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A preferential decision mechanism for complex electromechanical

equipment can effectively improve its reliability during operation.

However, due to the high cost of high-precision complex electrome-

chanical equipment and experiments, high-value samples such as

those representing suboptimal health or fault conditions are scarce

among the large number of samples collected. Expert experience or

mechanistic knowledge is often incorporated to supplement mod-

eling efforts. Nevertheless, uncertainties such as fuzziness, igno-

rance, and randomness exist in expert experience and mechanistic

knowledge. The belief rule base (BRB) is a good choice to address

the aforementioned issues, where the uncertain expert knowledge

and high-value samples can be combined, simultaneously.

However, traditional BRB cannot consider the influence of high-

precision complex electromechanical equipment under complex

road conditions. Therefore, this study proposes complex road con-

dition influence factors and, based on this, proposes a BRB model

that considers the influence of complex road conditions, called be-

lief rule base-transportation (BRB-t). Finally, the output results

of the BRB-t model are ranked to provide a reference for decision-

makers to make optimal decisions for different tasks.

Methodology validation. The modeling steps for the BRB-t

model proposed in this study, which considers the impact of com-

plex road conditions, are as follows:

Rk : If x1(t) is A
k
1 ∧ x2(t) is A

k
2 ∧ · · · ∧ xM (t) is A

k
M ,

then T is {(D1, β1,k), (D2, β2,k), · · · , (DN , βN,k)}

with rule weight θk, attribute weight δ1, · · · , δM ,

and road condition impact factor y,

(1)

where x1(t), . . . , xM (t) is the monitoring information obtained.

Ak
1 , . . . , A

k
M

is the reference level corresponding to the indicator.

D1, . . . ,DN is a fault state. β1,k, . . . , βN,k is the fault state fea-

ture vector. θk is rule weight. δ1, . . . , δM is attribute. y is the

complex road condition impact factor.

Part 1. Calculate the complex terrain impact factor y based

on the specific transportation conditions of the complex elec-

tromechanical equipment being transported. The vibration im-

pact sources of transporting complex electromechanical equipment

mainly come from railways and highways, and a standardized com-

plex road condition impact factor y calculation formula is proposed

as follows [1]:

y =
a2 − (β1 × r1 + β2 × r2)

a2 − a1

, (2)

where r1 is road transport mileage and r2 is railway transport

mileage. β1 is the coefficient corresponding to r1 and β2 is the

coefficient corresponding to r2. a1 and a2 are the minimum and

maximum values of the converted value of the specified transport

mileage, respectively.

Part 2. In order to convert multi-source indicators into a uni-

fied framework, the following matching conversion method based

on indicator reference levels is used:
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Ri(k+1)−x∗
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0, j = 1, 2, ..., L′, j 6= k, k + 1,

(3)

αk =
M
∏

i=1

(yαi
k)

δi , (4)

where Rik and Ri(k+1) represent the reference levels for the key

feature indicators i in rules k and k+1, respectively. The reference

levels must be determined based on the distribution and type of

feature information. x∗

i (t) is the input data. L′ is the number

of rules after adaptive adjustment of the model. αi
j denotes the

matching degree of the indicator in the jth rule after conversion.

αk is the match of all key feature indicators in the kth rule. δi
denotes the relative weight size of the indicator.

Part 3. Activate and fuse rule weights using the evidence rea-

soning (ER) algorithm to determine quality status. Different mon-

itoring information has different utility for different rules, and the

rule activation weight wk can be obtained by

wk =
θ̂kαk

L
∑

l=1

θ̂lαl

, k = 1, ..., L
′

, (5)

where θ̂k denotes the weight of the rule in the dynamic adjustment

process of the model.
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Then, the output u(S(x∗)) of the quality state of the complex

electromechanical device is calculated by

u(S(x∗)) =
N
∑

n=1

u(Dn)βn (6)

with
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(8)

where βn is the integrated belief degree of the nth quality state of

the complex electromechanical device. N is the number of qual-

ity states. βN denotes the residual belief degree generated by the

uncertain expert knowledge. u(S(x∗)) is the preferential decision-

making mechanisms output.

Part 4. Reasons for adding model optimization are as follows.

The initial model of BRB-t is given by experts. However, due to

the limitation of experts’ cognitive ability, there are certain devi-

ations in the parameters of the initial BRB-t model. This leads to

its actual modeling effect not meeting the requirements. Therefore,

it is essential to construct an optimization model. This model will

optimize the BRB-t model parameters and achieve the integration

of data and knowledge at the same time.

minMSE(θk, βn,k, δi) (9)

with

0 6 θk 6 1, (10)

0 6 δi 6 1, i = 1, 2, ...,M, (11)

0 6 βn,k 6 1, n = 1, 2, ...,M, k = 1, 2, ..., L′, (12)

M
∑

n=1

βn,k 6 1, k = 1, 2, ..., L′, (13)

where the mean square error (MSE) is applied as the modeling

accuracy of BRB-t.

Part 5. Preferential decision-making based on the BRB-t

model. After completing a quality assessment that considers the

impact of complex road conditions for multiple complex electrome-

chanical devices, the devices are ranked based on their quality.

This ranking provides decision-makers with recommendations for

preferential decision-making.

Sensitivity analysis aims to quantify the impact of different

transport factors on performance. The transport factors with

higher impact should be designed and improved. Sensitivity anal-

ysis is expressed as a partial derivative of βn to y as follows:

∂βn

∂y
=

M
∏

i=1

δ̄i
(

yαi
k

)δ̄ik−1
αi
k . (14)

Table 1 Comparative studies with other mechanisms.

Method MSE Stability

BRB-t 0.0369 7.32e−4

PCA-BPNN [2] 0.0884 1.4022e−3

Hidden Markov model [3] 0.0836 1.2087e−3

Lian et al. [4] 0.0902 1e−3

FIS & PSO [5] 0.1005 1.09176e−3

Experiments. An inertial navigation system (INS) is used as

the experimental object. Considering the complexity of the model

and the size of the observed data, four reference points are selected

for the three sensors in the experiment, i.e., large, good, fair and

poor. INS has four quality states, which can be expressed as excel-

lent, good, moderate and awful. The present invention collected

800 sets of data during the experiment and 400 sets were randomly

selected from the dataset as training data.

The comparison of MSE and stability between BRB-t and other

advanced methods is shown in Table 1. Compared with princi-

pal component analysis-back propagation neural network (PCA-

BPNN), BRB-t has more advantages in terms of interpretability

and transparency [2]. Compared with the hidden Markov model

(HMM), BRB-t has advantages such as input data processing ca-

pabilities and explicit expression of output uncertainty [3]. Com-

pared to Lian et al., BRB-t has more advantages in handling com-

plex road conditions [4]. Compared with fuzzy inference system

& particle swarm optimization (FIS&PSO), BRB-t has more ad-

vantages in terms of uncertainty handling, knowledge representa-

tion, and fusion [5]. It can be observed that BRB-t has achieved

an MSE improvement of 58.26% compared to PCA-BPNN. