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Locomotion controllers play a critical role in enabling robots to

perform complex behaviors in dynamic environments. Recent ad-

vances in reinforcement learning have demonstrated significant

potential for developing more efficient and effective robotic con-

trollers. Peng et al. [1] proposed a paradigm to train a locomotion

policy in simulation and then transfer it to the real world. Envi-

ronmental and dynamic factors, which can also be summarized as

domain factors, have been taken into consideration to train more

robust policies [2–5]. These methods can result in a robust policy

that can adjust the gait to adapt to perturbations in the simula-

tion that may also occur in the real world, such as random push,

adding mass, and slippery or rocky terrains. However, these meth-

ods rely on the choice of the range of the domain factors. If the

chosen range does not cover the real-world scenario, the policy will

not be effective.

In this study, we demonstrate a new perspective on viewing

the domain gap. Intuitively, the researchers deploy the trained

policy on a real robot only when the performance is acceptable

in simulation. Thus, the goal of bridging the sim-to-real gap is

to replicate the accepted performance to different sets of domain

factors. Motivated as such, we present a method, called domain-

aware behavior cloning (DABC), which first trains a base policy in

a specific environment and then trains an adapting policy to gener-

alize to new environments with different domain factors. The key

distinction between our proposed method and the typical teacher-

student framework used by [3, 4] is that we train the adaptive

policy with reinforcement learning rather than supervised learn-

ing. Reinforcement learning allows the adaptive policy to explore

a wider spectrum of environmental conditions than the base pol-

icy, which results in a more resilient policy for deployment. We

evaluate the effectiveness of the method using a quadrupedal robot

that walks in various environments in both simulation and the real

world. Compared to baseline methods based on domain identifi-

cation and adaptation, DABC demonstrates superior performance

in command following and terrain navigation in the real world.

Our proposed method involves two phases: training a base loco-

motion policy using a specific environment and cloning its behavior

to other environments with varied unknown domain factors with

an adapting policy.

In training the base locomotion policy, the key components of

reinforcement learning are defined as follows.

Agent (Phase 1). The agent πbase generates desired joint an-

gles for legged robots with the current state st ∈ R48 and the

embedding et of domain factors zt ∈ R
32. The agent is in the

form of multi-layer perceptrons (MLPs) sized [512, 256, 128] and

trained through interactions with the environments.

Environment (Phase 1). The environment provides the states

st to the agent and transitions to the next state based on the

agent’s actions at. The state st comprises commands ct ∈ R3, the

previous action at−1 ∈ R
12, gravity gt ∈ R

3, heading ht ∈ R
3,

angular velocity wt ∈ R
3, joint position qt ∈ R

12, and joint veloc-

ity q̇t ∈ R12. The commands ct refer to the task target, including

velocity tracking in the x-y plane and the target heading direction.

The actions at are the desired joint positions of the actuators. The

embedding of domain factors et is encoded from ground truth do-

main factors zt including friction f , the robot’s external mass m,

the robot’s center of mass xcom, and the KP ,KD values of the

actuators.

Reward (Phase 1). We design the reward to achieve the goal

and prevent harmful behaviors. The goal includes tracking the

command and avoiding falls. The penalty includes energy con-

sumption, motor torques, action scales, contacts on robot links

and feet contact forces. We designed Nr reward functions and

used their weighted sum as the final reward rt = ΣNr

i=0fi(st).

There are two modules to be learned for a locomotion policy

et = µ(zt), (1)

at = πbase(st, et). (2)

An autoencoder µ is trained to minimize the reconstruction loss of

the input domain factors while the agent π is trained to optimize

the accumulated reward

max Jπ = maxEτ p(τ |π)[Σ
T−1
t=0 γtrt], (3)

where τ is the trajectory collected from rollouts of simulated

robots, which is defined as τt = (xt, xt+1, at, rt). The first training

phase involves training the locomotion policy with reinforcement

learning and training the autoencoder for the domain factors with

supervised learning. Then, the locomotion policy and the autoen-

coder will be frozen to train the adapting policy in the second

training phase.
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Figure 1 (Color online) Environment of our experiment. (a) Locomotion under disturbances. The robot is commanded to walk with 0.7 m/s,

and a 3-kg payload will be dropped during operation. (b) Simulated stairs. The robot is trained to walk on stairs with a curriculum of speeds.

