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Abstract People usually have the explicit or implicit desire to get the information they need and are most interested in from massive
information, which has led to the creation of personalized recommender systems. Recommender systems are set up to address the
issue of information overload in traditional information retrieval systems such as search engines, and have been a significant area of
research focusing on recommending information that is of most interest to users. There is a sequential nature to the behaviors of a
person interacting with a system, such as examining one item of clothing before examining others. The problem of taking this sequential
nature into account to uncover users’ interest dynamics in delivering recommendations is known as sequential recommendation (SR). The
traditional SR problem merely focuses on a single behavior type of the users, while in real-world scenarios, users tend to engage in multiple
types of behaviors, such as examining and adding clothes to the cart before purchasing them. The introduction of multiple behavior
types can uncover users’ behavior patterns more comprehensively, leading to the proposal of multi-behavior sequential recommendation
(MBSR). MBSR considers both sequentiality and heterogeneity of user behaviors, which can achieve state-of-the-art recommendation
performance through suitable modeling. Currently, there are some related studies for MBSR, and to the best of our knowledge, there is
no related review to introduce and categorize these MBSR studies. Hence, this survey aims to shed light on MBSR, which is a relatively
new and worthy direction for in-depth research. First, we introduce MBSR in detail, including its problem definition, application
scenarios, and challenges faced. Second, we detail the classification of MBSR methods, including traditional methods and deep learning-
based methods, where the former contain neighborhood-based methods and matrix factorization-based methods, and the latter can be
classified into different learning architectures based on recurrent neural network (RNN), graph neural network (GNN), Transformer, and
generic architectures, as well as architectures that integrate hybrid techniques. In each method, we present related studies from the
data perspective and the modeling perspective, analyzing the strengths, weaknesses, and features of these studies, and further conduct
experiments on two real-world datasets with classical and recent studies on different methods to show the difference in recommendation
performance of these methods. Finally, we discuss some promising future research directions to address the challenges and improve the
current status of MBSR.
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1 Introduction

Nowadays, people are increasingly relying on the Internet to obtain information, and are faced with an information
overload due to the complexity and the huge amount of network information. Traditional search engines cannot
filter items for each user well, making it difficult for people to quickly access the information they want. As such,
recommender systems that can effectively solve the information overload problem and provide personalized services
to different users are of great importance. Recommender systems [1,2] are a fundamental tool to recommend items
of most interest to the users from a large amount of information. The recommendation process usually involves
collecting and analyzing the users’ historical behavior data to learn their preferences and behavior patterns, and
thus find the items that better align with their preferences. The historical behavior data used can be divided into
explicit feedback and implicit feedback. The explicit feedback data, also known as multi-class feedback, includes
behaviors such as a user’s ratings and likes on items, while the implicit feedback data, also known as one-class
feedback, includes behaviors like examinations, add-to-carts, and purchases.

Since the implicit feedback data are more readily available compared with the explicit feedback data in real-world
scenarios, many studies focus on studying recommendation problems based on a single type of implicit feedback
behaviors, which brings up the issue of single-behavior recommendation (SBR) [3-5]. However, SBR usually contains

* Corresponding author (email: panweike@szu.edu.cn, mingz@szu.edu.cn)

(© Science China Press 2026 info.scichina.com  link.springer.com


http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4568-7&domain=pdf&date_stamp=2026-1-27
https://doi.org/10.1007/s11432-024-4568-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4568-7
https://doi.org/10.1007/s11432-024-4568-7

Chen X Q, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 131101:2

fewer data, which are prone to the data sparsity or cold-start issues [6]. Besides, there is often more than one type of
interaction between users and items in real-world scenarios, such as examination, adding to cart, and purchase in the
setting of an e-commerce platform. Since each behavior can represent users’ unique preferences or perspectives on
items, utilizing heterogeneous behavior data can capture a more comprehensive picture of users’ behavior patterns
and intentions. As such, researchers turn to the study of multi-behavior recommendation (MBR) problems [6-10].
Different from the SBR problem, MBR provides personalized recommendations to users based on their heterogeneous
one-class implicit feedback, including users’ target feedback like purchase behaviors and auxiliary feedback such as
examinations and favorites.

Since the sequential nature of user interactions can reveal the user’s interest dynamics, recent studies sepa-
rately extend SBR and MBR to single-behavior sequential recommendation (SBSR) [11-15] and multi-behavior
sequential recommendation (MBSR) [16-18] by introducing the interaction sequentiality. The MBSR methods in-
troduce both behavior types and sequential information, which can uncover a more comprehensive picture of users’
dynamic preferences and intentions through proper modeling, thus bringing more desirable recommendation perfor-
mance gains than SBSR and MBR methods. Nonetheless, it correspondingly brings more new challenges, including
(i) sequence modeling of heterogeneous behavioral feedback, (ii) relationship modeling between user behaviors,
(iii) joint long-term and short-term preferences modeling, and (iv) existing noise, bias, and other related issues in
MBSR. We discuss the specific challenges in detail in a subsequent section.

To explore how existing studies address the new challenges of MBSR for personalized recommendations, we review
some relatively well-known studies and state-of-the-art studies from leading conferences and journals in this survey,
hoping to provide some guidance for future research on MBSR. Specifically, we categorize the existing studies on
multi-behavior sequential recommendation into traditional methods and deep learning-based methods. Traditional
methods consist of neighborhood-based methods and matrix factorization-based methods. For the former, we discuss
how to use the neighborhood information to solve the recommendation problem and extend existing methods from
SBSR to MBSR, while for the latter, we introduce the general idea of matrix factorization used in recommendation
problems and mainly introduce the typical study from the perspective of transfer learning. In deep learning-based
methods, we mainly focus on how to apply the ideas of deep learning to the MBSR problem, and describe the MBSR,
methods based on recurrent neural network (RNN), graph neural network (GNN), Transformer, generic methods,
and hybrid methods. Distinct from existing surveys related to sequential recommendation (SR) or MBR [19-21], we
further delineate the related studies of each deep learning framework from different data and modeling perspectives.
Moreover, we conduct experiments on real-world datasets to compare the recommendation performance of the
classical and state-of-the-art methods. Finally, we briefly discuss some future research directions and conclude the

paper.

As an emerging field of recommender systems, MBSR lacks specific relevant surveys. In order to provide a
comprehensive overview and enable researchers to keep abreast of the latest developments in MBSR, we conduct
a survey on this topic, in which we classify and compare various techniques and related studies. To the best of
our knowledge, ours is the first study to provide a comprehensive introduction and discussion of MBSR. The key
contributions of our survey are summarized as follows.

e We present an in-depth overview of the MBSR problem by discussing its background, problem definition,
application scenarios, and existing challenges. Additionally, we provide a comprehensive classification of the current
study on MBSR from three key perspectives: technique, data, and modeling.

e We provide a summary of the strengths and weaknesses of each technique employed, alongside a detailed
comparison and analysis of representative MBSR studies based on the provided classification.

e We provide experimental validation to compare the recommendation performance of different methods on two
real-world datasets.

e We propose valuable future research directions to address the challenges posed by MBSR.

The rest of the paper is organized as follows. In Section 2, we provide the background on MBSR, encompassing
four aspects, i.e., problem definition, application scenarios, challenges, and categorization. Then, in Sections 3 and
4, we present an outline of the prominent studies on MBSR in terms of traditional methods and deep learning-based
methods, respectively. In Section 5, we conduct experiments on two real-world datasets to explicitly demonstrate
the recommendation performance of different MBSR methods. In Section 6, we discuss some possible future research
directions for MBSR, and finally, we conclude the paper in Section 7.
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2 Preliminaries

Figure 1 (Color online) Illustration of MBSR.

2.1 Problem definition

The MBSR problem mainly focuses on the next item recommendation in a heterogeneous feedback sequence. We
assume that there is a set of users, i.e., U, a set of items, i.e., Z, and a set of behaviors (or feedback), i.e., F, in
the system. For the corresponding recommendation methods, the input is a set of (user, heterogeneous behavior
sequence) pairs, i.e., D = (u,S,), where u € U represents a user ID, and S, = {(iL, f1), ..., (i, ft), ..., (612!, £l
represents the historical interaction sequence between the user u and the items. In the sequence S, (i, f!)
represents the (item, behavior) pair composed of the item 4 and the corresponding behavior f interacted by the
user u at the tth time step, where i!, € Z and f. € F. We use time steps instead of timestamps since MBSR does
not generally introduce timestamps which represent precise time in modeling. Properly modeling the input data
can help learn the user’s preferences, as well as the representations and relationships of the items and behaviors.
Based on a typical recommendation method, we can predict the preference value 7, ; of the user u for any item
J € T at the (¢t + 1)th time step according to the most recent L historical interactions of user u before the (¢ + 1)th
time step, i.e., Sf, = {(i{ LT fmLAYy G O, (i, fD)), t < |Su|- We can then rank the preference values
fﬁsul Y1 of the user u for the candidate items j € Z as follows:

’fﬁsu\-ﬁ-l,j = g(] | fu(D))a (1)

where f, (D) denotes the multi-behavior sequential representation of user u obtained after modeling under a given
interaction data D, and g(-) denotes a function that measures the relationship between user u and candidate item j,
such as the dot product. Then, we can generate a top-K list of items for user u, which indicates the next items that
user u is most likely to interact with. We illustrate the general MBSR process in Figure 1, and show the commonly
used symbols and corresponding interpretations in Table 1, where we employ various font styles to denote diverse
types of notations, i.e., uppercase bold for matrices, lowercase bold for vectors, lowercase non-bold for scalars, and
copperplate for sets.

2.2 Application scenarios

In recommender systems, MBSR is a relatively new research hotspot, attracting extensive attention from both
academia and industry. In the industry, the related studies on MBSR are mainly applied to the click-through rate
(CTR) prediction tasks. CTR leverages historical (user, item) interaction information to generate a list of items for
recommendation to the user at the next time step. However, in contrast to SR in academia, the CTR task ranks items
by predicting user clicks on them, and tends to introduce more side information from users, items, and platforms into
the modeling, as well as strictly limits on the online latency rate. Thus, the data processing methods and models
used tend to be different from those in SR. Currently, MBSR is commonly encountered in many areas, varying from
e-commerce [22,23] and video recommendation [24,25] to news recommendation [26,27]. In e-commerce, researchers
predict the items that users are most likely to purchase by analyzing the multi-behavior sequential information
of their examinations, add-to-carts, favorites, and purchases [16,28,29]. In video recommendation, users generate
behaviors like examinations, shares, and others, where the sharing behavior can be used as the target behavior
type, and the examination behavior can be used as the auxiliary behavior type [30]. In news recommendation, users
may interact with news by explicit feedback (e.g., dislike) and implicit feedback (e.g., examination), allowing for
the incorporation of this feedback to infer their positive and negative preferences [31].

To better learn the real preferences of users, some research studies also take into account the dwelling time,
category information, and other fine-grained information in the MBSR problem [32-34]. Moreover, some studies on
MBSR focus not only on better capturing user preferences, but also on designing relevant multi-behavior sequential
recommendation algorithms in the context of user privacy protection issues. Importantly, MBSR methods also
consider the heterogeneous behavior information of users and the sequential information within or among the
behaviors, allowing for more useful information to be learned when modeling, which makes them closer to real
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Table 1 Some notations and explanations.

Notation Explanation
n User number
m Item number
R The observed set of (user, item, behavior) tuples
u User set
A Item set
F Behavior set
uelu User ID
i€l Item ID
ferF Behavior ID
Su The sequence of (item, behavior) pairs that user u has interacted with
Se The sequence examined by user u
Sn The sequence unexamined by user u
S The sequence that user u has liked
Sa The sequence that user u has disliked
it €T The item interacted by user u at the time step t (t € {1,2,...,|Su.|})
fler The behavior of user u at the time step ¢ (¢t € {1,2,...,|Su|})
U, € R¥*? The embedding of user u
V; € Rx? The embedding of item 4
Fy e REX1 The embedding of behavior f
ﬁfi The predicted preference of user u to item 7 at the time step t
fg,i,f The predicted preference that user u generates behavior f on item ¢ at the time step ¢
Em(-) The ID-to-embedding function
o) The sigmoid function
® The element-wise product function

recommendation scenarios. Hence, it is of great significance to design a recommendation algorithm for multi-
behavior sequential recommendation.

