

# Over 3 GW/cm<sup>2</sup> low leakage vertical $\beta$ -Ga<sub>2</sub>O<sub>3</sub> Schottky rectifier featuring self-aligned multi-zone junction termination extension

Jiangbin WAN<sup>1</sup>, Hengyu WANG<sup>1\*</sup>, Tiancheng TAO<sup>1</sup>, Haoyuan CHENG<sup>1</sup>, Ce WANG<sup>1</sup>,  
Chi ZHANG<sup>1</sup> & Kuang SHENG<sup>1,2\*</sup>

<sup>1</sup>College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

<sup>2</sup>ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China

Received 17 April 2025/Revised 14 July 2025/Accepted 29 September 2025/Published online 4 January 2026

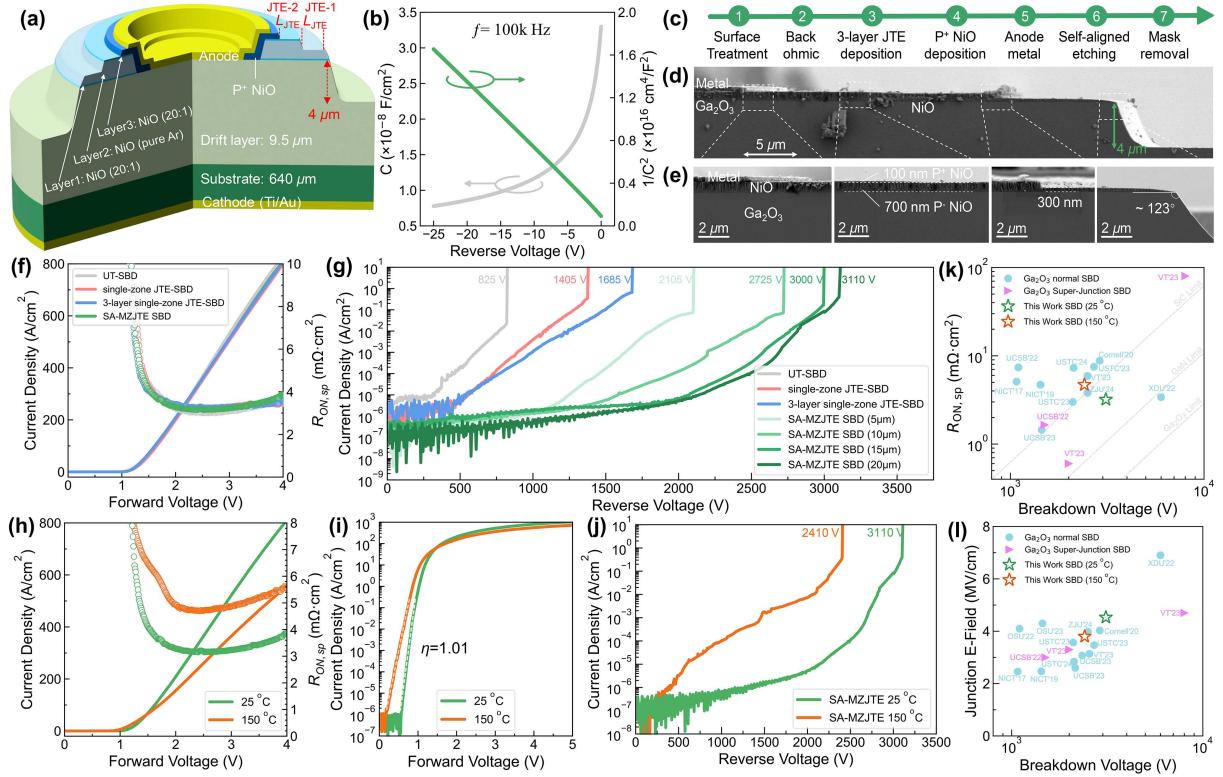
**Citation** Wan J B, Wang H Y, Tao T C, et al. Over 3 GW/cm<sup>2</sup> low leakage vertical  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> Schottky rectifier featuring self-aligned multi-zone junction termination extension. *Sci China Inf Sci*, 2026, 69(2): 129404, <https://doi.org/10.1007/s11432-025-4617-1>

Ultra-wide bandgap (UWBG) semiconductors, including gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), aluminum nitride (AlN), boron nitride (BN), and diamond, have garnered significant attention due to their substantial critical electric fields (E-field). Among these,  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> stands out due to its exceptional properties, such as a broad spectrum of controllable N-doping, a decent electron mobility, and the readily available large-scale melt-grown substrates. These advantages promote high-quality homoepitaxy and potentially cost-effective device fabrication [1]. Edge termination is pivotal for vertical  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> power devices. However, the lack of effective native p-type doping poses challenges in managing the electric field in  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>. To address this issue, various innovative techniques have been developed [2].

