a length of a into Ia×a. Subsequently, the DO inserts cfz with length a into Ia×a, resulting a new matrix I ′

a×a.
The DO then generates the index information for the new file. The DO retrieves the authenticator information and
submits an add request to the blockchain. Subsequently, the DO sends both the authenticator information and the
data to the cloud. When the DO decides to delete a file Fz , they locate the z-th column of the index matrix and
reset the column to 0. Following this, the DO re-encrypts the index vector, resulting in a new matrix. The DO

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:13

Table 3 Computation overhead.

Phase Ref. [22] Ref. [24] Ref. [23] Our scheme

IndexGen
K · s · [(|SEwk

| + 2) · HG1
+

(|SEwk
| + 1) · MulG1

+ ExpG1
]

v · (ti · HG1
+ ti · MulG1

+

ExpG1
) + K · |SEwk

|MulG1

(|SEwk
| + 1)(HG1

+

MulG1
) + ExpG1

v · (ti · HG1
+ ti·

MulG1
+ ExpG1

)

AuthGen
v · n · (HG1

+

MulG1
+ ExpG1

)

v · n · (2HG1
+

2ExpG1
+ 3MulG1

)

v · n · (HG1
+

MulG1
+ 2 · ExpG1

)

v · n · (HG1
+

MulG1
+ ExpG1

)

ProofGen
(|SEwk

| · c + c)MulG1
+

|SEwk
| · cMul

Z∗q
+ 2cExpG1

|SEwk
| · MulG1

+ (|SEwk
|+

c)Mul
Z∗q

+ c · ExpG1

(|SEwk
| · c + c)MulG1

+

|SEwk
| · c · MulZq

+ |SEwk
|

·c · ExpG1

|SEwk
| · c · MulG1

+

(|SEwk
| · c + 1)MulZq

+

(|SEwk
| · c + 1)ExpG1

ProofVerify
2 · Pair + 2 · c · HG1

+ (c + 1)·

MulG1
+ (c + 1) · ExpG1

2 · Pair + (c + |SEwk
|)·

MulG1
) + (c + 1) · ExpG1

2 · Pair + 2 · HG1
+

MulG1
+ (c + 1) · ExpG1

2 · Pair + (|SEwk
| + c·

|SEwk
|)MulG1

+ (|SEwk
| + c · |SEwk

|+

2)ExpG1

Table 4 Communication overhead.

Phase Ref. [22] Ref. [24] Ref. [23] Our scheme

DO → CS v · |F | + (v · n + K · s)|G1| v · |F | + (v · n + v)|G1 | + (1 + v · K)|Z∗q | v · |F | + (v · n + K · s)|G1| v · |F | + (v · n + v)|G1|

DO → TPA 2|Z∗q | (s + 1)Z∗q + s|n| 2 · v|Z∗q | 2 · h|Z∗q |

TPA → CS (2 + c)|Z∗q | + c|n| (c + 1)|Z∗q | + c|n| (2 + c)|Z∗q | + (c + k)|n| + s|G1| + |Enc| (2 · h + 2)|Z∗q | + |c|

CS → TPA |Z∗q | + |G1| K|n| + |Z∗q | + |G1| |Z∗q | + |G1| + |Enc| |Z∗q | + 2|G1|

then sends a deletion request to both the blockchain and the CS. In this manner, the proposed scheme enables file
dynamics.

7 Theoretical analysis

We compared the functionality of the MKPDP with existing schemes [22–24] in Table 2. We mainly focused
on the functionality in public auditing, searchable auditing, keyword privacy, multi-keyword, data privacy and file
dynamics. All schemes satisfied the functionality of public auditing and searchable auditing. Except for scheme [24],
other schemes satisfied the functionality of keyword privacy, in which a pseudorandom function was utilized to blind
the keyword and the index matrix was blinded through encryption. Only our scheme supported the functionality
of multi-keyword searchability, data privacy and file dynamics.

We compare the computation cost and communication cost in IndexGen, AuthGen, ProofGen, and ProofVerify

algorithms among schemes [22–24].