2.3 Challenges

The MBSR problem involves modeling both multiple behaviors and behavior sequences, contributing to the necessity
to consider the existing problems of MBR and SBSR, as well as how to integrate these two kinds of information
well. We present the main challenges of MBSR, and give a brief overview of how current studies address these
challenges. More details for each study can be found in Sections 3 and 4.

e Sequence modeling of heterogeneous behavioral feedback. In a traditional sequential recommendation prob-
lem [12,14], researchers mostly consider only a single type of behavior, ignoring the potential and importance of
other behaviors, especially in instances where the utilized data for the target behaviors is sparse. It indicates
that it is necessary to model the users’ multiple heterogeneous behaviors in the sequential recommendation prob-
lem. However, different from SBSR, the uncertainty of users’ intention due to heterogeneous behaviors makes it
more challenging to predict the users’ preferences in MBSR. Hence, it is a key and challenging issue to model
heterogeneous behaviors well in sequential recommendations without information loss. Existing studies model
heterogeneous behavior sequences in the following ways: modeling multiple behavior-specific item subsequences
separately and then fusing the output representations like DyMus [35] and multi-relational graph neural network
model for session-based target behavior prediction (MGNN-SPred) [30], encoding behavior types at the embedding
layer and fusing them with item representations as the input of sequential modeling like recurrent log-bilinear model
(RLBL) [16] and micro-behaviors and item knowledge into multi-task learning for session-based recommendation
(MKM-SR) [17], and distinguishing and fusing sequential representations of different behavior types by some specific
settings like behavior-specific channels in the network such as multi-behavior sequential Transformer recommender
(MB-STR) [18] and PBAT [36].

e Relationship modeling between user behaviors. In the MBSR problem, multiple behaviors of users are often
related to each other [32]. For example, on an e-commerce platform, users tend to examine an item and check the
reviews of the item before purchasing it, or purchase an item after examining and adding to the cart other items of
the same category. Different from MBR, which does not consider the sequential relationship of behaviors, MBSR
takes the sequential nature of various behaviors into account. For example, MBR treats both cases the same for
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users who examine first and then purchase and for users who purchase and then examine, whereas MBSR considers
the distinction between the two in modeling. According to the above issues mentioned, there are correlations and
transitions among different behaviors within a user-item interaction sequence, which is a great challenge in modeling.
Previous methods in modeling user behavior relevance mainly include the following: (i) modeling behavior transi-
tion patterns, such as setting up behavior transition matrices [37], constructing behavior-relation distributions [36],
and aggregating node-neighborhood representations based on different types of behavior transition [30, 38-40];
(i) introducing the target behavior to capture the contribution of different historical behaviors [41,42]; and
(iii) capturing the information similarities and differences of different behavior types through contrastive learn-
ing, multi-task learning, and partial network parameter sharing [18,43,44].

e Joint long-term and short-term preference modeling with heterogeneous behaviors of users. Most of the tra-
ditional recommendation algorithms statically model the interaction information between users and items [45-47],
which usually reveals users’ long-term stable preferences. However, they ignore the dynamic changes of users’
sequential behaviors in interactions with items. The dynamics of user preferences indicate the user’s current short-
term preferences [48], which can be revealed in the dynamically changing behavioral sequential information of the
user. Since the user’s interactive behavior information is a behavior sequence that naturally evolves over time, the
sequential information can dynamically display the user’s long-term stable preferences and short-term needs. How
to take the sequential information into account is the main challenge of SBSR. However, compared with SBSR, the
behavior heterogeneity of MBSR leads to an even greater challenge in modeling a user’s long-term and short-term
preferences simultaneously. Previous studies essentially split a user sequence into multiple subsequences, model
short-term preferences for each subsequence, and then aggregate the subsequence representations as the long-term
interests, where the subsequences can be of a particular length [16,49,50] or of a particular behavior type [51].

e Related issues such as noise and bias. Some previous studies regard unexamined behaviors and missing be-
haviors as implicit negative feedback of users, or simply ignore them [52-54]. However, unexamination does not
always represent a negative user preference [55], nor does an examination represent a positive user preference, where
there may be inadvertent examinations. As for bias, since most current recommender systems tend to utilize the
implicit feedback of users to make recommendations to them with the goal of more accurate item ranking, there
may be a selection bias in implicit feedback data (e.g., a user may examine on an item simply because it is ranked
highly). Currently, research on bias and noise remains limited. DMT [29] addresses implicit feedback bias using a
bias deep neural network, while some studies tackle implicit feedback noise through attention networks [31,56] or
feature orthogonal mapping [57]. As such, the possible noise and bias in MBSR deserve more attention.

2.4 Categorization

In accordance with widely adopted techniques in recommender systems [2,21] and considering the distinct tech-
nical characteristics among various approaches, methods employed for MBSR can be categorized at the technical
level into two paradigms: traditional methods and deep learning-based methods. Traditional methods primarily
encompass neighborhood-based methods and matrix factorization-based methods. With the continuous rise of ar-
tificial neural networks and deep learning in various fields in recent years, alongside the increasing complexity of
information (i.e., the necessity to model heterogeneous behavior information and behavioral sequential information
simultaneously), the majority of the current studies utilize deep learning-based methods for modeling to achieve
higher recommendation accuracy, while less emphasis is placed on traditional methods. As a result, we primarily
pay attention to the deep learning-based methods for the MBSR problem in this paper.

For deep learning-based methods, we review classical, state-of-the-art, and recent studies categorized by their
neural network architectures, including RNN-based, GNN-based, Transformer-based, generic-method-based, and
hybrid-method-based learning architectures, where the generic-method-based learning architecture with a flexible
framework can encompass any SR method, and the hybrid-method-based learning architecture makes a strategic
integration of complementary techniques to leverage their respective advantages. First, we introduce the basic
paradigm of each type of neural network architecture, and then discuss the related studies applied to the MBSR,
problem. In these studies, the loss functions used generally contain pointwise-based loss functions, such as logistic
loss [58] and square loss [59], and pairwise-based loss functions like BPR loss [5], as well as their combined or
varied loss functions. Second, we classify the related studies according to different data perspectives and modeling
perspectives under each neural network architecture, as shown in Figure 2. Specifically, the data perspectives
comprise four forms, namely a sequence of (item, behavior) pairs, some behavior-specific subsequences of items,
a behavior-agnostic sequence of items, and a sequence of behaviors; the modeling perspectives include both local
and global approaches; and some of the MBSR studies may integrate different data or modeling perspectives.
As for related studies with each neural network architecture, we discuss the strengths, weaknesses, features, and



Chen X Q, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 131101:6

ﬂi'i'i“ % P
> Some behavior-specific subsequences of items >
. = S »
feert \/QQ v —_ Click sequence QOOOO =) [ "g
- 5 =
; : 2
T e~~~ = 2 s
user ‘ o @ & - g &
! ser Q\/ W ;—:— Add-to-cart sequence Q\/OO\/ =) e
"""""" 2
7]
- - urchase seq e <
we O0O0OO® CO@0O L0
Time step
A sequence of (item, behavior) pairs o>
A behavior-agnostic sequence of items} = SR

Figure 2 (Color online) MBSR architecture in the fine-grained data and modeling perspectives. In terms of the modeling perspective, methods
for MBSR can integrate all user behavior sequences to capture global user preferences and behavior patterns, or model locally for a single user
sequence to capture personalized interaction patterns. When modeling each user behavior sequence, there are four forms of data inputs, i.e.,
a sequence of (item, behavior) pairs, some behavior-specific subsequences of items, a behavior-agnostic sequence of items, and a sequence of
behaviors. For each user behavior sequence, the MBSR architecture considers information in the dimensions of item, behavior type, and time
step, and reduces to MBR and SR when omitting the behavior information and the sequential information, respectively.
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Figure 3 (Color online) Categorization of MBSR methods.

some issues related to sequential heterogeneous information, such as considering more fine-grained information in
modeling (e.g., item category), and taking into account how to address noise and bias. We illustrate the above
detailed categorization in Figure 3, and further conduct experiments on two real-world datasets to illustrate the
effectiveness of some representative studies from different branches.

3 Traditional methods

3.1 Neighborhood-based methods

The neighborhood-based method [60] is an early method in recommender systems, which is mainly divided into
user-based collaborative filtering, item-based collaborative filtering, and hybrid collaborative filtering. In the idea
of user-based collaborative filtering, two users who have similar tastes in the past may also have similar tastes in the
future, while in the idea of item-based collaborative filtering, users may purchase items similar to those purchased
in the past. Hybrid collaborative filtering combines the ideas of the first two, and its prediction is a weighted
combination of them. Regardless of the form of neighborhood-based methods, the main core concept is similarity.



Chen X Q, et al. Sci China Inf Sci March 2026, Vol. 69, Iss. 3, 131101:7

However, defining the similarity is a matter of concern for MBSR.

3.1.1  Basic paradigm

In the case of implicit feedback data, the similarity between two items can be calculated using measures such as
the Jaccard index and the cosine similarity. Taking item-based collaborative filtering with the Jaccard index as an
example, the similarity between items k and j is calculated as follows:

U; N Uy |
— el 2
AT (2)

Sid’

where U; and U;» denote the set of users who have interacted with item 7 and item #’, respectively.
Based on the calculated similarity, we may select the top-K nearest item set A/ for each item ¢/, and then predict
the score according to the following formula:

fm-/ = Z Siit . (3)

€L, ﬁNi/

As the predicted rating of an item increases, the possibility that the user will be interested in it increases accord-
ingly. Although there is almost no work on MBSR using neighborhood-based methods, we introduce the bidirectional
item similarity (BIS) [12] for SBSR, to illustrate the idea of the use of similarity in sequential recommendation. It
is expected to have some possibilities and inspirations to solve the MBSR, problem.

3.1.2 BIS

BIS designs a bidirectional item similarity to perform the next-item recommendation task. The bidirectional item
similarity between items ¢ and i’ is defined as follows:

p)  uetinu, 0 (=l < (t—1') <) "
A |ul U uﬂ' )

sim

where £ and p are hyperparameters. In this equation, if the condition —pf < (¢t — t') < £ is satisfied, 6(—pl < (t —1)
< ¢) will be set to 1, so that the numerator will be added by 1 and the similarity between items ¢ and i’ will increase
accordingly. It is worth noting that when p is equal to 1 and ¢ — oo, the bidirectional item similarity degenerates
7~
predicting the preference score, BIS only considers the bidirectional item similarities of the last k items that user u
has interacted with.

Obviously, BIS and ABIS (adaptive BIS) [12], an improved version of BIS based on some factorization techniques,
can be extended to solutions for MBSR. For example, if we divide the input sequence into multiple behavior-specific
subsequences, we can easily apply BIS and ABIS for each subsequence. These neighborhood-based methods are
easy to maintain and more interpretable, but they are less able to capture user preferences and lack transitivity,
which means that two users will never be connected if they have not bought a common item. Moreover, ABIS only
considers the closest neighboring items in modeling, ignoring users’ long-term preferences and periodicity.

to Jaccard index, i.e., sim which does not take into account any sequential information. When

3.2 Matrix factorization-based methods

Although neighborhood-based methods may provide interpretability, their aforementioned disadvantages and lower
efficiency make them less applicable to MBSR. To address the problem of non-transitivity, matrix factorization is
proposed to connect users who have not purchased common items before [61,62]. There are also some SR studies
based on matrix factorization, including FPMC [11] and TransRec [63] for SBSR, and TransRec++ [37] for MBSR.
We can similarly extend FPMC and TransRec to MBSR versions simply by dividing a user sequence into multiple
behavior-specific subsequences. We will first introduce the basic paradigm of matrix factorization in recommender
systems, and then introduce TransRec++, which brings the idea of behavior transition on top of TransRec.

3.2.1 Basic paradigm

In recommender systems, the idea of matrix factorization is mainly reflected in transforming the (user, item)
interaction matrix into the inner product of two low-rank matrices, i.e., a user-specific matrix and an item-specific
matrix. Taking the rating matrix M € R™*™ formed by (user, item) interactions as an example, M is decomposed
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Figure 4 (Color online) Illustration of behavior transition.

into a user matrix U € R™** and an item matrix V € R"** 5o that each missing value (i.e., a predicted value)
Twi in the rating matrix can be obtained by multiplying the user embedding U, and the item embedding V;:

Fui = Uy - V' (5)

3.2.2  TransRec++

TransRec++ [37] introduces several behavior transition vectors to capture the sequential relationships between user
behaviors and their dynamics, and takes into account some recent preceding items which can learn the weights
automatically. The behavior transition vectors include four types, i.e., from examination to examination e2e, from
examination to purchase e2p, from purchase to examination p2e, and from purchase to purchase p2p, which we
illustrate in Figure 4.

