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With the rapid development of unmanned aerial vehicle (UAV)

manufacturing technology and the increasing complexity of the

UAV working environment, UAV swarms are bound to thrive in

future military and civilian tasks. Effective internal cooperation

across UAVs is crucial for accomplishing the mission successfully

in the UAV swarm confrontation game [1]. How to make optimal

decision in asymmetric UAV swarm confrontation tasks is still an

open issue [2,3]. In this study, we propose a novel multi-agent deep

reinforcement learning method named counterfactual baseline-

based MAPPO (CB-MAPPO) to tackle the decision-making issues

of asymmetric UAV swarm confrontation missions. Our contribu-

tions are summarized as follows.

• A MADRL-based multi-UAV confrontation game model is

established on a 3D-based JSBSim flight simulation platform.

• We propose a novel mult-agent deep reinforcement learn-

ing method named CB-MAPPO, which introduces a counterfac-

tual baseline mechanism within the MAPPO framework, enabling

more accurate credit assignment for each agent in multi-agent en-

vironments with partial observability and asymmetric team struc-

tures. Unlike standard MAPPO, which uses a shared baseline,

CB-MAPPO instead computes baselines for each agent, thereby

reducing the variance of the policy gradient estimates and im-

proving learning efficiency.

• The experimental results show that the Nash equilibrium can

be well achieved. By employing CB-MAPPO, the number of de-

stroyed enemies is increased by 37.5%, and the survival rate is

increased by 40%.

Problem formulation. Due to the incomplete information,

the UAV swarm game can be formulated as a partially ob-

servable Markov game, which is represented by an eight-tuple:

〈N, S,O,A, P,Z,R, γ〉, where N is the number of total UAVs, S

is the set of interaction states between UAVs and the environ-

ment, s ∈ S; O denotes the joint observation space of all UAVs,

O = O1 × O2 × · · · × ON , where Oi is the observation space of

the i-th UAV. At each time step, each UAV can only obtain its

own local observation oi ∈ Oi. A is the set of UAV actions, and

A = {A1 × A2 × · · · × AN}. The state transition probability

P is indeed related to the joint actions of all UAVs. Specifically,

P (s′|s, a) denotes the probability that the environment transitions

to the next state s′ given the current state s and the joint action

a taken by all UAVs. The observation function Z is defined as

Z = P (o|s), which represents the probability distribution over

the joint observation o that all UAVs receive, given the current

environment state s. In other words, Z describes how the state

determine the observations. R is the immediate reward function

of the UAV, which is obtained when all UAVs transition to the

state s′ after executing the joint action; γ is the discount factor,

which represents the trade-off between the immediate reward and

the future reward of the UAV.

To establish the UAV swarm confrontation game environment,

both red and blue UAVs adopt a 6-DOF dynamic model, and the

dynamics of each UAV can be described as follows:
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φ = rφ + (rϕ cos φ+ rθ sinφ) tan θ,

θ = rθ cosφ− rϕ sinφ,

ϕ = (rϕ cosφ+ rθ sinφ)/ cos θ,

v̇x = vx −
F

m
(cosϕ sin θ cosφ+ sinϕ sinφ)dt,

v̇y = vy −
F

m
(sinϕ sin θ cos φ− cosϕ sinφ)dt,

v̇z = vz +

(

g −
F

m
cos φ cos θ

)

dt,

−0.2 rad/s < rφ < 0.2 rad/s,

−0.2 rad/s < rϕ < 0.2 rad/s,

−0.1 rad/s < rθ < 0.1 rad/s,

(1)

where φ represents the roll angle, rφ is the angular velocity in

roll; θ denotes the pitch angle, rθ is the pitch angle velocity; ϕ

*Corresponding author (email: xxthongchen@buu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-024-4728-1&domain=pdf&date_stamp=2026-1-16
https://doi.org/10.1007/s11432-024-4728-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-024-4728-1
https://doi.org/10.1007/s11432-024-4728-1


Wang E S, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 129207:2

Figure 1 (Color online) (a) The middle scene of UAV swarm confrontation; (b)–(f) are the comparisons between CB-MAPPO and MAPPO

under different evaluation metrics.

represents the yaw angle, rϕ is the yaw angular velocity; F rep-

resents the driving force, m is UAV’s mass, g is the gravitational

acceleration, and dt denotes the differential variable of time t.

Proposed solution. To improve the capability of UAVs in swarm

confrontation scenarios, we incorporate MAPPO with counter-

factual baseline and propose a method named CB-MAPPO. The

state-action value function Qw, the state value function Vπ , the

advantage function Aπ , and the expected discount reward function

η(π) are respectively computed by [4]

Qw(st,at) = Est+1,at+1
[Rt | st,at],

Vπ(st) = Eat,st+1,...[Rt | st],

Aπ(st,at) = Qw(st,at)− Vπ(st),

η(π) = Es0∼p0(s0){Vπ(s0)},

(2)

where π is the joint policy, st is the state at time step t, at is

UAV’s action at time step t, Rt is the reward obtained by the

UAV at time step t, and p0(s0) is the probability distribution of

the initial state s0.

To solve the credit assignment problem, we use counterfactual

baseline, where a centralized critic network is adopted to estimate

the state-action value function, which can be denoted as

Q̂i(st,at) = Qwi (st,at) + δt + (γλ)δt+1 + · · ·+ (γλ)TδT , (3)

where the temporal difference error δt = rt + λQwi(st+1, at+1)−

Qwi (st, at), and Qwi (st,at) is the target state-value function of

UAV i.

Simulation. The middle scene of two UAV swarms confronta-

tion is displayed in Figure 1(a), and Figure 1(b) shows that the re-

ward of UAVs is higher than that of blue UAVs when the number of

episodes is larger than 1500, indicating CB-MAPPO outperforms

MAPPO even though its UAV swarm size is only half of the latter.

Figure 1(c) shows the number of destroyed opponent UAVs under

the two methods. One can see that at the initial stage of learning,

the number of destroyed UAVs under MAPPO is 8 per episode,

while fluctuating near lower values under CB-MAPPO. As the

number of episodes increases, although the number of destroyed

blue UAVs with respect to CB-MAPPO fluctuates, it generally

rises and reaches a peak value of 11, which demonstrates that 11

blue UAVs adopting MAPPO can be killed by 8 red UAVs using

CB-MAPPO.

As shown in Figure 1(d), the survival rate of CB-MAPPO is

higher than that of MAPPO after 1500 episodes. We can see that

the loss function has reached convergence (Figures 1(e) and (f)),

indicating that the UAV countermeasure mission is stabilized.

Conclusion. To summarize, we have proposed a multi-agent

deep reinforcement learning method named CB-MAPPO to ad-

dress the decision-making issues of asymmetric UAV swarm con-

frontation tasks. The results indicate that CB-MAPPO can con-

verge to the Nash equilibrium and obtain the best performance.

By employing CB-MAPPO, the number of destroyed opponent

UAVs has increased by 37.5%, and the survival rate can be in-

creased by 40%.
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