7.1 Computation cost comparison

For convenient comparison, we adopted HG1 , MulZ∗
q
, MulG1 , ExpG1 to represent hash operation into group G1,

multiplication operation into group Z
∗
q , multiplication operation into group G1 and exponentiation operation into

group G1. We adopted Pair to represent the pairing operation. Suppose that there are v files and each file contains
n blocks. Suppose there were |SEwk

| files related to keyword wk. Each file Fi is associated with ti keywords. The
total number of keywords wasK. We overlooked some simple calculations like addtion, pseudo random permutation,
and pseudo random function operations. The computation overhead in different algorithms was shown in Table 3.

For IndexGen algorithm, the computation overhead in [22] was the most biggest among other schemes, which
was related to the number of separated sectors and the total number of keywords K. Similar to scheme [24], the
computation overhead was related to the number of files and the total number of keywords K. The computation
overhead in [23] was related to the size of |SEwk

| and our scheme was related to the total files v. For AuthGen

algorithm, the computation overhead was all related to the number of total files v and the number of data blocks n.
The computation cost was the same in scheme [22,23], which was v · n · (HG1 +MulG1 +ExpG1). The computation
cost was the same in scheme [24] and ours, which was v · n · (2HG1 + 2ExpG1 + 3MulG1). For ProofGen algorithm,
the computation cost was related to the size of |SEwk

| and the number of challenge blocks c. The computation
cost was the least in scheme [24], which was |SEwk

| ·MulG1 + (|SEwk
| + c)MulZ∗

q
+ c · ExpG1 . But their scheme

suffered a potential security breach. The computation cost in our scheme was |SEwk
| · c ·MulG1 + (|SEwk

| · c +
1)MulZq

+(|SEwk
| ·c+1)ExpG1 . Our scheme was a little bigger than scheme [24] but could resist a security breach.

For ProofVerify algorithm, the computation cost was a little difference in scheme [22, 23]. The computation cost in
scheme [24] and our scheme was a little higher than scheme [22,23]. That was because the index matching process
was conducted in the proof verification phase, which can guarantee the security during matching.

7.2 Communication cost comparison

We adopted |F | to show the length of file to be uploaded, |G1| to show the length of an element in G, |Z∗
q | to show

the length of an element in Z∗
q , and |n| to show the length of a constant. The computation overhead in different

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:14

Figure 4 Time cost for index generation evaluation in (a) the number of files containing the same keyword and (b) the number of data blocks

or files.

algorithms was shown in Table 4.
In the uploading phase, the DO transmitted the file data, the authenticator data or the index data to the CS. The

communication cost was related to the total number of files v. Different from other schemes, the DO transmitted
{φi, {mi,j}j∈[1,n]}i∈[1,v] to the CS and the index information {FIDi, Si, Addr, EV , Ωi}i∈[1,v] to blockchain. The
communication cost between the DO and the CS was v · |F | + (v · n + v)|G1|. In the delegation phase, the DO
transmitted the auxiliary information or trapdoor to the TPA. In scheme [22], the DO transmitted the trapdoor
Tw′ = {π(w′), f(π(w′))} to the TPA, and the communication cost was 2|Z∗

q |. In scheme [24], the DO transmitted
{FIDi, Si}i∈[1,n] to the TPA and the communication cost was (s+1)Z∗

q + s|n|. In scheme [23], the DO transmitted
the index table to the TPA, and the communication cost was 2 · v|Z∗

q |. The communication cost in our scheme was
related to the number of queried keywords h and a little higher than other schemes, which was 2 · h|Z∗

q |. But our
scheme improved the search flexibility. In the challenge phase, the TPA transmitted the challenge information to
the CS. In scheme [22–24], the TPA transmitted the specific challenge index and the random value to the CS, so
the communication cost was related to the challenge numbers c. In our scheme, the TPA transmitted the trapdoor
and challenge seeds to the CS, so the communication cost was a constant value, which was (2 · h+ 2)|Z∗

q |+ |c|. In
the proof generation phase, the CS transmitted the proof information to the TPA. The communication cost in these
schemes was a little difference. Except that in scheme [24], the CS transmitted the index set to the CS. There was
one more element communication cost than scheme [22,23]. The element was utilized to protect the privacy of the
auditing data.