In step ¢, the overall translation vector of user u to the target item 4!, is calculated by the following equation:

~ it t—4 -t
qu@)zu _ Uu + qu@)b(zu )2b(zu)’ (6)

where b(-) denotes the behavior type. To achieve a transition of item if~* to a future item i, in step ¢ for a user’s
sequence, the formula can be calculated as follows:

Ve 4 OO ~ Vi, 0=1,2,...,1L, (7)

t
where Vii—¢ and Vi: are the embedding vectors of item it-
defined as follows:

t

u?

¢ and item i!,, respectively. The prediction formula is

~

N w ~(£)it,
Fuit, = pit, — 3 (e + 1) || Voo + O™ = Vi |13, (8)
=1

where p;: is an item bias, and 7, 7y denote a global weight and a user-specific weight, respectively.

As one of the few matrix factorization-based solutions towards the next-item recommendation in MBSR, Tran-
sRec++ combines the ideas of Fossil [64] and TransRec [63] to address behavior heterogeneity well. The proposed
behavior transition can also be utilized in other deep learning-based approaches to reach better performance, such
as RIB [32] and behavior-intensive neural network (BINN) [28] that we will mention later. However, TransRec++
becomes more complex in modeling when there are more behavior types, and when it only contains two types of
behaviors, its time complexity is already five times that of the SBSR-oriented method TransRec. There may also
be noise in the modeling of behavior transition, e.g., e2e may be caused by the user’s inadvertent examination.

In summary, as a conventional approach, the matrix factorization-based recommendation algorithm has several
benefits, including high interpretability and computational efficiency. These algorithms employ a linear model,
which possesses a straightforward structure, and a clear association between the modeling concept and the problem
under consideration, leading to a higher degree of interpretability. The algorithms are computationally efficient as
the model has few parameters, and typically, only matrix multiplication operations are necessary for computation.
However, matrix factorization-based recommendation algorithms face challenges in handling non-linear features like
sequential information and higher-order neighborhood information.
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Figure 5 (Color online) Illustration of mainstream deep learning architectures for MBSR.

4 Deep learning-based methods

Due to the insignificant improvement in the recommendation effectiveness of matrix factorization-based methods,
researchers have turned to studying deep learning-based algorithms. Deep learning [65,66] is an improvement on
the traditional neural network, and a multi-layer perceptron (MLP) with multiple hidden layers is a typical deep
learning architecture. Deep learning has made substantial progress in a variety of application areas, including
natural language processing and generation [67, 68], speech recognition and synthesis [69], as well as computer
vision [70,71]. Recently, deep learning has gained increasing use in recommender systems, demonstrating high
recommendation performance in multi-behavior recommendation [72, 73], sequential recommendation [13,14], and
federated recommendation [74,75].

In MBSR, the deep learning networks primarily employed are RNN, GNN, and Transformer, as shown in Fig-
ure 5. RNN captures sequential information by maintaining a hidden state and processing inputs sequentially. It
performs well in sequence modeling with relatively low computational complexity, but faces the problems of gradient
disappearance and gradient explosion, which limit its ability to model long sequences. Additionally, the output at
any given time depends on the computations and outputs from the previous time step, resulting in inefficiency and
difficulty in predicting future sequence information. Furthermore, RNN struggles to explicitly model the complex re-
lationships between different behavior types. In contrast, GNN leverages directed graphs to capture item transition
relationships within sequences, and aggregates nodes and their neighbors’ information through a message-passing
mechanism to capture interactions among multiple behaviors in sequences. GNN can capture dependencies of differ-
ent behavior types and effectively cope with data sparsity, but it mainly focuses on the graph structure information,
and is weak in modeling temporal dependencies within sequences. Additionally, as the number of behavior types
increases, the complexity of the graph structure may rise, leading to increased computational complexity. Trans-
former utilizes self-attention mechanisms to capture sequence information, allowing it to weigh the importance of
all elements in the sequence simultaneously, which can effectively model both local and global dependencies. This
enables effective modeling of both local and global dependencies. Although Transformer has higher computational
complexity than the aforementioned networks, it is able to capture long-distance dependencies in sequences, and
possesses superior parallel computation capabilities, scalability, and interpretability. As a result, Transformers often
demonstrate outstanding performance in MBSR tasks involving long sequences. Moreover, designing hybrid models
that combine the strengths of different approaches, such as GNNs and Transformers, holds the potential to further
enhance performance.

As such, in this section, we mainly discuss the applications and the corresponding studies of deep learning in
MBSR in terms of different neural network architectures (i.e., RNN, GNN, Transformer, generic methods, and
hybrid methods). We present how different studies model sequentiality and heterogeneity in MBSR, and examine
whether these studies address any other specific challenges. Additionally, we distinguish between the different
applications of these studies, such as next-item, next-basket, and session-based recommendation, and discuss their
features, strengths, and weaknesses. This helps to establish a better understanding of the use of deep learning
techniques in MBSR.
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4.1 RNN-based learning architecture

4.1.1 Basic paradigm

RNN [76] is a classical deep learning method that can effectively process data with sequentiality. Currently, RNN
has been applied to numerous fields, including information retrieval, speech recognition, and machine translation.
Since RNNs can take into account the characteristics of sequences, they have also been utilized to solve the SBSR
and MBSR problems in early studies [14,16,32].

RNN contains multiple RNN cells, with its basic structure illustrated in Figure 5(a). In the RNN learning
architecture, the current time step receives the output of the previous time step as the input, and the output
obtained from the RNN cell will be used as the input of the next time step, so as to capture the sequential nature
of the data. Each cell of the RNN is a layer of a deep feedforward neural network, and a set of learning parameters
is shared across different time steps to capture sequential features and reduce the model complexity. The basic
formula of the RNN is as follows:

hy = 0 (Wywxy + Winhi—1 + by), ©)
'gt =0 (Whoht + bo) y (10)

where Wy, € R4 Wy, € R49%4 and Wy, € R?¥*? are the corresponding weight matrices, and by, and b, are the
corresponding bias vectors.

However, there is a certain challenge in the training process of RNNs, i.e., as the depth deepens, RNNs have
the problem of gradient disappearance or gradient explosion, and thus they are prone to difficulties in dealing with
the long-term dependency of data [77]. To address this issue, many derivative methods based on RNNs have been
proposed, among which the most well-known ones are long short-term memory (LSTM) [78] and gated recurrent
unit (GRU) [79], a simplified version of LSTM. Both LSTM and GRU set up a hidden unit in the hidden layer to
store long-term features, which enables them to address the issue of modeling long-term data dependency.

4.1.2 Methods in MBSR

There are some research on RNN-based neural network architectures for solving MBSR problems, which differ in
terms of the perspective of the input sequences and the perspective of modeling the behavior types. Specifically,
from the data perspective, most of the studies have an input sequence of (item, behavior) pairs, such as RLBL [16],
RIB [32], BINN [28], AIR [80], HUP [33], intention-aware recommender system (IARS) [34], and MAINT [81]. In
contrast, other studies have some behavior-specific subsequences of items, such as CBS [82], DIPN [83], DeepRec [84],
multi-behavior network (MBN) [44], and DyMus [35]. From the modeling perspective, DeepRec models a user’s
behavior types in the cloud from a global perspective and in the user’s own client from a local perspective, while
other studies mentioned above utilize a local perspective only to model the behavior types. We distinguish and
summarize these studies in Table 2 and describe some of them in detail as shown below.

RLBL. The RLBL [16] is the first work oriented towards next-item recommendation. RLBL integrates the
ideas of RNN and log-bilinear (LBL) to address the challenge of long-term and short-term preference modeling.
Specifically, RLBL uses behavior-specific transition matrices to distinguish between heterogeneous behaviors in a
user’s historical interaction sequence and splits the sequence into multiple windows. Then, RLBL captures the
short-term contextual information for each window by LBL, and finally integrates these features at the granularity
of the window by RNN to construct the user’s long-term contextual information.

In RLBL, each window contains a sequence of (item, behavior) pairs of length n, i.e., {(if "1, fi=nt1) . (i,
f&)}. Tn the pair (il,%, f1=%) of the sequence, RLBL uses an item embedding V;.—: € R?*! to represent the historically

rJu
it =" of user u, a behavior correlation embedding M fi-i € RX4 to represent the user’s behavior fL=¢
u

for item 4{ %, and a position transition embedding C; € R?*¢ to separately capture the position context information
of each position in the window (i, %, fi=%) ;i € {0,1,...,n— 1}. Hence, the hidden state h;41 at the (t+ 1)th time
step is calculated as follows:

interacted item

n—1

hip1 = WrisLhe ni1 + Y CiM i Vi, (11)
i=0

where Wiigr € R*? is utilized to capture the sequential information between the hidden state hi11 € R4*1 and
the hidden state h;_,, 11 € R%!. And then the predicted preference that user u generates behavior f on item i at
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Table 2 Data & modeling perspectives and features used in studies based on RNN learning architecture.

Studies Data perspective Model perspective Features

RLBL [16] A sequence of (item, behav- Local Model both short-term and long-term preferences; capture the influ-
ior) pairs ence of heterogeneous behaviors by utilizing a behavior correlation

matrix

RIB [32] A sequence of (item, behav- Local Leverage GRU and attention mechanism simultaneously
ior) pairs

BINN [28] A sequence of (item, behav-  Local Design the CLSTM and the Bi-CLSTM, where the behavior vector
ior) pairs is as the context in the LSTM

CBS [82] Some behavior-specific sub- Local Design of models with and without shared parameters for behaviors
sequences of items simultaneously, towards the next-basket recommendation

DIPN [83] Some behavior-specific sub- Local Leverage GRU and attention mechanism simultaneously; behaviors
sequences of items are specific, including swipe, touch, and browse interactive behavior

AIR [80] A sequence of (item, behav- Local Design an attentional RNN to model the user’s intention transitions,
ior) pairs introduce the category attribute

HUP [33] A sequence of (item, behav- Local Design the Behavior-LSTM, which adds a behavior gate and a time
ior) pairs gate to the LSTM, leverages the attention mechanism, and intro-

duces the category attribute

TARS [34] A sequence of (item, behav-  Local Propose Soft-MGRU (a multi-behavior gated recurrent unit) with
ior) pairs sharing parameters among behaviors, leverage attention mechanism;
introduce the category attribute

DeepRec [84] Some behavior-specific sub- Local + Global Utilizing multi-behavior sequence data to make privacy-preserving
sequences of items recommendations

MBN [44] Some behavior-specific sub-  Local The overall Meta-RNN and the separate Behavior-RNN share the
sequences of items learned potential representations by gathering and then scattering

towards the next-basket recommendation

MAINT [81] A sequence of (item, behav- Local Capture the user’s multifaceted intent through the target behavior
ior) pairs and a purchase- sequence, leverage attention mechanism; introduce the category at-
specific subsequence of items tribute

DyMus [35] Some behavior-specific sub- Local Capture both sequence-level and item-level dynamic correlations
sequences of items through dynamic routing

the (¢ + 1)th time step is calculated as follows:
Fearif = (Rig1 + Uu)T M,V;, (12)

where U, € R?*! is the user embedding, and h;,; € R%*! is the representation incorporating the long-term and
short-term preferences of user u.

RLBL and its extended version TA-RLBL [16], which considers continuous time differences, can model the
short-term context information well with the consideration of the sequential and heterogeneous nature of user
behaviors by RNN and behavior-specific matrices, respectively. However, the modeling of user behaviors is relatively
straightforward, and there are some important issues that are overlooked. For example, the transition matrix is the
same for all users, and it does not take into account the feature information of the items.

RIB. An interpretable recommendation framework from the micro behavior perspective (RIB) [32], another
classic work towards next-item recommendation, models heterogeneous behaviors and dwell time to capture more
fine-grained user information using GRU. Specifically, RIB takes a sequence of (item, behavior) pairs as input, taking
items and behaviors encoded as item embeddings and behavior embeddings via an embedding layer, respectively.
Then the embedding e; € R24*! is obtained by concatenating the above two embeddings and fed into a GRU layer
to obtain the hidden state at each time step. The calculation equations of the reset gate r; € R%*! the update gate
z; € R¥™1 the internal state ¢; € R?! and the external state h; € R¥*! at the tth time step in GRU are shown
below:

re =0 (Weer + Withi_q), (13)
zi =0 (Weep + Wishi_1), (14)
¢; = tanh (Wecer + Whe (71 - hi—1)), (15)
hi = (1 —z¢) hi—1 + zicy, (16)

where We,, We,, Wee € R¥>*24 and Wi, Wi, Wy € R¥? are the learnable weight parameters inside GRU.
Then the hidden state is passed into an attention layer to get the attention score for each time step. Finally, in the
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output layer, the hidden states of each time step are multiplied with the corresponding attention scores, where the
results are added to obtain a latent representation for predicting the user’s preference value for an item.