(c) Real stairs with an 11-cm height. The robot is required to walk from plain ground onto a step with an 11-cm height. (d) Real stair with a

14-cm height.

The second training phase is designed to enable the agent to

mimic its trajectory across a wider range of domain factors. We

refer to the specified domain factors from which the agent is cloned

as the source domain. The unknown domain to which the agent is

being adapted is called the target domain. To achieve this goal, we

model the task as a Markov decision process (MDP), highlighting

three major differences compared to the agent trained specifically

for locomotion.

Agent (Phase 2). Since our goal is to clone the agent’s tra-

jectory within a specific set of domain factors, the source domain

factors are observable by the agent. Therefore, we include the em-

bedding of the source domain factors in the state st. With this

setup, we can obtain the reference action

a
ref
t = π(st, et−1). (4)

Our primary objective in the adapting policy is to compute the

residual action ares, which is a complement of the original action

with a smaller absolute scale. This setting prevents the explo-

ration of the adapting policy harming the performance of the base

locomotion policy too much, which may result in falling. The in-

tuition of using residual action has also been applied in several

studies to stabilize training and facilitate faster convergence [2–4].

We confine the range of the residual action to 0.1, 0.15, and 0.2 for

the hip, thigh, and calf joints, respectively, according to their max-

imum range of motion. Finally, the agent interacts with the envi-

ronment by executing the action summation a
adapt
t = a

ref
t +arest .

Environment (Phase 2). State history, which consists of joint

motion and action history, can be an effective source for estimat-

ing the motor dynamics [3]. We use the history, which is defined

by s
adapt
t = {st−n, . . . , st−1, st} to perceive the dynamic in the

target domain. Thus, the residual action given by the adapting

policy can be computed by

arest = πadapt(sadaptt ). (5)

Reward (Phase 2). The base locomotion policy in Phase 1 is

trained to optimize the expected return in the source domain while

the adapting policy in Phase 2 is specifically crafted to replicate

the trajectory from the source domain to the target domain. Using

the same action given by the same base locomotion policy trained

in Phase 1, the agents in the source and the target domain will

reach different subsequent states determined by the state transi-

tion function.

st+1 = Pss′ (st, at, zt). (6)

The goal of the residual action can be interpreted as minimizing

the distance between the next states of agents that act in differ-

ent environments given the same current state. Hence, the reward

function can be designed to minimize the summation of the error in

the source domain and the target domain including heading track-

ing, velocity tracking, joint position tracking, and joint velocity

tracking.

Experiment. The trained adapting policy can be deployed di-

rectly on a real robot for evaluation. To evaluate the domain

adapting capability of different methods, we design experiments

in both simulation and real-world environments. We design veloc-

ity tracking tasks including free walking, walking under a dropped

payload, and a terrain traversing task, which is shown in Figure

1. The payload weighs 3 kg and is dropped from 1.0 m above the

robot after the robot has started walking for 3 s. We evaluate the

performance of walking tasks with the mean squared error (MSE)

between the commanded velocity and actual velocity. We report

the success rate of walking without falling in 100 trials for terrain

traversing tasks. Detailed results are demonstrated in Appendix

A.

Conclusion and limitation. In this study, we propose a novel

workflow of domain adaptation for quadrupedal robots. By learn-

ing to replicate the trajectory from the source domain to the tar-

get domain, the proposed adaptation mechanism achieved both

a higher velocity tracking reward and a higher success rate for

traversing stairs in the real world. Nevertheless, the distortion of

robot feet is difficult to simulate by merely changing the domain

factors used in the study. Such distortion can surpass the tolerance

of the adaptation policy, causing locomotion failure.
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