Among various methods, the junction termination extension (JTE) utilizing nickel oxide (NiO) has emerged as one of the most promising approaches due to its adjustable acceptor doping and manufacturing flexibility through sputtering. Despite these advantages, existing JTE designs have a key challenge: the breakdown field of the NiO using pure Ar during sputtering is not compatible with the breakdown field of Ga<sub>2</sub>O<sub>3</sub>. Previous study [3] has pointed out that the p-type NiO has different critical breakdown fields ( $E_C$ ) with different doping levels. Therefore, achieving a better match of breakdown characteristics in heterogeneous JTE while maintaining the simplicity of JTE fabrication is a critical area that requires further study and development.

This study presents a novel and practical vertical Ga<sub>2</sub>O<sub>3</sub> Schottky barrier diode (SBD) featuring a self-aligned multi-zone JTE (SA-MZJTE). Distinct from prior multi-zone JTE SBDs in Ga<sub>2</sub>O<sub>3</sub>, this multi-zone JTE deploys a self-aligned etching to form multi-zone following the 3-layer single-zone JTE-SBD fabrication. The produced SA-MZJTE SBD exhibits a  $BV$  exceeding 3 kV, with a long JTE length of 20  $\mu$ m. Additionally, the SA-MZJTE SBD is capable of withstanding 2400 V at an elevated temperature of 150°C.

*Design and simulation.* Figure 1(a) presents a 3-D schematic view of the fabricated  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> SA-MZJTE SBD. Figure 1(b) illustrates the  $C$ - $V$  and  $1/C^2$ - $V$  of the SA-MZJTE SBD measured


at a frequency of 100 kHz, revealing a net doping concentration of  $1.8 \times 10^{16}$  cm<sup>-3</sup>. For further device design, we would like to extract the NiO parameter in actual application scenarios (see Appendix A1) through  $C$ - $V$ . The average P-type doping of the NiO with Ar:O<sub>2</sub> (20:1) and pure Ar is calculated and determined to be  $\sim 1.8 \times 10^{18}$  and  $\sim 3 \times 10^{17}$  cm<sup>-3</sup>, respectively. After that, we can design the JTE through charge compensation (see Appendix A2). For further explanation and understanding, technology computer aided design (TCAD) Sentaurus simulations were performed to investigate the effectiveness of the proposed SA-MZJTE (see Appendix A3) compared with other devices.

*Experiment.* Figure 1(c) outlines the main fabrication steps of the SA-MZJTE SBD. The detailed descriptions can be found in Appendix B. The lengths of the JTE-1 and JTE-2, which are shown in Figure 1(a), are designed to be equal, referred to as  $L_{JTE}$ . The diameter of the device is set at 100  $\mu$ m. Scanning electron microscope (SEM) images of the entire SA-MZJTE are depicted in Figure 1(d), while Figure 1(e) details each JTE region. A 4  $\mu$ m trench is formed at the edge of JTE-1, and the etching selectivity of NiO to Ga<sub>2</sub>O<sub>3</sub> is 1:10.

*Results and discussions.* Figure 1(f) shows the forward characteristics of the four devices, including UT-SBD, single-zone JTE-SBD, 3-layer single-zone JTE-SBD, and SA-MZJTE SBD. The devices exhibit similar forward characteristics, which means the proposed JTE technology would not degrade the device conducting performance. The  $R_{ON,sp}$  of the four devices are about 3.1, 3.25, 3.17, 3.2 m $\Omega$ ·cm<sup>2</sup>, respectively. The differences in these values are due to the slight non-uniformity in the drift region grown by HVPE.

Figure 1(g) presents the corresponding blocking characteristics of the four devices. The UT-SBD demonstrates a maximum BV of 825 V. In contrast, the single-zone JTE-SBD, featuring a 700 nm NiO deposited in pure Ar, breaks down at 1405 V. In addition, when the interface has the medium-doped NiO, the BV can be increased to 1685 V, even if the JTE's dose is very excessive. This is because the breakdown field of medium-doped NiO is higher compared to lowly doped NiO [3]. Furthermore, the SA-MZJTE

\* Corresponding author (email: wanghengyu@zju.edu.cn, shengk@zju.edu.cn)



**Figure 1** (Color online) (a) 3-D schematic view of the SA-MZJTE SBD; (b)  $C$ - $V$  and  $1/C^2$ - $V$  of the SA-MZJTE SBD, which is measured at a frequency of 100 kHz; (c) main fabrication steps of the vertical  $\text{Ga}_2\text{O}_3$  SA-MZJTE SBD; (d) SEM image of the entire SA-MZJTE region; (e) magnified SEM image showing each JTE region; (f) forward  $J$ - $V$  of the UT-SBD, single-zone JTE-SBD, 3-layer single-zone JTE-SBD, and the SA-MZJTE; (g) reverse  $J$ - $V$  of the UT-SBD, single-zone JTE-SBD, 3-layer single-zone JTE-SBD, and the SA-MZJTE with varying JTE lengths of 5, 10, 15, and 20  $\mu\text{m}$ , respectively; typical forward  $J$ - $V$  characteristics of the fabricated SA-MZJTE SBD at 25°C and 150°C presented in the (h) linear scale and (i) semi-log scale; (j) reverse  $J$ - $V$  characteristics of the SA-MZJTE with a JTE length of 20  $\mu\text{m}$ , measured at 25°C and 150°C; benchmark of the (k)  $R_{ON,sp}$  versus  $BV$  and (l) junction electric field versus  $BV$  of reported state-of-the-art  $\beta\text{-Ga}_2\text{O}_3$  SBDs.