Similar to RLBL, RIB introduces different behavior information into the input side of the RNN (in this case
GRU), but the difference is that RIB uses an embedding matrix to represent multiple behavior information, where
each behavior corresponds to an embedding vector. RIB also uses an attention layer to capture the importance of
different behaviors, and in the original paper, the modeling of dwell time was also considered. Nevertheless, RIB
may capture limited real user behavior information since it uses an embedding matrix to represent behavior types
and then concatenates them directly with the item embedding.

BINN. BINN [28], based on LSTM, models users’ long-term and short-term preferences to improve the next-item
recommendation performance. BINN takes a sequence of (item, behavior) pairs as input and models each sequence
from a local perspective. BINN contains two modules: session behaviors learning (SBL) to model a user’s current
consumption motivation, and preference behaviors learning (PBL) to learn the user’s historical stable preference.
In SBL, a context-aware LSTM (CLSTM) incorporating the behavior information as input is built, whose input
gate t;, forgetting gate f;, output gate oy, internal state ¢;, and external state h; at the tth time step are as follows:

i = o(WyiVie + Whihi1 + Weici—1 + WhiFye + by), (17)
Jo = oc(WutVie + Wiehy 1 + Wepep 1 + Wi Fye + by), (18)
ci = fici—1 + i tanh(WieVie + Wichy 1 + Wi Fye + be), (19)
or = o(Wyo Vit + Whohi—1 + WinathrmeoCt + WhoFyt + bo), (20)
h; = o, tanh(c¢,), (21)

where W) € R%>4 are the internal model parameters of the LSTM. Then the output h; at the last time step
t can be served as the user’s current consumption motivation representation hgpr,. In PBL, BINN adopts a
bidirectional CLSTM (Bi-CLSTM) which considers both forward and backward input sequences to obtain the long-
term preference representation hppgr,. By concatenating hgpy, with hppy,, the obtained representation is utilized to
make predictions and generate recommended items.

BINN proposes a novel gating structure, consisting of Bi-CLSTM and CLSTM, which enables the memorization
of multi-behavior information in sequences. In contrast to RLBL and RIB in how to introduce multi-behavior
information, BINN modifies the internal structure of the LSTM by feeding the behavior embedding matrix into the
Bi-CLSTM and CLSTM to make it suitable for multi-behavior sequences. However, the limitations of BINN are
similar to those of RIB, as both introduce behavior embedding matrices in the input layer only, which may result
in the loss of latent behavior information and the inability to capture dependencies among behaviors.

TARS. TARS [34] is also a work that incorporates the item category to perform the next-item recommendation
task. TARS consists of four blocks in total, which are an RNN-based encoder for perceiving user intent, and three
decoders, i.e., a judgment or prediction task based on user intent, so as to learn the complex and co-existing intent
of the user. Specifically, the encoder takes a sequence of (item, behavior, category) tuples as input, adopts a local
modeling perspective, and processes the behavior types through multiple multi-behavior GRU units (MGRUS) to
capture multiple intentions of the user. Note that we only discuss Soft-MGRU, one type of MGRU, for its lower
spatial complexity and better performance by sharing the same set of parameters among different behaviors. After
an embedding layer, the item embedding, category embedding, and behavior embedding are fed into Soft-MGRU
to obtain the hidden state h; at the time step t.

Soft-MGRU encodes the dependencies of items in multi-behavior sequences and obtains hidden states that char-
acterize user intentions. It takes into account item categories and utilizes an attention network to capture the user’s
purchase intention for candidate items. The introduction of multi-behavior information is also achieved through
the GRU’s input, which concatenates the behavior embedding, the item embedding, and the category embedding.
However, the behavior embedding only participates in the computation of the reset gate and update gate, which
only addresses the challenge of sequence modeling for heterogeneous behavioral feedback, failing to capture the
global behavior dynamics and the relationships among different behaviors.

MBN. MBN [44] models multi-behavior sequences towards the next-basket recommendation problem. The
MBN architecture is composed of three modules, i.e., basket encoder, meta multi-behavior sequence encoder, and
recurring-item-aware predictor. Specifically, the basket encoder converts the item representation e, to the basket
representation of the items Ef:_t by a max pooling method. In the meta multi-behavior sequence encoder, multiple
behavior-specific subsequencesrof items are taken as input and go through Behavior-RNN layers to learn behavior-
specific information, which is local in the perspective of modeling. In addition to the Behavior-RNN layers, this work
also proposes a Meta-RNN layer to learn the collective knowledge of multi-behavior sequences. Then, a gathering-
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scattering scheme is utilized to correlate the Meta-RNN layer and the Behavior-RNN layer. The representations
learned by the Behavior-RNN layer are gathered to the Meta-RNN layer to learn the collective knowledge of multi-
behavior sequences, and then the representations learned by the Meta-RNN layer are scattered to the individual
Behavior-RNN layers to calibrate behavior modeling. In the recurring-item-aware predictor, a mixed probabilistic
function in the generate mode and the repeat mode is proposed to predict the probability of each item in the next
basket, which can simulate the distribution of items with biased repetition.

MBN introduces a method of gathering and then scattering to fuse and assign the learned multi-behavior informa-
tion to different Behavior-RNN layers at the Meta RNN layer, which is a more explicit way to model intra-behavior
and inter-behavior sequential information. In addition, any type of user behavior can be treated as the target
behavior type. Nonetheless, as the number of behavior types increases, the number of behavioral RNN layers and
associated parameters also increases, resulting in heightened computational complexity. Moreover, the division of
the item basket in MBN is based on the time span, which may not align with the real-world scenario of purchasing
a basket of items at the same time.

In addition to the above studies, several efforts employ RNN-based learning architectures to model the sequen-
tiality and heterogeneity of user behaviors. CBS [82] models longer sequences rather than short-term dependencies
for the next-basket recommendation problem with the use of an LSTM with or without shared parameters for each
of the two behaviors (or the representation obtained from the embedding layer directly for the target behavior
sequence). AIR [80] introduces item categories and proposes an attentional RNN to model the user’s intention
transitions. DIPN [83] employs a GRU and a hierarchical attention mechanism to effectively capture heterogeneous
user behaviors and utilizes a multi-task module to capture short-term and long-term purchase preferences. HUP [33]
utilizes the attention mechanism, and designs LSTMs with the addition of behavior gate and time gate at the micro-,
item-, and category-levels to capture different granularities of information from session-based recommendation. In
terms of federated recommendation, DeepRec [84] applies a GRU on the historical interaction data of all users on the
cloud. The model is then pushed to users’ devices, which makes it possible to fine-tune it for individuals to obtain
a personal recommendation model for each of them. MAINT [81] models the input interaction sequences through
a novel LSTM, which adds behavior specifics in the gates, and utilizes an attention mechanism to extract users’
multifaceted preferences guided by the target behavior type (i.e., purchases) sequence, as well as adaptively fuses
these intentions through a gating mechanism. DyMuS [35] encodes each behavior-specific subsequence of items
by dynamic GRUs and incorporates the obtained information by dynamic routing at the sequence level to cap-
ture the user’s dynamic preferences, and its improved version DyMus+ leverages dynamic routing again to encode
each behavior subsequence at the item level to capture the correlation between items within the behavior-specific
subsequences.

In summary, the RNN-based learning architecture is suitable for sequence problems and can store short-term
memories, but suffers from the gradient disappearance and gradient explosion problems. In addition, RNN is
inefficient and has difficulty in predicting information about future sequences since the output of the current moment
depends on the computation and the output of the previous moment. At present, the industry rarely leverages RNN-
based learning architecture for recommendations.

4.2 GNN-based learning architecture

GNNs [85,86], which are utilized to extract features, are a widespread technique in recent years, and there have
been many excellent graph neural network models, including GCN [87], GraphSAGE [88], and GAT [89]. They can
fully exploit the higher-order neighbor information of nodes and perform well on recommender systems.

4.2.1 Basic paradigm

In general, graph neural network models use graph convolution to allow nodes to obtain information about their
neighbors. To make the procedure more specific, an example is shown in Figure 5(b), which depicts four nodes,
labeled as nodes 1, 2, 3, and 4. Node 1’s first-order neighbors are nodes 2 and 3. During the first-order graph
convolution, the embeddings of nodes 2 and 3 are aggregated into the embedding of node 1. In the second-order
graph convolution, node 3 is a neighbor of node 4. Since node 3 has already obtained information about node 4
in the first-order graph convolution, node 1 is able to obtain information about its second-order neighbor, node
4, during the second-order graph convolution. This allows the graph convolutional network to effectively utilize
information from higher-order neighbors of nodes.
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Table 3 Data & modeling perspectives and features used in studies based on GNN learning architecture.

Studies Data perspective Model perspective Features
MGNN- Some behavior-specific sub- Global Modeling behaviors from behavior transition relations, contain-
SPred [30] sequences of items ing homogeneous behavior transitions intra each kind of behavior-

specific subsequences

DMBGN [90] Some behavior-specific sub- Global Focus on the task of voucher redemption rate prediction and model
sequences of items the relationship between multiple behaviors and vouchers effectively
GNNH [91] Some behavior-specific sub- Local + Global Capture both representations in sequential and non-sequential pat-
sequences of items terns to capture dynamic interests in a session, introduce the cate-

gory attribute, leverage attention mechanism

GPG4HSR [38] A sequence of (item, behav- Local + Global Learn various behavior transition relations from the global graph
ior) pairs and the personalized graph, respectively

BGNN [39] Some behavior-specific sub-  Global Construct directed graphs for different behavior transition (homo-
sequences of items geneous and heterogeneous) information

BA- Some behavior-specific sub- Global Construct directed graphs for different behavior-specific sequences,

GNN [92] sequence of items respectively

GHTID [93] A sequence of (item, behav- Local + Global Construct both global and local item-item graphs, mitigate the noise
ior) pairs caused by auxiliary behaviors, leverage attention mechanism

4.2.2 Methods in MBSR

In MBSR, there are lots of studies achieving considerable recommendation performance based on GNN, such as
MGNN-SPred [30], deep multi-behavior graph networks (DMBGNSs) [90], GNNH [91], global and personalized graphs
for heterogeneous sequential recommendation (GPG4HSR) [38], behavior-aware graph neural network (BGNN) [39],
BA-GNN [92], and GHTID [93]. We describe some of them in detail below, and summarize the data perspective,
the modeling perspective, and the characteristics of these studies in Table 3.

MGNN-SPred. MGNN-SPred [30] also utilizes GNN to model multi-behavior sequences in session-based rec-
ommendation scenarios from a global modeling perspective.

First, MGNN-SPred treats the multi-behavior sequences S, and S, as some sequences of behavior-specific items,
and constructs a global graph from all the training sequences, where the nodes represent items, and the edges have
two attributes, namely, purchase edges and examination edges. For example, the purchase edge of item a and item
b means a user purchases item a and then purchases item b. For each node v, we can obtain four types of neighbor
node subsets, i.e., Npy(v), Net(v), Np—(v), and Ney (v). For example, Ney(v) and Ne_(v) denote the incoming
edges and outgoing edges of the node, which is treated as an examined item, respectively. The concrete forms of
the neighbor node subsets of the node v are as follows:

Npi(v) ={v" | (v = v, purchase) € £}, (22)
Net(v) ={v" | (v — v, examination) € £}, (23)
Np—(v) ={v" | (v — v/, purchase) € £}, (24)
Ne—(v) = {v'| (v — v/, examination) € £}, (25)

where £ denotes the edge set. Second, for a target item v, the k-level aggregated representations of four different
neighbors (taking N (v) as an example) and the node representation h* obtained from the final iteration can be
calculated as follows:

k—1
ph o N P (26)
Py N+ (V)]
hE=hEt 4 hb 4 hE 4+ RE L+ RE (27)

where h* € R¥! and h% € R?*! denote the kth step and the last step of the item v representation in GNN,
respectively. hX is used as the corresponding item potential representation. Third, it treats the sequences as some
behavior-specific subsequences of items and obtains the user’s examination preference and purchase preference by
aggregating all item potential representations of the examination sequence and the purchase sequence, respectively.
The final preference representation is obtained after feeding the above two preferences to a fully connected layer
and a gated network.

MGNN-SPred is a simple but effective method for GNNs to be directly applied to MBSR. By constructing a
graph, the sequential occurrence relationships of different behaviors are reflected in the graph, allowing aggregation
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among different behaviors and enhancing their informational capability. Moreover, as the first model distinguishing
behavior sequences individually before passing them through the gated neural network, MGNN-SPred effectively
captures both intra-behavior and inter-behavior information, ensuring a well-balanced information representation.
Due to these advantages of MGNN-SPred, some of the subsequent MBSR studies make improvements based on
it [39,40,92]. For example, the improvement of BA-GNN [92] over MGNN-SPred is that BA-GNN constructs
separate graphs for different behavior sequences, and utilizes GG-NNs [94] and a sparse self-attention mechanism
to address the noise effect in the examination sequence, thus better capturing the information in multi-behavior
sequences.

