
SCIENCE CHINA
Information Sciences

. Supplementary File .

EE-Extractor: A Near-sensor Real-time Effective
Event Extractor for Dynamic Vision Sensor

Feiqiang Li1,†, Yujie Huang1,†*, Mingyu Wang1*, Wenhong Li1*,

Minge Jing1* & Xiaoyang Zeng1*

1State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200000, China.
†Feiqiang Li and Yujie Huang have the same contribution to this work.

Appendix A Proposed algorithm

Appendix A.1 Bit Queue spatiotemporal filter

With the development of Dynamic Vision Sensor (DVS), the request of events, the readout of response, and the reset of the

pixel array are mostly based on rows [1, 2]. As shown in the left half of Figure A1, the pixel array outputs the events one

row at a time as well as the row number if there are events in that row. ON events and OFF events are N bits each, where 0

represents no event, and 1 indicates that an event has occurred at that location. After the P2S (parallel-to-serial) module,

one row of events is converted into discrete events. Currently, for high-resolution DVS, all the spatiotemporal filters are

implemented after the interface circuit and based on discrete events. They ignore the row position relationship between

events that have been arbitrated out, which leads to a waste of storage resources.

Therefore, leveraging the row-wise arbitration characteristics of the DVS pixel array output, a Bit Queue is designed

for the proposed filter. Rather than storing event coordinates (x, y), Bit Queue directly stores one-row events from the

DVS array, where 1 indicates the presence of the event. As illustrated in Figure A2(a), the Bit Queue maintains a sliding

window of the most recent R rows of events, with the corresponding row numbers stored in Row Num. For the proposed

filter, spatiotemporal correlation is constrained within the Bit Queue. This implementation transforms the time threshold

dT into the time interval between the current row and the initial row in the queue (dT = tR − t1). Therefore, an event is

validated as real if adjacent events are found within this queue. Storing eight rows of data requires only 8 × 512 + 8 × 9

bits = 4.072 kb, which represents less than 25% of the memory needed by the Queue-based filter [3].

As shown in Figure A2(a), for denoising, the filter extracts an adjacent event matrix E centered at the current event

coordinate (xi, yi) from the Bit Queue. The matrix E covers a spatial neighborhood defined by x ∈ [xi −D,xi +D] and

y ∈ [yi − D, yi + D], where D is the denoising threshold of the filter. If there is ”1” in the adjacent events matrix E, the

current event is considered a real event. Compared to [3], this approach significantly reduces computational complexity

by using localized event comparisons instead of global ones while maintaining equivalent denoising performance. Binary

representation and constrained search space enable efficient hardware implementation with minimal memory requirements.

Appendix A.2 Boundary-box-based clustering

To overcome the limitations of existing event-based clustering algorithms, boundary-box-based clustering is proposed in this

paper. Firstly, a boundary-box-based rectangle representation of the category is proposed. It avoids the error caused by

centroid-and-radii-based square representation [4], and has lower computational complexity than Queue-based clustering [3].

Then, to reduce hardware overhead, a category coverage mechanism is presented. To ensure the effectiveness of clustering,

a clustering ending mechanism is proposed. In the following, the clustering will be introduced from the representation of

categories, the process of clustering, the category coverage mechanism, and the clustering ending mechanism.

Appendix A.2.1 Representation of categories

As shown in Figure A2(b), the category is represented by the boundary box and its event count, which also serves as the

fundamental unit for event-by-event clustering. An event is assigned to a category when its distance to the boundary box

falls below the clustering threshold G. Following this assignment, the system dynamically updates both the boundary box

and the event count for the category. In principle, the rectangular representation of the category avoids the error caused

by the centroid-and-radii-based square representation. Moreover, by requiring only boundary comparisons for category

assignment, the method achieves lower computational complexity than Queue-based clustering, thereby optimizing the

trade-off between clustering accuracy and processing efficiency. The complete clustering system comprises multiple such

clustering units, and their collaboration can efficiently complete real-time clustering.

*Corresponding author (email: mejing@fudan.edu.cn, yujiehuang@fudan.edu.cn, mywang@fudan.edu.cn, xyzeng@fudan.edu.cn,

wenhongli@fudan.edu.cn)



Sci China Inf Sci 2

Figure A1 The figure shows the DVS with a resolution of 512× 512. The proposed EE-Extractor is implemented near the DVS

pixel array, including a Bit Queue spatiotemporal filter and a boundary-box-based clusterer. For the DVS, events are read from

top to bottom in a row-scanning mode, and the row without events is not read. Events in a row are 512-bit ON events (0 represents

no event and 1 indicates that an event has occurred at this location), 512-bit OFF events, 40-bit timestamp shared by the current

row, and 9-bit row number Nr of the current row.