SBD exhibits a breakdown voltage of 2105 V at an  $L_{\text{JTE}}$  of 5  $\mu\text{m}$ . As the  $L_{\text{JTE}}$  increases to 10 and 15  $\mu\text{m}$ , the BV gradually rises to 2725, 3000 V, respectively. Notably, when the  $L_{\text{JTE}}$  is extended to 20  $\mu\text{m}$ , the breakdown voltage only increases to 3110 V, indicating a saturation effect of the  $L_{\text{JTE}}$ . Additionally, the leakage current of the SA-MZJTE SBD remains relatively low (see Appendix Table C1). At the reverse bias of 1500 V, the leakage is 5 orders of magnitude lower than that of the 3-layer single-zone JTE-SBD.

Figures 1(h) and (i) show the typical forward  $J$ - $V$  of the SA-MZJTE SBD at 25°C and 150°C in linear scale and semi-log scale, respectively. The  $R_{ON,sp}$  of the SA-MZJTE SBD is determined to be 3.2  $\text{m}\Omega\cdot\text{cm}^2$  at 25°C and 4.7  $\text{m}\Omega\cdot\text{cm}^2$  at 150°C. The ideality factor in the barrier-limited region is about 1.01, indicating that the Schottky interface is well protected during the self-aligned multi-zone JTE etching process. The device also exhibits an excellent on/off ratio of  $10^9$  at both temperatures. Figure 1(j) illustrates the blocking capability of the SA-MZJTE SBD with a  $L_{\text{JTE}}$  of 20  $\mu\text{m}$  at 25°C and 150°C.

In Figure 1(k), the power figure of merit (PFOM) of the SA-MZJTE SBD is benchmarked against state-of-the-art  $\text{Ga}_2\text{O}_3$  SBDs [4]. The SA-MZJTE SBD with a JTE length of 20  $\mu\text{m}$  exhibits a PFOM of 3  $\text{GW}/\text{cm}^2$  at 25°C and 1.2  $\text{GW}/\text{cm}^2$  at 150°C. Figure 1(l) presents the BV and junction field (see Appendix C for junction E-field extraction) among other  $\text{Ga}_2\text{O}_3$  SBDs. These results position it among the best in the reported  $\text{Ga}_2\text{O}_3$ -based SBDs.

**Conclusion.** This study presents a high-performance vertical  $\text{Ga}_2\text{O}_3$  SBD featuring a self-aligned multi-zone JTE. The fabrica-

tion of this NiO JTE utilizes a standard NiO deposition process combined with  $\text{Ga}_2\text{O}_3$  etching techniques. The fabricated SA-MZJTE achieves a breakdown voltage of 3110 V with an  $L_{\text{JTE}}$  of 20  $\mu\text{m}$ . The  $R_{ON,sp}$  of the device is determined to be 3.2  $\text{m}\Omega\cdot\text{cm}^2$ , leading to a PFOM of 3  $\text{GW}/\text{cm}^2$ . Moreover, the SA-MZJTE can withstand a high voltage up to 2410 V at 150°C. This research highlights a straightforward and effective edge protection technology for vertical  $\text{Ga}_2\text{O}_3$  power devices, underscoring its potential to advance multi-kilovolt  $\text{Ga}_2\text{O}_3$  devices.

**Acknowledgements** This work was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ25E070001) and National Natural Science Foundation of China (Grant Nos. U23B20136, 52107213).

**Supporting information** Appendixes A–C. The supporting information is available online at [info.scichina.com](http://info.scichina.com) and [link.springer.com](http://link.springer.com). The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

## References

- 1 Wang C L, Sun S H, Su C X, et al. Breakdown voltage over 10 kV  $\beta\text{-Ga}_2\text{O}_3$  heterojunction FETs with RESURF structure. *Sci China Inf Sci*, 2025, 68: 169401
- 2 Feng Y T, Zhou H, Alghamdi S, et al. 1.56 kV/30 A vertical  $\beta\text{-Ga}_2\text{O}_3$  Schottky barrier diodes with composite edge terminations. *Sci China Inf Sci*, 2025, 68: 129401
- 3 Ma Y, Qin Y, Porter M, et al. Wide-bandgap nickel oxide with tunable acceptor concentration for multidimensional power devices. *Adv Electr Mater*, 2025, 11: 2300662
- 4 Wan J, Wang H, Wang C, et al. 2.5 kV/3.78  $\text{m}\Omega\cdot\text{cm}^2$  low forward voltage vertical  $\beta\text{-Ga}_2\text{O}_3$  Schottky rectifier with field plate assisted deep mesa termination. *IEEE Electron Device Lett*, 2024, 45: 778–781