DMBGN. DMBGNs [90] focus on the task of voucher redemption rate prediction in the session-based recom-
mendation scenario. It utilizes GNNs to model users’ long-term voucher redemption preferences from a global
perspective.

First, it treats the multi-behavior sequences S, and Sypq as some sequences of behavior-specific items, and divides
them into four parts, i.e., S}, Sic, S;’;d, and S, ;. For example, the sequence S} . means that the behaviors of add-
to-cart happen before the behavior on the voucher, while the sequence S;;. means that the behaviors of add-to-cart

atc
happen after the behavior on the voucher. Sjt., S-., ST  and S “.q are connected to the central voucher node by

atcr “atcr “ord? o

the closest items from the temporal perspective. We obtain four sub-graphs in the end, i.e., atc,, atc_, ordy, and
ord_. Second, the four sub-graphs constructed above are fed into GNN with the Weisfeiler-Leman algorithm [95],
separately. The representations of the four sequences S, Siic, S(')’;d, and S, are concatenated and processed
through MLP. Then, the final UVG embedding is generated by concatenating the output of the MLP function and
the embedding of the central voucher node, and the score for the historical UVG is obtained by the dot-product
between the two representations. Finally, the representation of the embedding calculated from the target UVG
component is enhanced via an attention network.

GNN can model the relationship between multiple behaviors and vouchers effectively. In building the graph, it is
also reasonable that the coupon node is only connected to nodes of other behaviors that are temporally close, which
improves the relationship between temporally close nodes and the coupon. Furthermore, DMBGN incorporates all
historical sequences into the GNN network, thus proficiently capturing users’ long-term preferences. The output
of these past sequences is subjected to attention, together with the output of the current sequence, effectively
enhancing the information representation of the current sequence.

GPG4HSR. GPG4HSR [38] simultaneously considers the transition relationships between different behaviors
and local contextual information, thereby improving the next-item recommendation performance. GPG4SHR fo-
cuses on two types of behaviors, i.e., examinations and purchases, and takes a sequence of (item, behavior) pairs
as input to model all sequences and each sequence from a global and local perspective, respectively. Specifically,
GPG4HSR first feeds the input into an embedding layer to obtain the item embedding v;:, the behavior embedding
Fye and the position embedding p; of the item ' interacted by the behavior type f* at the time step ¢. Then the
embeddings are introduced to a global graph layer and a personalization layer to capture the transition patterns
between behaviors and users’ intent considering adjacent contextual information, respectively. In the global graph
layer, the input is the global node v;+ of each item of a sequence (abbreviated as v) and all the edges linked to it in
the global graph, where there are six edge types to distinguish specific behavior transitions, (i.e., e2e, p2p, e2p+,
e2p—, p2e+, and p2e—) that considers the transition directions (inward or outward) between different behaviors on
top of TransRec++. The corresponding neighbor node subsets are N eae (v), Npop(v), Neap+(v), Neap— (v), Np2et (v),
and Npze—(v). The final generated neighbor group and behavior transition-specific representation are as follows
(take e2p+ as an example):

Neapt-(v) = {(v', freq) | (v — v, freq, e2p+) € &}, (28)

he2pt — Z(U/,freq)eNegp+(v) freq X vy
v

29
Z(v’,freq) ENezp+(v) freq ( )
where v, is a concise representation of the node v’ linked to the node v, freq € R represents the frequency of the
corresponding edge. Then the global graph representation hY of the node v can be represented as the sum of the
node representation with the weighted representation of all behavior transition representations.

In the personalization graph layer, the input contains the item embedding and the behavior embedding of the
node v, i.e., (v, + F,), as well as the inward and outward attributes of node-connected edges, which can learn the
importance of different behaviors and the adjacent context information, thereby capturing users’ intent. The final
graph representation h, of the node v obtained by fusing the global graph representation h¢ and the personalized
graph representation hy:

hY=v,+ F,+h} +h,, (30)
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where v, = 0 (Wy, [hY; h%]). The final graph representation of the sequence h,, can be obtained by concatenating
the graph representation of the corresponding nodes of the sequence, and then passed into a dropout layer and
stacked self-attention blocks same as SASRec [15], together with the corresponding position embedding. The
obtained representation is concatenated with the target behavior vector and fed into a softmax function to obtain
the user’s predicted preference value for the items.

GPG4HSR constructs both a global graph and a personalized graph, where the global graph is used to capture
the relationships among heterogeneous behaviors, and the personalized graph is used to enhance the contextual
representation of a single user’s multi-behavior sequence for a better comprehension of the user’s preferences. In
addition, the graph construction has the time complexity O(|R|), where R denotes the set of user-item interactions,
which makes it more efficient. Nevertheless, as the number of behavior types increases, the number of behavior
transition relationship types also increases, which increases the complexity of graph construction. Moreover, the
multi-order behavior transition relationships, which typically optimize performance, can pose challenges in modeling.

BGNN. BGNN [39] distinguishes between two different behavior sequences by utilizing a dual-channel learning
strategy for the session-based recommendation. BGNN takes an examination sequence and a purchase sequence
as input, and models the heterogeneous behavior transitions to obtain the semantic connections between diverse
behaviors by two global graphs, i.e., homogeneous behavior transition graph (HoBTG) and heterogeneous behavior
transition graph (HeBTG), so as to improve the recommendation performance.

Specifically, BGNN sends the examination sequence and the purchase sequence into the auxiliary channel and
the target channel, respectively. In the target channel, the item representation is learned in the purchase se-
quence through HoBTG, which is basically equivalent to the modeling of the behavior transition relationship of
MGNN-SPred. The auxiliary channel consists of three modules to learn the item presentation of the examination
sequence. The first module directly uses homogeneous behavior transition in the target channel to obtain potential
representation; the second module adaptively adjusts the contributions of different neighbors of nodes through an
attention mechanism to learn the purchase-oriented item representation; and the third module is for representation
aggregation, which is the representation of items obtained by balancing the above two modules by gathering. After
obtaining the item presentation matrices of the examination sequence and the purchase sequence, the matrices are
sent to an attention network separately and then fused together. Finally, the user’s preference value for the item is
obtained through a prediction layer.

BGNN constructs graphs that explicitly capture two behavior transition patterns of homogeneous and heteroge-
neous ones, and utilizes these graphs in the auxiliary behaviors to capture the contribution of the auxiliary behaviors
to the target behaviors, thereby improving the user’s next preferred item prediction under the target behaviors,
though its training time is about 1.4 times that of MGNN-SPred. However, BGNN encounters difficulties in the
setting of more behavior types, i.e., the transition relationships between behaviors become more complex with an
increase in the number of behavior types, and additional graphs may also need to be constructed, thus increasing
the complexity of the algorithm.

Apart from the above studies, there are some other studies utilizing GNN to address the MBSR problem.
GNNH [91] treats behavior types and categories as features, constructs multi-relational item graphs and feature
graphs from a global view, and further learns and fuses item and feature representations through GNN and attention
mechanism from a local view for session-based recommendation. GHTID [93] constructs a local item-item transition
graph and a global item-item co-occurrence graph, utilizing GCN to learn heterogeneous item transitions, and learns
long-term and short-term interests under target behaviors through the attention mechanisms, thus mitigating the
noise caused by auxiliary behaviors.

In summary, by constructing the user-item graph, GNN can be easily applied to the recommendation methods.
For each graph node, the aggregation of neighbors’ information allows each behavior to obtain information about
other behaviors that occurred close in time. The recommendation performance is obviously enhanced by the
information enhancement of the neighbor nodes. In comparison to RNN, GNN has the ability to model more
complex relationships within multi-behavior sequences and possesses stronger capabilities to handle data sparsity.

4.3 Transformer-based learning architecture

The Transformer model [96], a deep learning architecture that utilizes a self-attention network to reduce the compu-
tational complexity and thus enhance the training speed, has gained wide recognition in recent years for its superior
performance in sequence-to-sequence modeling. This model has been utilized in a wide range of research areas,
including natural language processing [97,98], computer vision [99,100], and recommender systems [29,42,56].
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Table 4 Data & modeling perspectives and features used in studies based on Transformer learning architecture.

Works Data perspective Model perspective Features

DMT [29] Some behavior-specific sub- Local + Global Use the target item as a query, consider implicit feedback bias by a
sequences of items bias deep neural network

DFN [56] Some behavior-specific sub- Local + Global Use the target item as a query, consider implicit negative feedback
sequences of items noise by an attention network

ASLI [101] A sequence of (item, behav- Local The addition of category and behavior embeddings is modeled as an
ior) pairs interaction representation, on which a corresponding loss function is

defined

DUMN [57] Some behavior-specific sub- Local Consider implicit feedback noise, use a memory network to obtain
sequences of items the long-term user preference

FeedRec [31] Some behavior-specific sub- Local + Global Consider implicit feedback noise by an attention network, consider
sequences of items and a se- multiple patterns of the multi-behavior sequences
quence of (item, behavior)
pairs

NextIP [41] Some behavior-specific sub- Local + Global Treat the problem as the item prediction task and the purchase pre-
sequences of items and a se- diction task, consider multiple patterns of the multi-behavior se-
quence of (item, behavior) quences
pairs

MB- A sequence of (item, behav- Local A novel positional encoding function to model multi-behavior se-

STR [18] ior) pairs quence relationships

FLAG [42] A behavior-agnostic  se- Local + Global Model user’s local preference, local intention, and global preference
quence of items and a simultaneously

sequence of behaviors

ITE [102] A sequence of (item, behav- Local Conduct implicit to explicit modeling by distinguishing behaviors
ior) pairs as explicit and implicit based on the strength of user preferences
expressed by the behaviors, introduce the category attribute

DMBIN [103] Some behavior-specific sub- Local Enhance the differences and consistency across behaviors by two
sequences of items contrastive learning tasks, i.e., multi-behavior contrast and multi-
behavior alignment

PBAT [36] A sequence of (item, behav-  Local Utilize Gaussian distribution to define entities and relations in multi-
ior) pairs behavior sequences

MBSRec [104] A sequence of (item, behav- Local Design a simple, efficient, and effective attentive model, along with
ior) pairs a weighted behavior-specific loss

4.3.1 Basic paradigm

The basic architecture of the Transformer model is depicted in Figure 5(c). It consists of two modules: the encoders
and the decoders. In this discussion, we focus on the encoders. The most crucial component within the encoder is
the multi-head self-attention component. This component comprises several self-attention subcomponents, which
are widely used in recommendation models. We specifically examine the self-attention component by considering
the representation of an examination sequence S,. The calculation of the self-attention component is as follows:

Qi =Em(Se)WF, K;=Em(S.)W/X, V,=Em(S.)W,), (32)
TK.

head; = softmax (M) Vi, (33)
Vdy

F, = concatenate (head,, . .., head;) WO, (34)

where Em(S,) € R%*4, Wl-Q € Rixde WK ¢ Rixdt WYV ¢ RIXd: and WO € R" X4 are the projection matrices.
ne is the length of the sequence S,, d; is the dimension of K;, and F, is the output of the self-attention component.

4.3.2 Methods in MBSR

In MBSR, there are some studies obtaining great recommendation performance based on Transformer, including
DMT [29], deep feedback network (DFN) [56], ASLI [101], DUMN [57], FeedRec [31], next-item prediction and
purchase prediction (NeIP) [41], MB-STR [18], FLAG [42], ITE [102], DMBIN [103], PBAT [36], and MBSRec [104].
We describe some of them in detail below, and summarize the data perspective, the modeling perspective, and
characteristics of these studies in Table 4.

DMT. Deep multifaceted Transformers (DMT) [29] utilizes a multi-gate mixture-of-experts (MMoE) approach,
a multi-task learning technique, to enhance the performance of both CTR and click value rate (CVR) predic-
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tions. Furthermore, it employs the Transformer model to analyze multi-behavior sequences from a local modeling
perspective.