Appendix A.2.2 Process of clustering

The proposed clustering architecture is illustrated in Figure A2(b), where (x, y) represents a denoised event. Category

information memory stores information on clustered events, including the category’s boundaries (xmax, xmin, ymax, and

ymin) and the event count lcount. Clustered events are stored in Event memory. The specific steps of the boundary-box-

based clustering are as follows:

1. Initialize Category information memory for all n available categories.

2. For each incoming event (x, y), assign it to category i if it satisfies (A1).

e(x, y) ∈ i ⇔(x < xmax[i] +G) ∧ (x > xmin[i]−G) ∧ (y < ymax[i] +G)

∧ (y > ymin[i]−G) ∧ (lcount[i] > 0), i in {1, ..., n}
(A1)

3. Following category assignment, the system executes boundary updates according to Algorithm A1. The update

procedure handles three cases. If the event matches no existing category and idle categories are available, it initializes

a new category. An idle category is defined as either containing zero events or that can be covered (see the Category

coverage mechanism). If the event falls within one or more existing categories, the system merges these categories

and updates the categories’ boundaries if needed. In others, the event is discarded as noise.

Algorithm A1 Flow of the boundary-box-based clustering

Input: Event e(x,y)
Result: Update category information: xmin, ymin, xmax, ymax, lcount
1: if e /∈ category i, s.t.∀ i in {1, ..., n} then
2: if the idle categories i1,...,iz exist then
3: cmin = min{i1,...,iz};
4: Initialize category cmin;
5: else
6: event e is discarded;
7: end if
8: else
9: e ∈ category k1,...,kx, cfirst = min{k1,...,kx};

10: Update boundary and lcount of category cfirst
11: for k in {k1,...,kx} ∧ k ̸= cfirst do
12: Clear category k;
13: end for
14: end if

4. When the ending condition of clustering is reached (see the Clustering ending mechanism), output the category

whose event number exceeds the threshold LN . Then, events generated from different objects are distinguished, and

noise clusters with fewer than LN are further removed.



Sci China Inf Sci 3

(a) Bit Queue spatiotemporal filter (b) Boundary-box-based clustering

Figure A2 (a) is the block diagram of the Bit Queue spatiotemporal filter. The Bit Queue stores the past R rows of events,

with each row represented by N bits. Row Num stores the row numbers. D is the distance threshold of the filter. For the current

event (xi, yi), the adjacent events matrix E represents the occurrence of events in the vicinity of (xi, yi), which is taken from the

Bit Queue. If there is ”1” in the adjacent events matrix, the current event is considered a real event. (b) is the block diagram of

the boundary-box-based clustering. G is the threshold of clustering. Category information memory saves information on clustered

events, including the category’s boundaries and the number of events lcount. Clustered events are stored in Event memory. The

red box in the bottom right corner of the figure represents category i, and the blue box represents the extension box of the category.

Figure A3 Two conditions for clustering ending mechanism, taking the upward motion of an object as an example, where

t3 > t2 > t1. The trajectory scanned by DVS in rows is shown by the blue arrow.

Appendix A.2.3 Category coverage mechanism

During clustering, several categories would be generated, particularly in high-noise scenarios, making it challenging to

determine an optimal fixed number of categories. Setting the category count n too large leads to two drawbacks: increased

memory overhead for category information, and higher computational complexity during clustering. When setting a small

n, many subsequent events cannot be attributed to the existing categories, resulting in the loss of real events. To address

this, a novel category coverage mechanism is proposed, which enables effective clustering with a relatively small n.