8 Performance evaluation

We evaluated the computation cost through simulation the scheme. The simulation was conducted on Windows
10 equipped with an Intel i7 2.5 GHz CPU and 8 GB of memory, utilizing the JPBC library. We adopted Type-A
pairings with a 512-bit length of each prime and a 160-bit group order. The cost of the scheme was mainly related
to the number of blocks divided in the file, the file contained keywords, and the number of challenged data blocks.
In the experiment, we compared our scheme in authenticator generation and index generation with schemes [22–24]
since these schemes are the most related keyword-based provable data possession schemes. The specific test results
were shown as follows.

The performance evaluation of index generation. In Figure 4(a), the number of files containing the same
keyword was set from 10 to 50 with stepsize 10. The number of data blocks was set to 1000. The results showed
that the time for index generation slowly increased with the number of files which contain the same keyword. For
example, when the number of files containing the same keyword was 10 and 50, respectively, the time cost for our
scheme was 18.831 and 19.287 s. It indicated that the file numbers containing the same keyword had little effect
for the time cost for index generation. The results also showed that schemes [22, 23] had a similar computational
cost. But the time cost in these two schemes was higher than scheme [24] and ours. Scheme [24] and ours had
the same time cost. Since we adopted the same index structure in these two schemes. In Figure 4(b), the number
of data blocks in [22, 23] was set from 100 to 1000 with stepsize 100, and the number of files which contain the
same keyword was set to 50. The number of indices was related to that of files in scheme [22] and ours. Thus file
numbers were set from 100 to 1000 with stepsize 100, and the number of keywords which contain in the same file

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:15

Figure 5 Computation cost of authenticator generation.

Figure 6 Time cost. (a) Proof generation; (b) proof verification.

was set to 50. The results showed that the computation cost was proportional to the number of data blocks or files.
Schemes [22, 23] had a similar growing trend and there was no significant difference in the same file numbers. Our
scheme performed well in terms of the computational overhead of index generation and did not bring additional
overhead compared with existing schemes.

The performance evaluation of authenticator generation. In the experiment, the number of data blocks
was set from 100 to 1000 with stepsize 100. Figure 5 showed that the computation cost of the authenticator
grew linearly with the number of data blocks in each file. The results indicated that the computation cost was
proportional to the number of data blocks in each file. For the same number of data blocks, the computation cost
was a little difference. For example, when the number of data blocks was set to 500, the time cost of our scheme
was 18.146 s. While it was 17.838 s in scheme [22, 24].

The performance evaluation of proof generation and verification. In the experiment, the number of
the challenged data blocks was set from 100 to 1000 with stepsize 100. The number of keywords corresponding to
files was set to 20, 40, 60, and 80, respectively. The computation cost of proof generation was shown in Figure
6(a). The results showed that the time for proof generation was proportionate to challenged data block numbers
and also increased with the number of keywords corresponding to files. In Figure 6(b), the index generation of
schemes [22, 23] was based on the number of file blocks, while that of scheme [24] and the scheme proposed in this
paper was based on files. To enhance the comparability, we conducted settings according to the characteristics
of different schemes. Specifically, we compared the index generation of scheme [22, 23] in terms of the number of
file blocks, and compared that of scheme [24] and the scheme proposed in this paper in terms of the number of
files. Similar results were conducted in the proof verification phase, as shown in Figure 6(b). The computation
cost of proof generation had a similar increasing trend. Obviously, it is inevitable that both the proof generation
time and verification time increase as the number of files contained in each keyword increases. The files contained

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:16

Figure 7 Computation cost of add and delete files.

Table 5 Gas estimation. In IndexGen, the DO sends {FIDi, Si, Addr,EV ,Ω}i∈[1,v] to the blockchain. In add file operation, the DO sends an

add request {add,FIDz , Sz, EI′ ,Ωz} to the blockchain. In delete file operation, the DO sends {EI′} to the blockchain. Test date: May, 2024.

Gas cost in posting the smart contract was about 981043. 1 Gwei = 10−9 Ether. 1 Ether = 2970.0234 USD.