First, it treats the multi-behavior sequences as some sequences of behavior-specific items and inputs those into
the encoder of Transformer. Take the examination sequence as an example, and the formula is as follows:

F, = Encoder (PE (Em(S,))), (35)
E, = Decoder(F,, PE(V/*"#")), (36)

where PE(-) is the positional encoding function, and it explicitly represents the sinusoidal positional embedding or
the learned positional embedding [15,96] in DMT. V;targﬂ is the embedding of the item to be predicted and one
of the inputs for the decoder of Transformer. Second, E., E,, and E, are concatenated and flattened with the
normalized dense features gathered from the recommender systems and the target item embedding V;***#**. Third,
the multi-task training model MMOoE is used to improve the performance of both CTR and CVR prediction. In
particular, DMT considers bias in implicit feedback, such as position and neighboring bias, and utilizes a deep
neural network with the ReLLU function.

DMT uses a Transformer with unshared parameters to capture the relationships within each behavior and subse-
quently feeds the different behavior features into the MMoE module, lacking the explicit modeling of the relationships
between the different behaviors. A bias deep neural network is proposed for modeling implicit feedback bias, which
is a good modeling solution.

DFN. DFN [56], another work for CTR prediction in ads, models multi-behavior sequences utilizing Transformer
from a local modeling perspective and three modules commonly used in industry, i.e., a wide component, an FM
component, and a deep component. We can draw a comparison between DFN and DMT [29]. First, like DMT, DFN
employs a Transformer architecture with unshared parameters to capture the relationships within each behavior. It
treats multi-behavior sequences as a series of behavior-specific items and inputs them into a multi-head self-attention
mechanism. Second, DFN also takes into account the implicit feedback noise. Unlike DMT, DFN leverages the
attention mechanism to explore the relationship between different behaviors, which can be advantageous. Note
that the implicit negative feedback, i.e., the unexamination sequence S, is abundant in real life but contains noise.
As such, DFN uses implicit positive feedback f. and explicit negative feedback fgq to denoise the implicit negative
feedback by an attention network. The formula is as follows:

Fae = attention(Em(S,), fe), (37)
fna = attention(Em(S,), fa), (38)

where f. € R and f; € R'*? are the keys, and fu. € R'*? and f,q € R*9 are the outputs of the two attention
networks, respectively. Finally, fo, fa, fu, fuc, and fnq are concatenated and fed in the three modules commonly
used in industry mentioned above with other features, i.e., item features, user profiles, and recommendation contexts.

In addition to DFN, two other studies also denoise the implicit feedback by an attention network with the help of
the explicit feedback, the first of which, DUMN [57], also utilizes a memory network for modeling users’ long-term
preferences to perform the CTR prediction task, while the second work FeedRec [31], a work focusing on news
recommendation, uses Transformers with shared and unshared parameters to perform user modeling.

NextIP. A dual-task learning approach towards the item prediction task and purchase prediction task (Nex-
tIP) [41] utilizes the self-attention mechanism to model multi-behavior sequences from a local modeling perspective
and performs the next-item recommendation task. Unlike other methods, NextIP simultaneously treats the multi-
behavior sequences as some sequences of behavior-specific items and a sequence of (item, behavior) pairs. Specifi-
cally, NextIP treats the multi-behavior sequential recommendation problem as two tasks, i.e., the item prediction
task and the purchase prediction task.

In the item prediction task, the embeddings of behavior-specific and behavior-aware item sequences are entered
into the self-attention block (SAB). Subsequently, NextIP proposes the target-behavior-aware context aggregator
(TBCG) to fully model the interplay of different behaviors at different times. Specifically, TBCG takes the represen-
tations of the most recent interaction for behavior-specific subsequences as keys and values, takes the user’s target
behavior embedding as a query, and inputs those into the attention module and mean pooling function with the
target behavior representations from the behavior-specific subsequence representations. Finally, the item prediction
result is calculated by the inner product between the target item embedding and the representation added by the
output of TBCG and the most recent interaction representation of the behavior-aware sequences.

In the purchase prediction task, the user’s behavior sequence embeddings are input into the behavior-aware
self-attention block, masked depending on user behavior types and behavior distance. Fach auxiliary behavior
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representation from the output of the behavior-aware self-attention block is treated as a negative sample to model
the user purchase preference.

In summary, NextIP proposes a new perspective on this multi-behavior sequential recommendation problem by
framing it as both an item prediction and a purchase prediction task. This new perspective offers a fresh outlook
on the issue at hand, allowing for more accurate and efficient solutions. Moreover, NextIP considers multiple input
patterns of the multi-behavior sequences and uses the self-attention network to model multi-behavior sequences
with good performance. The contrastive loss function used to train the model also contributes to recommendation
performance.

MB-STR. MB-STR [18] utilizes a Transformer to model multi-behavior sequences from both global and local
modeling perspectives, to address the next-item recommendation problem. MB-STR treats the multi-behavior
sequence as a sequence of (item, behavior) pairs and feeds it into the multi-head self-attention network, which
considers the sequential pattern and distinguishes it based on the types of behavior. Then, a parameter-shared
network like MMoE is used to model the behavior-specific information, denoted as a behavior aware prediction
(BA-Pred) module. BA-Pred includes two parts, i.e., the parameters-shared experts and the behavior-specific
experts, where the latter are shared for the representations of the same behavior type.

In summary, MB-STR employs a range of behavior-specific parameters to represent diverse behavior sequences
at a fine-grained level. This approach enables effective modeling of the distinctiveness and interdependence among
various behaviors, rendering it a robust tool for behavior modeling. Meanwhile, the total number of parameters in
MB-STR is O(|V|d + |B|d? + n), and its time complexity is O(n?d + nd?), which is moderate compared to other
studies. Moreover, unlike the positional encoding function of the classical Transformer, MB-STR is inspired by
T5 [105] in natural language processing and uses a novel positional encoding function to model multi-behavior
sequence relationships, which can better capture their positional relationships.

FLAG. Feedback-aware local and global (FLAG) [42] takes into account both user intent and preference com-
plexity in modeling multi-behavior sequences for next-item recommendation. It takes a behavior-agnostic sequence
of items and a sequence of behaviors as input, and employs both the global and local modeling perspectives. FLAG
has four parts, including a local preference modeling, a global preference modeling, a local intention modeling, and
a prediction module.

In the local preference modeling, the input matrix X£0)7 composed of the element-wise additions of the item em-
bedding and the position embedding, is fed into the multiple stacked feedback-aware self-attention blocks (FSABs),
and then obtains a user’s local preference z,lfp at time step t from the top FSAB. Specifically, an FSAB successively
goes through a feedback-aware input layer with a mask mechanism, a self-attention layer, and a feed-forward layer.
In the global preference modeling, the authors use a location-based attention layer to model users’ global prefer-
ences z%P. Given that the preferences of users, both local and global, cannot be effectively modeled through local
preference modeling and global preference modeling alone, a feedback-based attention layer (FAL) is proposed for
local intention modeling. It receives an input matrix O that takes into account both the examination-specific and
purchase-specific embedding matrices:

0, = Vi, + P, + Fyy, (39)
O:[oi;...;ofl;...;of], (40)

where Ve € RY*4 pl € R4 and Fye € R'*4 are the item-specific embedding vector, the position-specific em-
bedding vector and the behavior-specific embedding vector f! of the item i, at time step ¢, respectively. The next
behavior F pr+1 18 treated as a query vector to uncover the user’s local intention in the following time step, so as to

obtain the final local intention feature z!’. Then an item similarity gating (ISG) module is proposed to achieve a
balance between the local and global preferences with a weight factor A, and then the obtained balanced preference
representation zigp and the local intention feature z}' are element-wise added to get the final representation z; of
the sequence at time step t.

FLAG models the user’s local preference, global preference, and local intention with acceptable time complexity
and space complexity, where the multiple behaviors are utilized as a mask matrix in the local preference learning
module, and as part of the input to the module through behavior embedding for better distinguishing the user’s
different behaviors and consequently improving preference modeling. However, in the local intention learning
module, FLAG uses the next real feedback as the query vector during training, which may have a data bias that
allows the model to overfit the historical behavior data. Furthermore, this approach may not perform well in
cold-start settings where there is little historical interaction data.

Apart from the above studies, there are some other Transformer-based models for MBSR. ASLI [101] models
the item sequential information through the self-attention mechanism, and the interaction information with a hy-
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brid of behavior types and categories through the depth-wise temporal convolutional networks. ITE [102] performs
implicit-to-explicit modeling by classifying behaviors as explicit and implicit based on the strength of user preferences
indicated by the behaviors, and employs the Bert architecture to extract users’ long-term and short-term interests,
and further enhances item representation and long-term interest learning with category information. DMBIN [103]
encodes multi-behavior subsequences of items into corresponding behavior-specific interests and behavior-invariant
interests based on an attention mechanism, and extracts the features of differences and consistency among behaviors
through the two contrastive learning tasks. PBAT [36] represents the input sequences with a Gaussian distribution,
where the entities include user, item, behavior, and position, and the relations conclude the behavior-relation. Then
it combines the personality interest with personalized pattern learning through self-adaptive Gaussian production
to better depict the user’s personalized preferences. Then, PBAT integrates the unified behavior relations and
the personalized patterns, applying the behavior-aware attention mechanism to explore the sequential collabora-
tions from the item, behavior, and position perspectives, thus accurately exploring the user sequence dependencies.
MBSRec [104] effectively captures multi-behavior sequential patterns using a simple self-attention mechanism and
employs a weighted binary cross-entropy loss to precisely allocate different weights to different behavior types. MB-
SRec is both adaptable and effective, capable of scaling to an arbitrary number of behavior types while maintaining
minimal effect on the training and inference overhead.

In summary, Transformer, a sequence-to-sequence model, has demonstrated exceptional performance in recom-
mender systems. Typically, Transformer captures the temporal relationship of behaviors by incorporating positional
information in MBSR. Through the utilization of an attention mechanism, it is able to model relationships both
within and among behaviors. With superior parallel computing capabilities, an enhanced ability to capture long-
term dependencies, and stronger interpretability, Transformer surpasses RNN and GNN in MBSR to some extent.

4.4 Generic-method-based learning architecture

Since there are a lot of relevant and advanced studies in a research area, it is necessary to study a generic framework
that can utilize any of the previous relevant studies to obtain information. A learning architecture based on a generic
method that can employ a particularly designed module on a state-of-the-art model, combined with some innovative
modeling modules to enhance the performance of that model, is a direction worth further study.

For the MBSR, problem, the most important issues to consider are how to model sequences and how to distinguish
between different behaviors. As such, the use of generic-method-based learning architectures can be chosen to
improve the recommendation performance by following previous effective models of SBSR or MBR in the modeling
of sequences or heterogeneous behaviors. Behavior-aware recommendation (BAR) [106] is a generic framework
utilized in terms of obtaining sequence representations, which we introduce below.

BAR. BAR proposes a generic learning architecture for modeling multi-behavior sequences from a global mod-
eling perspective, including a behavior attention layer and a task-specific layer. In the behavior attention layer, an
attention network is used to enhance the presentation of the item embedding. First, the embedding of an item ¢
is added by the behavior embedding By: and the position embedding Fy. Then an attention network is used to
obtain the attention score oy € R representing the relationship between the behavior embedding Bye and the new
presentation of item embedding X/, and is added to the item embedding V¢ to learn the hidden representation at
each time step:

by =RM((1+ o p)Vpr,...,(1+a1)Vi-1), (41)

where RM(+) denotes some important components used in sequential recommendation methods, e.g., recurrent
neural network and convolutional neural network. RM(-) reflects the generality of BAR, as any SBSR method like
SASRec [15] can be utilized as a module of RM(+) to learn the potential representations of sequences.

The task-specific layer is proposed as a solution to address the challenge of the unknown status of whether the
behavior is the purchase or not when the model is focused on predicting the next purchased item. It uses an MLP
to obtain the connection between the sequential information representation h;_; and the behavior embedding By .

In summary, a general framework such as BAR, which directly applies the modeling methods used in SBSR,
possesses better performance and strong generalization capability, but now there are few studies aiming to enhance
the performance of recommendations. Hence, it can be beneficial to investigate the generalizability of modeling
behavior types and transitions or to propose a generic model that incorporates the items’ knowledge graph and the
social connections among users.
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Table 5 Data & modeling perspectives and features used in studies based on hybrid learning architecture.