When an event does not belong to any category and all categories have events, it is necessary to determine which

categories can be covered. The easiest way is that the category with few events can be covered. However, the categories

are gradually clustered. If only considering the event’s number of categories, it is possible to mistakenly cover the category

whose number of events is gradually increasing. Therefore, based on the output characteristics of the DVS pixel array, we

propose that categories, whose number of events has not increased over a period of time and are less than LN , can be

covered, where the number of events less than LN is the judgment of noise clusters after clustering. Besides, since DVS

outputs in row arbitration mode, the time in the coverage condition can be equivalent to the number of rows scanned,

as shown in (A2). Due to the sequential arbitration of DVS, when DVS has arbitrated to a certain distance G from the

boundary xmax of the category, it indicates that the number of categories will no longer increase during the current scanning

cycle (from top to bottom). If there are fewer than LN events in the category at this time, the category is considered a

noise cluster and can be covered. { x− xmax[i] ⩾ G, if xmax[i] ⩽ x

512 + x− xmax[i] ⩾ G, otherwise.
(A2)

Appendix A.2.4 Clustering ending mechanism

A reasonable clustering ending mechanism is important for clustering. The premature end of clustering may lead to

incomplete clustering of objects, which is not conducive to subsequent recognition or tracking. If clustering ends too late,

it may lead to ghosting or clustering different objects together. Ending clustering based on the number of clusters cannot

adapt to various scenarios. In some scenarios, objects generate more events, while in others, they generate fewer. In this

case, different number thresholds are required. Therefore, for clustering, based on the output characteristics of the DVS

pixel array, a novel clustering ending mechanism is proposed.

Clustering requires extracting the complete shape of the objects. Due to the high time resolution of DVS, relatively

complete object-generated events can be captured after a complete top-to-bottom row scan. Based on this, two termination



Sci China Inf Sci 4

(a) Filter (b) Clusterer

Figure B1 (a) is the block diagram of the filter. Eight register groups are needed in Bit Queue, and eight registers are used

in Row Num to store the row number of events in the Bit Queue. According to the BMC module, whether there exist events

adjacent to the current event can be judged. (b) is the block diagram of the clusterer. Category information memory stores

information on the boundaries and number of events for categories. Updateboundary is responsible for determining the category

of events and updating the category’s boundaries.

conditions were established for the clustering, as shown in Figure A3. Condition one is that when a new round of scanning

has started, clustering ends at the latest event’s row number being greater than or equal to the initial event’s. Condition 2

is a supplement to Condition 1. When the latest event’s row number cannot be greater than the initial event’s, clustering

ends at the beginning of the next round of scanning. Moreover, when events are sparse, to accumulate more events to make

objects more complete, this paper sets a minimum time threshold Tn for clustering. A maximum time threshold Tx has

also been set to force the end of clustering, which prevents the clustering from failing to complete normally. In other words,

the clustering time should be greater than Tn and less than Tx.

Appendix B Hardware implementation

Figure A1 shows the hardware implementation of the EE-Extractor. This paper takes the DVS with a resolution of 512×512

as an example to introduce the proposed EE-Extractor. The P2S module converts the data from the DVS pixel array into

individual events. The Filter module is the implementation of the Bit Queue spatiotemporal filter. The Clusterer module

is the implementation of the boundary-box-based clustering. Finally, output processed events. The details of the Filter

and Clusterer are as follows.

Appendix B.1 Implementation of the Filter

For the Filter, as shown in Figure B1(a), it mainly consists of the Bit Queue, Row Num, Write Ctrl, Read Ctrl, and BMC

module. The Bit Queue is the memory of the filter, which stores events generated in the past R rows, and Row Num stores

the row number of the events. Write Ctrl controls the write of the Bit Queue and Row Num. Read Ctrl is responsible

for extracting adjacent events of the current event from Bit Queue. According to BMC, it can be determined whether the

current event is real. Write Ctrl and Row Num are easy to understand and will not be elaborated here. The details of

the Bit Queue, Read Ctrl, and BMC modules are as follows.

Appendix B.1.1 Bit Queue

For the proposed Bit Queue spatiotemporal filter, whether the current event is a real event depends on whether there are

adjacent events in the queue. To ensure that the events in the queue have a temporal correlation, the length of the queue

should not be too large. Therefore, taking into account the performance of the algorithm and hardware resources, the

length of the queue is set to eight. To reduce the delay of denoising, the read delay of data in the queue should be as low

as possible. Therefore, eight register groups are used in Bit Queue, ensuring that adjacent events in eight rows can be read

out within one cycle. Each register group stores 512 bits of events, and eight register groups are written in turns.

Appendix B.1.2 Read Ctrl

Read Ctrl is responsible for processing the read data and extracting adjacent events of the current event from it. Adjacent

events in eight rows are read out within one cycle. As shown in Figure B1(a), according to y, through Read Ctrl, eight

Read datas are taken from the Bit Queue. The Read data is the data near the y position of the current event. The

denoising threshold D of the filter is 4 bits, thus the maximum supported setting for D is 15. which requires 31-bit data

Read data (i.e. [y-15,y+15]). For the proposed filter, the denoising threshold can be adjusted within the range of 1 to 15.