Number of files 100 200 300 400 500 Average

USDCosts Total gas USD Total gas USD Total gas USD Total gas USD Total gas USD

IndexGen 29006403 84.92 57059988 169.47 85120187 252.81 113186975 336.17 141260365 419.55 0.84

Add file 1095438 3.25 1958210 5.82 2821139 8.38 7092791 21.07 4547466 13.51 0.03

Delete file 863516 2.46 1601016 4.76 2338516 6.95 3076016 9.14 3813516 0.02 0.02

participated in the generation and verification of the proof.
The performance evaluation of add and delete files. In the experiment, the number of files was set from 10

to 100 with stepsize 10. The total number of keywords tz was set to tz = 10. As shown in Figure 7, the computation
cost of add file grew linearly with the number of files. That was because updating a file requires updating the index
matrix, re-encrypting the index matrix and generating the authenticator of the file, which was relatively expensive.
While the computation cost of delete file required relatively little overhead and changed little as the number of files
increases. That was because it only needed to update the index matrix and re-encrypt the index matrix.

The gas cost evaluation of add and delete files. In the experiment, we employed a test blockchain on
Ethereum to assess the gas costs associated with add and delete file operations. The experiment was conducted on
May, 2024, when the value of 1 Ether was approximately $2970.0234. The cost results were shown in Table 5. To
conduct the experiment, we developed a smart contract and deployed it on the test chain, incurring a deployment
cost of approximately 981043 gas. We varied the number of files from 100 to 500 in increments of 100. Our analysis
revealed a direct correlation between the number of files and the associated gas costs, with costs escalating as the
number of files increased. Uploading the index information incurred the highest consumption of resources. While
costs associated with adding and deleting files exhibited little difference. Because updating the index information
of the file involved modifying matrix without the need for additional index tag information. Besides, we converted
the gas into dollars to evaluate the economic feasibility. On average, the cost per file uploaded, added and deleted
was approximately $0.84, $0.03, and $0.02, respectively.

9 Future work

Our scheme achieves multi-keyword searchable provable data possession with file privacy protection and the integrity
of the searching results. However, some aspects can be improved. (1) The proposed scheme supports file dynamics
but cannot support block level dynamics. Since dynamic data at block level occurs frequently [36], we will explore
how to achieve block level dynamics with searchable auditing. (2) The proposed scheme is not suitable for data
integrity verification in group file sharing scenarios. Although many schemes have implemented group shared data
auditing [37], these schemes are not directly used for searchable auditing. Future research will explore integrating
group shared data auditing with searchable auditing.

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:17

10 Conclusion

This paper proposed a novel multi-keyword searchable provable data possession (MKPDP) scheme, which aimed
to improve the accuracy and flexibility of the existing schemes and resist some attacks. MKPDP empowered DO
to verify the integrity of files containing multiple keywords, thereby enhancing the accuracy of auditing files with
the same attributes. Additionally, the integrity of the searched files was ensured with the support of blockchain
technology. To resist pre-matching attacks, TPA instead of the CS itself involved in the matching process and
subsequent verification procedures. This ensures that the CS cannot pass verification once it has used incomplete
search information. Furthermore, to resist pre-aggregating attacks, random values were appended to all challenge
files and their respective data blocks, ensuring the integrity of each data block involved in the auditing process.
Security and efficiency were upheld through rigorous security analysis and comprehensive performance evaluation.

Acknowledgements This work was supported by National Key Research and Development Program of China (Grant No. 2021YFB2701300)

and National Natural Science Foundation of China (Grant Nos. 62372044, U24B20146, 62232002).

References

1 Gai K, Guo J, Zhu L, et al. Blockchain meets cloud computing: a survey. IEEE Commun Surv Tutorials, 2020, 22: 2009–2030

2 Zhang Y, Gai K, Xiao J, et al. Blockchain-empowered efficient data sharing in Internet of Things settings. IEEE J Sel Areas Commun,

2022, 40: 3422–3436

3 Liu M, Pan L, Liu S. Cost optimization for cloud storage from user perspectives: recent advances, taxonomy, and survey. ACM Comput

Surv, 2023, 55: 1–37

4 Ateniese G, Burns R, Curtmola R, et al. Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on

Computer and Communications Security, 2007. 598–609

5 Juels A, J. Kaliski S B. PORs: proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and

Communications Security, 2007. 584–597

6 Li A, Chen Y, Yan Z, et al. A survey on integrity auditing for data storage in the cloud: from single copy to multiple replicas. IEEE

Trans Big Data, 2020, 8: 1428–1442

7 Han H, Fei S, Yan Z, et al. A survey on blockchain-based integrity auditing for cloud data. Digital Commun Netws, 2022, 8: 591–603