Studies Hybrid techniques Data perspective Model perspective Features
MKM- RNN + GNN A behavior-agnostic se- Global Consider the knowledge graph of the items and the
SR [17] quence of items and a se- attributes
quence of behaviors
MBGNN [40] RNN + GNN Some behavior-specific =~ Local 4+ Global Consider both behavior type and transition to dis-
subsequences of items tinguish different node sets
GBAN [107] RNN + GNN A sequence of (item, be-  Local The prediction is the probability of a user gener-

havior) pairs

ating each behavior on the news; introduce item
category, tag, and topic for interactive news rec-
ommendation

UMBGN [108] RNN + GNN

A sequence of (item, be-
havior) pairs

Local + Global

Construct a user-item graph and utilize an atten-
tion mechanism to aggregate user-item interaction
information

A sequence of (item, be-
havior) pairs and some
behavior-specific subse-
quences of items

Local + Global

Mitigate the user cold-start problem in session-
based recommendation based on a meta-learning
framework, leverage attention mechanism

A sequence of (item, be-
havior) pairs

Local

Capture the dynamic multiple interests of users,
the first MBSR work to use the diffusion model
for denoising, leverage the diffusion model and dy-
namic routing

behavior-specific
subsequences of items

Some

Local + Global

Consider item-item relation information

A sequence of (item, be-
havior) pairs

Local + Global

Model users’ short-term and long-term preferences
by self-attention network and graph neural net-
work, respectively

A sequence of (item, be-
havior) pairs

Local + Global

Model long-term and short-term multi-behavior se-
quence features separately to model a user’s dy-
namic preference

Some behavior-specific
subsequences of items

Local

Take the first interacted item in a session as the
user’s original interests

behavior-specific
subsequences of items

Some

Local + Global

Introduce three novel contrastive learning tasks

A sequence of (item, be-
havior) pairs

Local + Global

Capture the long and short-term interests of users
and enhance user representations through con-
trastive learning

A sequence of (item, be-
havior) pairs

Local

Capture the users’ various periodic behavior pat-
terns and dependencies across behavior types si-
multaneously

MMFSR [109] CNN + GNN
MISD [110] Transformer + CNN
KHGT [111]  Transformer + GNN
MBHT [49] Transformer + GNN
TGT [50] Transformer + GNN
AMAN [112]  Transformer + GNN
MMCLR [43] Transformer + GNN
RCL [51] Transformer + GNN
FHT- Transformer + GNN
MB [113]

FATH [114] Transformer + GNN

A sequence of (item, be-
havior) pairs

Local + Global

Learn local interaction and global dependencies
through hypergraph networks and reduce memory
usage and time cost through a flash attention

4.5 Hybrid-method-based learning architecture

Combining multiple technologies for modeling can make use of the advantages of different technologies, and dif-
ferent technologies can also complement each other, leading to the improvement of modeling ability. The effective
integration of diverse technologies within different modules is a crucial aspect to be considered when utilizing a
hybrid-method-based learning architecture.

MBSR needs to model the sequence and behavior types at the same time, and it also needs to consider long-
term and short-term preferences, as well as local or global information, which provides opportunities for employing
different technologies. In MBSR, there are some studies utilizing different techniques, including MKM-SR, [17],
MBGNN [40], GBAN [107], UMBGN [108], MMFSR [109], MISD [110], KHGT (knowledge-enhanced hierarchical
graph Transformer network) [111], MBHT [49], TGT [50], AMAN [112], MMCLR [43], RCL [51], FHT-MB [113]
and FATH [114]. We describe some of them in detail below, and summarize the data perspective, the modeling
perspective, and the characteristics of these studies in Table 5.

MEKM-SR. MKM-SR [17] utilizes the GG-NNs [115] and the GRU to model multi-behavior sequences from a
global modeling perspective. Here, the global modeling perspective denotes that all sequences are modeled together,
rather than each sequence separately. We focus on the part of MKM-SR that models user multi-behavior sequential
information, i.e., M-SR. It treats the multi-behavior sequence as a sequence of items and a sequence of behaviors
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for modeling. Then M-SR utilizes GG-NNs and GRU to model the item sequence and the behavior sequence,
respectively, and concatenates the output vectors to obtain the behavior characteristics of the user.

M-SR aggregates the embedding of the nodes by the constructed user-item graph. Subsequently, it is fed into the
GRU module to enhance the information further. In comparison with the methods utilizing RNN alone, M-SR can
capture the bidirectional sequence relationships. Furthermore, M-SR’s methodology of framing the item sequence
and inputting it into the GG-NNs proficiently models the relationships among all items. Additionally, utilizing the
GRU to input behavior sequences, rather than GG-NNs, enables M-SR to effectively capture the user’s behavior
sequential preferences.

MMFSR. MMFSR [109] effectively mitigates the user cold-start problem in session-based recommendation based
on a meta-learning framework. Specifically, MMFSR constructs a global item-item relationship graph and feeds it
into the GNN along with multiple behavior-specific subsequences of items to obtain the representations under the
auxiliary and target behaviors. Then, the obtained representations are input into a self-attention layer and a gate
network successively for sequential encoding and integration. MMFSR also takes a sequence of (item, behavior) pairs
as another part of the input, where a temporal convolutional network (TCN) is applied to capture the user’s current
intention. In the framework of meta-learning, MMFSR designs memory mechanisms to guide the initialization of
parameters for each session by providing personalized biases, which include user intent memory, target behavior
memory, and auxiliary behavior memory, thus enabling sessions with similar intentions to share relevant knowledge
and mitigate the user cold-start problem in session-based recommendation.

MISD. MISD [110] proposes a dynamic multi-interest network and a simple diffusion approach to capture
dynamic personalized interests and mitigate the noises present in implicit feedback, respectively, which is the first
work that introduces the diffusion model [116] to MBSR. Specifically, in the dynamic multi-interest network, the
input is a sequence of (item, behavior) pairs, which is then passed through a Transformer layer to obtain dual-scale
behavior pattern representations. Then MISD explicitly models the obtained representations to obtain long- and
short-term interests through dynamic routing, and then further distinguishes users’ multiple interests through cross
CNNs. In addition, MISD performs interest matching to dynamically match the most relevant interests with the
current interaction features to mitigate the interest drift problem. In the simple diffusion model for denoising,
MISD uses MLP as the approximator and does not corrupt the user interest representations to pure noise in the
forward process to preserve personalization, which is similar to DiffRec [117]. Currently, the diffusion model has
some relevant research in sequential recommendation [117-121], while the inherent noise present in multiple implicit
feedback indicates the significant value of the diffusion model applied to multi-behavior sequence scenarios, which
deserves further exploration.

KHGT. KHGT [111] also utilizes Transformer and graph neural network to model multi-behavior sequences
from both global and local modeling perspectives, and treats the multi-behavior sequence as a sequence of behavior-
specific item modeling. For the position information of the user multi-behavior sequences, KHGT designs a novel
encoding position function, which takes into account the users, the items, and the behavior types. For the user-item
graph, unlike other methods, it constructs a heterogeneous graph of all users and interacted items. Each edge
represents a record of a user’s interaction with an item under a certain behavior type. The item-item graph is
constructed using the item relation information, such as the item category. To extract the transition information
about the nodes, a behavior-specific multi-head self-attention network is employed, and then the information of the
graphs is utilized to aggregate the neighborhood information of the learned node. Finally, the information of each
node is obtained.

KHGT is one of the few approaches to incorporate an item-to-item relationship within MBSR. This integration
effectively enhances the information pertaining to each item, resulting in improved recommendation performance.
It constructs the user-item and item-item graphs and uses Transformer to model the relationship among different
behaviors. The relationships within each behavior and between multiple behaviors are thoroughly considered and
are thus modeled well.

Apart from the above studies, there are some MBSR methods utilizing a hybrid learning architecture. MBGNN [40]
leverages GRU and GNN to model the user’s global and local preferences, respectively, to solve the session-based
recommendation problem, where behavior transition is considered in the construction of the graph similar to other
GNN-based studies. GBAN [107] performs local modeling for each user based on a graph-based convolutional neural
network and an attention-based LSTM to separately learn news representations and behavior sequence represen-
tations for interactive news recommendation. Unlike the mainstream approach in the industry of using CTR as
a performance metric for binary classification tasks, the final output of GBAN is the probability of each behav-
ior of the user on the candidate news. UMBGN [108] also models multi-behavior sequences based on GNN and
GRU, while considering the local personality of a single user and the global association of all users. MBHT [49]
and TGT [50] utilize GNN and Transformer to model users’ long-term and short-term preferences, respectively,
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where the former designs a novel self-attention mechanism inspired by Linformer [122]. AMAN [112] captures item
associations within and across behavior sequences based on GNN and Transformer, and adaptively captures co-
dependencies between different behavior sequences for session-based recommendation. Unlike other MBSR studies,
AMAN explicitly considers the user’s original interest, i.e., the first item the user interacts with as his/her original
interest, whereas this may have a discounted effect in long sequence scenarios. MMCLR [43] utilizes Bert4Rec [123]
and light GCN [124] to encode local sequential information and global graph information under each behavior type
of users, and conducts three novel contrastive learning tasks. RCL [51] utilizes a multi-relational GNN and a
dynamic cross-relational memory network based on the attention mechanism to capture users’ short-term and long-
term interests, respectively, while multi-behavior contrastive learning is utilized to enhance user representation.
FHT-MB [113] designs a filter-enhanced multi-scale Transformer for capturing behavior-aware sequential patterns
under item transitions with different periodic trends, and utilizes a hypergraph structure to learn multi-behavior
dependencies. FATH [114] utilizes a hypergraph neural network to model higher-order user-item interactions, and
leverages the flash attention [125] to optimize memory and training speed within the model.

In summary, the increasing use of hybrid-method-based learning architecture for studies in MBSR suggests that
combining different techniques can leverage the strengths of these techniques and play a complementary role, thus
enhancing the recommendation performance. Consequently, this is a direction worthy of further research.

4.6 Summary

There have been many studies exploring MBSR, and in addition to the study mentioned above, many other re-
searchers have made attempts [126-136]. There are also some studies that introduce sequential information, but
they focus more on multi-behavior modeling [137], or apply to specific scenarios such as social recommendation
and short video recommendation [138-143], or are applied in multi-task recommendation or multi-scenario recom-
mendation [144-146]. In conclusion, multi-behavior sequential recommendation has attracted a certain degree of
attention from both academia and industry.

5 Experiments

To give a more intuitive picture of the difference in recommendation performance of different methods, we conduct
experiments with some representative classical and recent MBSR methods on two real-world datasets. Specifi-
cally, we compared some models across the following branches. (i) Traditional matrix factorization-based method:
TransRec++ [37]. (ii) RNN-based learning architecture: RLBL [16] and BINN [28]. (iii) GNN-based learning archi-
tecture: GPG4HSR [38]. (iv) Transformer-based models: NextIP [41] and FLAG [42]. (v) Generic-method-based
learning architecture: BAR [106].

5.1 Data preparation

In the experiments, we use the following two real-world datasets: (i) UBY is released by Aliyun Tianchi in 2021 and
provided by Taobao, which consists of four behavior types, i.e., purchase, examination, add-to-cart and favorite;
(ii) JD? is collected from the competition of JD in 2019, which contains four behavior types, i.e., purchase,
examination, comment and favorite. For both datasets, we regard purchase as the target behavior in the prediction
phase.

The preprocessing steps for both UB and JD are as follows: (i) for duplicate (user, item, behavior) records,
keep the one with the earliest time; (ii) remove the cold-start items that have been purchased fewer than n times,
and the cold-start users that have purchased fewer than m times (here we set n = 10, m = 5 for UB, and
n = 20, m = 5 for JD); (iii) sort the interaction records of each user according to the timestamp and divide
them at the proportional position of 0.8 and 0.9, where the first 80% of the data is taken as the training set,
10% of the data between the cut-off points of 0.8 and 0.9 as the validation set, and the last 10% of the data as
the test set; (iv) remove the user sequences where users have interactions in the validation set and the test set,
but lack purchase history in the training set; (v) remove the cold-start items in the validation set and test set;
(vi) in the training phase, regard the training set as training data and keep only the first purchased item of each
user in the validation set as validation data. While in the test phase, merge all the interaction records in the
validation set with those in the training set as the training data, and keep only the first purchased item of each
user in the test set as the test data. We summarize the statistics of both datasets in Table 6.

1) https://tianchi.aliyun.com/dataset/dataDetail?datald=42.
2) https://jdata.jd.com/html/detail.html?id=8.
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Table 6 Statistics of the experimented datasets, where {p, v, ¢, 7, f} in the behavior types refer to purchase, examination, add-to-cart, comment
and favorite, respectively.

Datasets # Users # Items # Interactions Avg. length Density Behavior types
UB 20,443 30,734 798,657 39.07 0.13% {p,v,c, f}
JD 10,690 12,820 340,931 31.89 0.25% {p,v, 7, [}

5.2 Evaluation metrics

The two widely used metrics for top-K recommendation tasks [15,49,50,111] are employed in our experiments,
namely hit ratio (HRQK') and normalized discounted cumulative gain (NDCGQK), where the former focuses on
the proportion of user-preferred items appearing in the recommendation list, and the latter focuses on the ordering
of these items. The values of K are set to 5, 10, and 20. Note that larger HRQK and NDCG@K mean more
recommendation performance gain. Following [147,148], we perform the evaluation on the full list of candidate
items.