Then, according to x, through Read Ctrl, eight Nrs are taken from the Row Num, which will be used to select adjacent

rows in BMC.



Sci China Inf Sci 5

(a) (b)

Figure B2 (a) is jumps in the state when clustering works. The upper right part of the state machine belongs to Process 0, and

the lower left part belongs to Process 1. The two rams work alternately in two processes. (b) is the schematic diagram of Ram

storing events. Categories 1 and 2 are the two categories after clustering. xmax, xmin, ymax, ymin are the boundaries of the

categories. ”1” stored in Ram indicates that there is an event at that location.

Appendix B.1.3 Bit Mask Computer

For the designed Bit Queue, events are stored in the form of ”bit”, which provides convenience for simplifying operations.

Therefore, the BMC is designed for the filter.

Firstly, prepare the data, as follows:

• Through the Read Ctrl, eight 31-bit data Read datas are gotten (i.e. [y-15,y+15]), which are the data near y position

of the current event.

• According to the threshold D, eight 31-bit Dn masks are gotten, which are used to select adjacent data within the D

range. Dn masks and Read datas correspond one-to-one. For example, if D is five, since the current event cannot prove it-

self, the Dn mask for the current row is ”0...0111110111110...0”, and the Dn mask for other rows is ”0...0111111111110...0”.

• According to the eight Nrs from Row Num, the threshold D and the position x, eight Row valids can be obtained.

Let the Row valid of the row that satisfies Nr ∈ [x−D,x+D] equal to 1.

Then, according to (B1), it can be determined whether the current event is a real event, which can be completed with a

small amount of AND or OR operations.

result[r] = (|(Read data[r]&Dn mask[r]))&(Row valid[r]), r in {1, ..., 8}
dn flag = |result

(B1)

Appendix B.2 Implementation of the clustering

For the Clusterer, as shown in Figure B1(b), it mainly consists of the Updateboundary, Category information memory,

Rams, Write Ctrl, Read Ctrl, and State Ctrl. The module Category information memory stores information on the

boundaries and number of events for n categories. Considering hardware complexity and algorithm effectiveness, the number

of categories is set to eight. The module Updateboundary determines the categories of an event, and is responsible for

updating categories’ boundaries according to Algorithm A1. The clustered events are stored in Rams, which are controlled

by Write Ctrl and Read Ctrl. The module State Ctrl controls the state of the entire clusterer. The judgment and update

of categories in Updateboundary have been introduced in Appendix A.2, and will not be elaborated here. In the following,

the clusterer will be introduced from State Ctrl and a read-out way of clustered events.

Appendix B.2.1 State Ctrl

Only when clustering is completed, can the events be output according to the clustering results. The clustering needs to

accumulate a certain number of events, and it also takes time to output the clustered events. Since the events stream is

constantly generated, if the output of clustered events prevents it from receiving new events for clustering, it will result in

event dropout and low throughput. Therefore, from the perspective of the entire system, this paper divides clustering into

two processes, executing these two tasks in parallel. As shown in Figure B1(b), in Process 0, the system clusters the current

event and updates the boundary box in real time. And in Process 1, the clustered events are read sequentially according to

the boundary.

The clusterer is divided into two processes, which means two Rams are needed to store the events after clustering,

working alternately in Process 0 and Process 1, as shown in Figure B1(b). Ram 1 and Ram 2 form a ping-pong structure,

and they work in parallel. When Ram 1 is in Process 0, storing the clustered events, Ram 2 works in Process 1, sending out

the events sequentially. The state jumps of the clusterer are shown in Figure B2(a). Here is the specific implementation:

• For Process 0, module Updateboundary determines the category of the current event and updates the boundaries based

on the location of the event and the boundaries of the existing categories. If the event is clustered, its location information

is stored in one Ram. When the clustering end condition is met, Process 0 ends, and the state jumps from Rec Data to

Rec Over.



Sci China Inf Sci 6

(a) Init (b) Real events (c) Noise under low illumination (d) Figure of synthesis

Figure C1 (a) is the 5ms accumulation of events generated by the free fall of two airplane models under sufficient light conditions.

(b) is the figure with only real events. (c) is the 5ms accumulation of noise under low light conditions. (d) is the synthetic picture

of (b) and (c).