8 Huang Y, Shen W, Qin J, et al. Privacy-preserving certificateless public auditing supporting different auditing frequencies. Comput

Secur, 2023, 128: 103181

9 Wang H, Liang J, Ding Y, et al. Ciphertext-policy attribute-based encryption supporting policy-hiding and cloud auditing in smart

health. Comput Stand Inter, 2023, 84: 103696

10 Zhang Y, Bao Z, Wang Q, et al. OWL: a data sharing scheme with controllable anonymity and integrity for group users. Comput

Commun, 2023, 209: 455–468

11 Li Y, Li Y, Zhang K, et al. Public integrity auditing for dynamic group cooperation files with efficient user revocation. Comput Stand

Inter, 2023, 83: 103641

12 Li Y, Li Z, Yang B, et al. Algebraic signature-based public data integrity batch verification for cloud-IoT. IEEE Trans Cloud Comput,

2023, 11: 3184–3196

13 Guo Z, Zhang K, Wei L, et al. RDIMM: revocable and dynamic identity-based multi-copy data auditing for multi-cloud storage. J Syst

Archit, 2023, 141: 102913

14 Gai C, Shen W, Yang M, et al. PPADT: privacy-preserving identity-based public auditing with efficient data transfer for cloud-based IoT

data. IEEE Internet Things J, 2023, 10: 20065–20079

15 Tian M, Zhang Y, Zhu Y, et al. DIVRS: Data integrity verification based on ring signature in cloud storage. Comput Secur, 2023, 124:

103002

16 Goswami P, Faujdar N, Debnath S, et al. ZSS signature-based audit message verification process for cloud data integrity. IEEE Access,

2023, 11: 145485

17 Shen J, Shen J, Chen X, et al. An efficient public auditing protocol with novel dynamic structure for cloud data. IEEE Trans Inform

Forensic Secur, 2017, 12: 2402–2415

18 Guo W, Qin S, Gao F, et al. Dynamic proof of data possession and replication with tree sharing and batch verification in the cloud.

IEEE Trans Serv Comput, 2020, 15: 1813–1824

19 Liu D, Li Z, Jia D. Secure distributed data integrity auditing with high efficiency in 5G-enabled software-defined edge computing. Cyber

Secur Appl, 2023, 1: 100004

20 Li Z R, Li Y, Lu L, et al. Blockchain-based auditing with data self-repair: from centralized system to distributed storage. J Syst Archit,

2023, 137: 102854

21 Bello S A, Oyedele L O, Akinade O O, et al. Cloud computing in construction industry: use cases, benefits and challenges. Autom

Constr, 2021, 122: 103441

22 Gao X, Yu J, Chang Y, et al. Checking only when it is necessary: enabling integrity auditing based on the keyword with sensitive

information privacy for encrypted cloud data. IEEE Trans Dependable Secure Comput, 2021, 19: 3774–3789

https://doi.org/10.1109/COMST.2020.2989392
https://doi.org/10.1109/JSAC.2022.3213353
https://doi.org/10.1145/3582883
https://doi.org/10.1109/TBDATA.2020.3029209
https://doi.org/10.1016/j.dcan.2022.04.036
https://doi.org/10.1016/j.cose.2023.103181
https://doi.org/10.1016/j.csi.2022.103696
https://doi.org/10.1016/j.comcom.2023.07.022
https://doi.org/10.1016/j.csi.2022.103641
https://doi.org/10.1109/TCC.2023.3266593
https://doi.org/10.1016/j.sysarc.2023.102913
https://doi.org/10.1109/JIOT.2023.3282939
https://doi.org/10.1016/j.cose.2022.103002
https://doi.org/10.1109/ACCESS.2023.3343841
https://doi.org/10.1109/TIFS.2017.2705620
https://doi.org/10.1109/TSC.2020.3022812
https://doi.org/10.1016/j.csa.2022.100004
https://doi.org/10.1016/j.sysarc.2023.102854
https://doi.org/10.1016/j.autcon.2020.103441
https://doi.org/10.1109/TDSC.2021.3106780

Miao Y, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 132101:18

23 Xue J, Luo S, Deng Q, et al. KA: keyword-based auditing with frequency hiding and retrieval reliability for smart government. J Syst