5.3 Parameter settings

For a fair comparison, we set the batch size of all methods to 128, the embedding dimension to 50, and the maximum
sequence length to 50 following [15,41]. We also follow [15,41] and adopt the Adam optimizer with a learning rate
of 0.001, and set the dropout rate to 0.5. For the attention-based methods, we tune the number of blocks in {1, 2,3}
and fix the number of heads to 1 due to the small dimension being unsuitable for subspace decomposition [15]. For
other hyperparameters of some specific methods, we tune them according to the parameter ranges mentioned in
the original papers. The hyperparameters are rigorously tuned on the validation data, and the optimal model is
applied to predict the results on the test data. The reported experimental results represent the average values of
three executions of the models.

5.4 Experiment results

We present our experimental results in Table 7, from which we have the following observations.

e The efficacy of deep learning methods. Traditional recommendation approaches, such as TransRec++, consis-
tently underperform across all evaluation metrics, indicating that matrix factorization-based methods have inherent
limitations in modeling user behaviors and boosting recommendation performance. In contrast, most deep learn-
ing approaches (e.g., BINN, NextIP, and FLAG) substantially enhance performance, thereby demonstrating the
advantages of complex network architectures and multi-layer representations in multi-behavior sequential recom-
mendation.

e The advantage of attention mechanisms in long-sequence tasks. The results in Table 7 show that Transformer-
based methods excel at capturing long-term item dynamics. For example, FLAG achieves HR@Q20 and NDCG@20
scores of 0.0825 and 0.0438 on UB, respectively, significantly outperforming the other methods. This underscores
the effectiveness of attention mechanisms in processing sequential data and capturing fine-grained contextual rela-
tionships.

e Performance difference among models within similar deep learning architectures. Even among models sharing
the same deep learning framework, performance can vary considerably due to the differences in implementations
and parameter settings. For instance, within the RNN-based architectures, BINN outperforms RLBL across all
metrics on both datasets. This suggests that careful model design and task-specific optimization are essential to
fully leverage the potential of a deep learning architecture.

e Challenges in model generalization. Some models (such as TransRec++, RLBL, NextIP, and BAR) exhibit
inconsistent performance on UB, highlighting challenges in generalization when facing with varying sequence lengths
and data densities, which suggests that model design should not solely focus on achieving high fitting accuracy on
a given dataset but must also account for robust generalization across diverse application scenarios.

It is also important to note that these results are validated only under the current experimental settings. Under
alternative conditions, for example, in scenarios with shorter sequences or lower data density, RNN and GNN models
may exhibit more performance improvement [35,39]. Moreover, hybrid methods do not necessarily outperform those
relying exclusively on a single deep learning architecture, such as Transformer-based approaches [36,104], further
emphasizing the importance of selecting an appropriate model based on the specific task and setting.
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Table 7 Recommendation performance on UB and JD. Note that bold scores stand for the highest scores among all methods, and underlined
scores represent the next highest scores.

MF RNN GNN Transformer Generic method
TransRec++ RLBL BINN GPG4HSR NextIP FLAG MBSRec BAR
JD HR@5 0.0447 0.0296 0.0398 0.0535 0.0609 0.0622 0.0540 0.0450
NDCG@5 0.0309 0.0167 0.0220 0.0345 0.0355 0.0364 0.0318 0.0271
HR@10 0.0833 0.0619 0.0889 0.0920 0.1139 0.1241 0.0956 0.0792
NDCG@10 0.0432 0.0272 0.0377 0.0470 0.0523 0.0563 0.0452 0.0380
HR@20 0.1195 0.1252 0.1542 0.1406 0.1866 0.2010 0.1627 0.1342
NDCG@20 0.0522 0.0429 0.0543 0.0592 0.0707 0.0758 0.0621 0.0518
UB HR@5 0.0142 0.0067 0.0239 0.0377 0.0361 0.0457 0.0451 0.0193
NDCG@5 0.0095 0.0041 0.0170 0.0277 0.0285 0.0333 0.0368 0.0140
HR@10 0.0204 0.0101 0.0337 0.0517 0.0469 0.0622 0.0544 0.0249
NDCG@10 0.0115 0.0051 0.0202 0.0322 0.0319 0.0387 0.0398 0.0158
HR@20 0.0287 0.0171 0.0495 0.0717 0.0571 0.0825 0.0673 0.0344
NDCG@20 0.0136 0.0069 0.0241 0.0372 0.0345 0.0438 0.0430 0.0182

6 Future directions

The multi-behavior sequential recommendation (MBSR) problem, which is more representative of real-world rec-
ommendation scenarios, has increasingly gained attention from academia and industry in recent years. Although
some studies with superior recommendation performance towards the MBSR problem have been proposed, there
are still many issues worthy of further study. In this section, we discuss some potential future research directions
for the MBSR problem, including data, techniques, optimization targets, large language models, trustworthiness,
and responsibility.

Data. In the field of artificial intelligence, a comprehensive understanding of data is crucial for developing
models. In the case of MBSR, the complexity of the data also poses various challenges when modeling. First
of all, data sparsity has always been the focus of recommendation algorithms [149], and MBSR is no exception.
However, excessive data sparsity can undermine the performance of association-based algorithms like collaborative
filtering in recommender systems. Additionally, the multiple behaviors of MBSR make the pattern of data sparsity
more intricate. In practical situations, such as cold-start settings, where new users or items are seldom interacted
with, resolving the data sparsity issue is necessary to generate reasonable recommendations. Second, it is essential
to explicitly model the data imbalance in MBSR. The data suffers from a heterogeneous behavior distribution
problem similar to MBR and a sequence length problem similar to SBSR. User behavior distribution and interaction
sequence lengths often differ in real-world scenarios. For instance, in shopping scenarios, users tend to make fewer
purchases than examination behaviors, and users may examine varying item quantities. Third, there are several
issues associated with data processing, including periodicity and noise. Periodicity refers to users’ inclination to
examine items at specific times, and noise refers to users examining items that do not align with their current
preferences. While related studies have focused on denoising [56,57], there remains a significant scope for further
research, particularly in terms of how to explicitly model various types of specific noise, such as interactions that
align with a user’s long-term preferences but not their current preferences. As such, it is necessary to further
explore how to deal with data sparsity, imbalance, periodicity, and noise, so as to improve the effectiveness of
recommendations.

Techniques. Technical innovation has been the primary focus for most studies aiming to improve recommen-
dation performance, yet several challenges remain with the current techniques used for MBSR. First, individual
techniques have their own limitations. For example, Transformer can solve the problem of parallel computation that
RNN is limited, but is less capable of capturing the local information than RNN due to the point-wise dot-product
self-attention utilized [150,151]. As such, combining multiple complementary components or techniques to solve
the MBSR. problem is an important research direction. Second, efficiency is an essential issue in MBSR due to
the complexity of the data. It is worthwhile to investigate how to improve recommendation performance without
sacrificing efficiency so as to enable real-time recommendations. Third, how to maintain acceptable time and space
complexity when the number of behavior types increases is also a challenging issue. Fourthly, some studies propose
models that perform well on some datasets but poorly on others during training and prediction [38,42]. As such,
it remains a challenge to improve the generalization of the models for MBSR. In addition, although there are some
SR studies [20,152,153] utilizing data from different domains, or data with auxiliary information such as item
category information, reviews, and knowledge graphs, it may be difficult to introduce such information into more
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complex MBSR scenarios. For instance, user behavior patterns may differ across different domains, and behaviors
such as clicks that indicate users’ weak preferences represent his or her unclear preferences for item attributes. As
interactive conversational recommender systems become more prevalent between users and platforms, future MBSR,
techniques may need to model multi-behavior sequential data and multiple rounds of conversational text data. In
summary, there is significant potential in the technical aspects of MBSR, especially in terms of combining methods,
improving efficiency, and adapting to data diversity.

Optimization targets. Optimizing targets in MBSR also presents several challenges. Currently, most studies
on MBSR focus on a single target, such as recommending more items that users would like to buy in a shopping
scenario. However, the diversity of user behaviors allows the possibility of optimizing multiple targets simultaneously.
For example, on the business side of the industry, there is often more than one single target to optimize [154],
instead, there is a need to jointly optimize multiple targets, such as increasing the view rate and like rate of a
video simultaneously. At present, the multi-target optimization methods mainly include setting sample weight,
stacking multiple models, sharing model parameters for joint training, and MMoE [155]. However, there are some
shortcomings in these methods. For example, in the method of stacking multiple models, the models are independent
of each other, which makes the training process prone to the situation of over-fitting, while the sharing of experts
in MMoE among all tasks may bring bias to some tasks. In addition, SR problems in cross-domain or multi-
domain settings require recommendation performance gains of multiple domains simultaneously [156-158], without
the exception of MBSR problems in the same settings. As such, how to optimize multiple objectives in a rational
way is also a direction worth investigating.

Large language models. The remarkable performance of large language models (LLMs) [159,160] has received
great attention within the academic community. A mounting body of research is presently dedicated to expansive
language models in the domain of recommender systems [161,162]. Due to the large amount of textual information
intrinsic to the recommendation task itself, as well as the commendable language comprehension ability and external
knowledge reserve of the large model, modeling the representation of users and items with text information may
hopefully supplant conventional ID-based paradigms. In the task of multi-behavior sequential recommendation, in
addition to modeling sequence relationships, different behavior information also needs to be modeled for items. How
to use a large model to effectuate a synergistic amalgamation of distinct behavior signals with the textual profiles
of users and items is a relatively new direction. Note that items may have different relationships under different
behaviors. To illustrate, if a user has examined a certain type of item, he or she may buy the same type of item
from a different brand. However, after acquiring one of these items, the user may be less inclined to buy items from
other brands. Therefore, it is necessary to integrate multi-behavior information into the modeling of large models
and recommendation tasks, rather than simple sequence modeling.

Trustworthiness and responsibility. The need to build more trustworthy and responsible recommender
systems has been raised when recommender systems consistently pursue higher accuracy, and are determined to
recommend items to users transparently, fairly, and unbiasedly. Explainability and security are two main aspects of
the trustworthiness of recommender systems [163], which also require further attention in MBSR. First, in terms of
explainability, the complexity of the behaviors in MBSR makes the deep learning model less explainable. Attention
is a common approach applied to MBSR to improve the explanation of deep learning models [32,49,56,106]. Second,
in terms of security, the issue of privacy protection is becoming increasingly important to the state and to the public.
Recommender systems need to avoid the problem of user information leakage when designing a model, including
the risk of information leakage between users, between platforms, and between both users and platforms. For the
MBSR problem, the user’s behaviors are considered private. Such private-sensitive data can only be observed on the
user’s own client and cannot be uploaded to the cloud, thereby complicating the modeling process. To address this
challenge, the federated recommendation, one of the most effective and popular approaches that address the privacy
protection problem in recommender systems, was first proposed by Google in 2016 [164]. Not much work has been
done to consider privacy and security in MBSR [84], and the use of federated learning [165] to secure privacy is
an interesting direction. As such, it is important to build trustworthy and responsible recommender systems with
higher explainability under the requirement of privacy protection, so that users can be fairly recommended the
items they are interested in.

7 Conclusion

MBSR combines SBSR and MBR, requiring the modeling of both sequential information and heterogeneous behav-
iors, which provides some challenges while allowing for some optimization in recommendation performance. MBSR,
is closer to the range of user feedback that occurs in real-world scenarios. The growing body of MBSR studies
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in both academia and industry (though still fewer than that for SBSR) highlights the importance of MBSR in
recommender systems. The increasing amount of studies for MBSR in academia and industry, although much fewer
than those for SBSR, indicates the importance of MBSR in recommender systems. In this paper, we first introduce
the MBSR problem in detail, followed by a classification of related studies, encompassing traditional methods and
deep learning-based methods.

Due to the complexity of the MBSR problem, lots of studies use deep learning-based methods, including RNN,
GNN, and Transformer, or their generic and hybrid architectures. For each of these learning architectures, we
present their general form before transitioning to how to apply the learning architecture to the MBSR, problem
based on previous studies. For each work, we introduce it from the technology, data, and modeling perspectives,
and discuss its strengths and weaknesses.

Through a detailed discussion of the studies that have been done so far, we find that MBSR still faces many
challenges. In response to these challenges, we suggest five possible future directions, including data, techniques,
security, optimization targets, and explanation, which we hope will give the readers some guidance on how to solve
the MBSR problem better.
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