Table C1 The performance of filters under two illumination conditions.

illumination Sufficient lighting Low lighting

performance Acc Pre Rec F1d Acc Pre Rec F1d

Liu’s [7] 0.5724 0.9940 0.5303 0.6916 0.6771 0.9534 0.4958 0.6523

O(N) [8] 0.6956 0.9909 0.6695 0.7991 0.7728 0.9502 0.6629 0.7809

O(N2) [9] 0.8303 0.9885 0.8219 0.8975 0.8415 0.9376 0.7934 0.8595

Queue [3] 0.8266 0.9889 0.8174 0.8950 0.7724 0.9543 0.6590 0.7796

our filter 0.8859 0.9716 0.9001 0.9345 0.8806 0.8971 0.9088 0.9029

filter+clusterer 0.8861 0.9737 0.8983 0.9345 0.8904 0.9483 0.8679 0.9063

Red indicates the highest, and blue is the second highest.

• For Process 1, the system reads out data from the Ram, which stores clustered events. According to the boundary and

the event’s number of the category, the category whose number of events is greater than LN outputs its events sequentially.

Finally, after processing, the system clears Ram.

Appendix B.2.2 Read-out ways of clustered events

Generally, DVS cameras output events in the order they occur (or in an arbitrated order), which facilitates flexible post-

processing of events. Besides, the proposed clusterer can output events in category order based on the results of clustering.

Outputting events in category order can filter out events of interest by location or by number of events, and on the other

hand, the separated categories can be fed directly into subsequent recognition or tracking algorithms, which can reduce the

complexity of post-processing.

Binary frame is a commonly used encoding method for events before post-processing in DVS [5]. Therefore, 512 × 512

bit Ram is used to store the events after clustering, in which the presence or absence of an event is denoted by 1 and 0.

Under the control of Write Ctrl, x of the clustered event is the address written to Ram, and y is the position in the word

that needs to be written as 1. As shown in Figure B2(b), after the clustering is completed, 512× 512 bits Ram stores the

binary feature map. Then, based on the boundaries of each category, the events of each category can be read out separately

in coordinate or in ”bit” form. When outputting by coordinates, if the word read from Ram includes 1, then output its

address (i.e. x) and position equal to 1 (i.e. y). When outputting events in ”bit” form, simply read data out from the Ram.

For example, for category 1 in Figure B2(b), output the data ”001” in the first row, data ”001” in the second row, and so

on.

Appendix C Results of the experiment

For the evaluation of the proposed EE-extractor, the experiment is divided into three parts. The first is the results of the

proposed filter, including quantitative experiments and comparison with other filters on public datasets. The second is

the results of the proposed clusterer, including its performance on denoising and comparison with other clusterers on ROI

extraction for DVS. The third is the result of hardware implementation. The details of the experiment are as follows.

Appendix C.1 Results of filter comparison

Appendix C.1.1 Quantitative experiment

Since the existing datasets of DVS do not have accurate labels to calibrate the real events and noise, in this paper, synthetic

datasets are collected to evaluate the algorithms quantitatively. In addition, due to the difficulty in obtaining event data

before arbitration for commercial DVS, for the sake of comparison, the datasets need to be further processed based on the

characteristics of DVS row scanning output. Firstly, the event stream captured by DAVIS346 [6] (resolution: 346 × 260)

needs to be extended to a resolution of 512× 512. Then, events on the same row within a certain period share a timestamp

and are output by row scanning.

Under sufficient light conditions, DAVIS346 was used to photograph two airplane models. The DVS was stationary, and

the airplane models fell freely in front of the DVS. Figure C1(a) is a figure accumulated from 5ms events, in which little

noise is generated. Then, the method proposed in [3] was used to label the events (i.e. when there were more than two



Sci China Inf Sci 7

(a) Init (b) Ours (c) O(N2) [9] (d) O(N) [8] (e) Liu [7] (f) Queue [3]

Figure C2 ”Init” are original images, including two scenes, and 50K original events are accumulated in them. The first rows of

images of each scene are the events after being filtered. The second-row images of each scene are the events that are filtered out.

consecutive adjacent events in 5ms, they were considered as real events). Under sufficient light conditions, little noise is

generated by DVS. Therefore, this method of labeling real events and noise is effective. Using the above method, real events

in Figure C1(a) can be obtained, as shown in Figure C1(b).