Archit, 2023, 138: 102856

24 Shen W, Gai C, Yu J, et al. Keyword-based remote data integrity auditing supporting full data dynamics. IEEE Trans Serv Comput,

2023, 17: 2516–2529

25 Li Y, Shen J, Ji S, et al. Blockchain-based data integrity verification scheme in AIoT cloud-edge computing environment. IEEE Trans

Eng Manage, 2023, 71: 12556–12565

26 Liu S, Yao Y, Tian G, et al. A blockchain-based compact audit-enabled deduplication in decentralized storage. Comput Stand Inter,

2023, 85: 103718

27 Qi Y, Luo Y, Huang Y, et al. Blockchain-based privacy-preserving public auditing for group shared data. Intell Autom Soft Comput,

2023, 35: 2603–2618

28 Shakarami A, Ghobaei-Arani M, Shahidinejad A, et al. Data replication schemes in cloud computing: a survey. Cluster Comput, 2021,

24: 2545–2579

29 Xu Z, He D, Vijayakumar P, et al. Certificateless public auditing scheme with data privacy and dynamics in group user model of

cloud-assisted medical WSNs. IEEE J Biomed Health Inform, 2021, 27: 2334–2344

30 Peng L, Yan Z, Liang X, et al. SecDedup: secure data deduplication with dynamic auditing in the cloud. Inf Sci, 2023, 644: 119279

31 Liu Z, Ren L, Feng Y, et al. Data integrity audit scheme based on quad Merkle tree and blockchain. IEEE Access, 2023, 11: 59263–59273

32 Zhang Q, Sui D, Cui J, et al. Efficient integrity auditing mechanism with secure deduplication for blockchain storage. IEEE Trans

Comput, 2023, 72: 2365–2376

33 Song M, Hua Z, Zheng Y, et al. Blockchain-based deduplication and integrity auditing over encrypted cloud storage. IEEE Trans

Dependable Secure Comput, 2023, 20: 4928–4945

34 Zhang Q, Zhang Z, Cui J, et al. Efficient blockchain-based data integrity auditing for multi-copy in decentralized storage. IEEE Trans

Parallel Distrib Syst, 2023, 34: 3162–3173

35 Liu Z, Wang S, Liu Y. Blockchain-based integrity auditing for shared data in cloud storage with file prediction. Comput Netws, 2023,

236: 110040

36 Goswami P, Faujdar N, Singh G, et al. Stub signature-based efficient public data auditing system using dynamic procedures in cloud

computing. IEEE Access, 2024, 12: 58502–58518

37 Miao Y, Gai K, Zhu L, et al. Blockchain-based shared data integrity auditing and deduplication. IEEE Trans Dependable Secure Comput,

2023, 21: 3688–3703

https://doi.org/10.1016/j.sysarc.2023.102856
https://doi.org/10.1109/TSC.2023.3339521
https://doi.org/10.1109/TEM.2023.3262678
https://doi.org/10.1016/j.csi.2022.103718
https://doi.org/10.32604/iasc.2023.030191
https://doi.org/10.1007/s10586-021-03283-7
https://doi.org/10.1109/JBHI.2021.3128775
https://doi.org/10.1016/j.ins.2023.119279
https://doi.org/10.1109/ACCESS.2023.3240066
https://doi.org/10.1109/TC.2023.3248278
https://doi.org/10.1109/TDSC.2023.3237221
https://doi.org/10.1109/TPDS.2023.3323155
https://doi.org/10.1016/j.comnet.2023.110040
https://doi.org/10.1109/ACCESS.2024.3389076
https://doi.org/10.1109/TDSC.2023.3335413

	Introduction
	Related work
	Privacy protection in provable data possession
	Data dynamic technique in provable data possession
	Blockchain technique in provable data possession
	Keyword-based provable data possession

	Preliminaries
	System model and security model
	Design goals
	System model
	Definition
	Threat model
	Security model

	The proposed MKPDP scheme
	Overview
	Construction of MKPDP
	Extension
	Add file
	Delete file

	Security analysis
	Theoretical analysis
	Computation cost comparison
	Communication cost comparison

	Performance evaluation
	Future work
	Conclusion