Under the low light condition, the static background is photographed with DAVIS346. Figure C1(c) is the 5ms accumu-

lation of events. Because there was no change in light intensity, these events were considered as noise. Then, we combined

the real events in Figure C1(b) with the noise in Figure C1(c). Figure C1(d) is the synthesized image.

Four parameters were used to evaluate the performance of the filters: Accuracy (Acc), Precision (Pre), Recall (Rec), and

F1-score (F1d). Acc reflects the accuracy of the filter. Pre reflects the proportion of real events in denoised events. Rec

reflects the retention ratio of real events after passing through the filter. F1d is used to evaluate the overall performance of

the filter. The larger the four parameters, the better the performance of the filter. The parameters are as follows:

Acc =
Sfiltered +Nremoved

Aoriginal
(C1)

Pre =
Sfiltered

Afiltered
(C2)

Rec =
Sfiltered

Soriginal
(C3)

F1d =
2×Rec× Pre

Rec+ Pre
(C4)

Here, Sfiltered is the number of real events passing the filter. Nremoved is the number of noise removed by the filter.

Aoriginal is the number of all events in the original dataset. Afiltered is the number of events that pass through the filter.

Soriginal is the number of real events in the original dataset.

The O(N2)-Space spatiotemporal filter [9], O(N)-Space spatiotemporal filter [8], Liu’s filter [7], Queue-based filter [3],

and the proposed filter were compared in the experiment. For the proposed filter, set D = 2. To increase the persuasiveness

of the experiment, the experiments used optimal experimental settings from previous works [3,7,8]. For O(N2), O(N), and

Liu’s filter, set the time threshold to 1ms, and for Liu’s filter, set S = 2. According to statistics, for the dataset under

sufficient illumination, the time of 968 events was about 1ms. Therefore, the experiment set M = 968 for the Queue-based

filter.

According to the experiment, the O(N2) filter, which requires the most memory, has good performance under two

illuminations, as shown in Table C1. Its F1d is second only to our work. For the O(N) filter and Liu’s filter, due to their

memory structure, they do not utilize complete spatiotemporal correlation and remove many real events, resulting in lower

Rec and F1d. For the Queue-based filter, it performs well under sufficient illumination. However, when light is insufficient,

due to increased noise, it retains fewer real events, resulting in a significant decrease in Rec and F1d. Compared to the

above filters, the proposed filter remains the most real event, and it has the best performance under two lighting conditions.

F1d of the proposed filter has been improved by more than 4.1% compared to the state-of-the-art method O(N2) while



Sci China Inf Sci 8

(a) filtered (b) filtered+clustered

Figure C3 Under the low light condition, after being denoised by the proposed filter, the output is shown in Figure (a), in which

noise cannot be completely removed. After passing through a filter and then clustering, the noise is almost completely removed, as

shown in Figure (b).

Figure C4 The figure shows the variation of the weighted F1-score with IoU. The labeled data in the figure represents the area

enclosed by the curve, and the larger the area, the better the performance.

reducing the memory required by three orders of magnitude. Moreover, compared to the recent Queue-based filter, the

proposed filter’s F1d has been improved by more than 4.4% with a 77% reduction in memory. It only needs 4.072 kb

memory, while the O(N2) filter needs 10 Mb memory, Liu’s filter needs 5 Mb memory, O(N) filter needs 51 kb memory

and the Queue-based filter needs (9 + 9)× 968 bits = 17.424 kb memory.

Appendix C.1.2 Public dataset experiments

To make the experiment persuasive, the filters were compared on the public dataset: DVSNOISE20 [10]. It was collected

using a DAVIS346 neuromorphic camera, obtaining 16 indoor and outdoor scenes of noisy, real-world data. As shown in

Figure C2, two scenes in the dataset DVSNOISE20 were selected. For the sake of observation, the events before and after

filtering were accumulated in frames. As shown in Figure C2, the proposed filter achieves a similar denoising performance

to the recent Queue-based filter, and it can be seen from the figures of the removed event (i.e. the second-row images of

each scene) that our filter preserves the most real events.

Appendix C.2 Results of clustering

Appendix C.2.1 Clustering for denoising

In the above experiment, under the low light condition, only using filters to denoise cannot completely remove noise,

as shown in Figure C3(a). After passing through a filter and then clustering, the noise around the airplanes is almost

completely removed, as shown in Figure C3(b). Moreover, the real events that pass through the clustering algorithm are

almost not lost, thanks to the proposed category coverage mechanism. As shown in Table C1, the combination of filtering

and clustering has the best comprehensive denoising performance, removing noise while preserving as many real events as

possible.

Appendix C.2.2 Clustering comparison

To compare event-based clustering methods on ROI extraction, the public traffic dataset [11] was used in the experiment,

and we calculated the weighted F1-score as [11] does. Firstly, the dataset was denoised by the proposed filter. For the

Queue-based clustering, due to its integration of denoising and clustering, it uses its filter for denoising. For fairness, the

initial radius and the step for radius updates of the centroid-and-radii-based clustering [4] are set to 8. For the Queue-based

clustering [3] and the proposed clustering, the clustering threshold is also set to 8. And all clustering algorithms can retain

up to 8 targets, according to [11]. After clustering, they only retain categories with event numbers greater than 1. The

quantitative results are shown in Figure C4. The weighted F1-score of the proposed clustering has improved by an average

of 15.7% compared to the recent Queue-based clustering [3].



Sci China Inf Sci 9

References

1 B. Son et al., ”4.1 A 640×480 dynamic vision sensor with a 9µm pixel and 300Meps address-event representation,”
2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017, pp. 66-67, doi:
10.1109/ISSCC.2017.7870263.

2 T. Finateu et al., ”5.10 A 1280×720 Back-Illuminated Stacked Temporal Contrast Event-Based Vision Sensor with
4.86µm Pixels, 1.066GEPS Readout, Programmable Event-Rate Controller and Compressive Data-Formatting Pipeline,”
2020 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 112-114, doi:
10.1109/ISSCC19947.2020.9063149.

3 F. Li, Y. Huang, Y. Chen, X. Zeng, W. Li and M. Wang, ”Queue-based Spatiotemporal Filter and Clustering for Dynamic
Vision Sensor,” 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023, pp. 1-4,
doi: 10.1109/ISCAS46773.2023.10181868.

4 A. Linares-Barranco et al., ”Low Latency Event-Based Filtering and Feature Extraction for Dynamic Vision Sensors in Real-
Time FPGA Applications,” in IEEE Access, vol. 7, pp. 134926-134942, 2019.

5 A. Bisulco, F. Cladera, V. Isler and D. D. Lee, ”Near-Chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian De-
tection,” 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Limassol, Cyprus, 2020, pp. 234-239, doi:
10.1109/ISVLSI49217.2020.00050.

6 D. P. Moeys et al., ”A Sensitive Dynamic and Active Pixel Vision Sensor for Color or Neural Imaging Applications,” in IEEE
Transactions on Biomedical Circuits and Systems, vol. 12, no. 1, pp. 123-136, Feb. 2018.

7 H. Liu, C. Brandli, C. Li, S. -C. Liu and T. Delbruck, ”Design of a spatiotemporal correlation filter for event-based sensors,”
2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 722-725.

8 A. Khodamoradi and R. Kastner, ”O(N)O(N)-Space Spatiotemporal Filter for Reducing Noise in Neuromorphic Vision Sen-
sors,” in IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 1, pp. 15-23, 1 Jan.-March 2021.

9 Delbruck, Tobi. ”Frame-free dynamic digital vision.” Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced
Electronics for Quality Life and Society. Vol. 1. 2008.

10 R. W. Baldwin, M. Almatrafi, V. Asari and K. Hirakawa, ”Event Probability Mask (EPM) and Event Denoising Convolutional
Neural Network (EDnCNN) for Neuromorphic Cameras,” 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 1698-1707.

11 V. Mohan et al., ”EBBINNOT: A Hardware-Efficient Hybrid Event-Frame Tracker for Stationary Dynamic Vision Sensors,”
in IEEE Internet of Things Journal, vol. 9, no. 21, pp. 20902-20917, 1 Nov.1, 2022, doi: 10.1109/JIOT.2022.3178120.


	Proposed algorithm
	Bit Queue spatiotemporal filter
	Boundary-box-based clustering
	Representation of categories
	Process of clustering
	Category coverage mechanism
	Clustering ending mechanism


	Hardware implementation
	Implementation of the Filter
	Bit Queue
	Read Ctrl
	Bit Mask Computer

	Implementation of the clustering
	State Ctrl
	Read-out ways of clustered events


	Results of the experiment
	Results of filter comparison
	Quantitative experiment
	Public dataset experiments

	Results of clustering
	Clustering for denoising
	Clustering comparison



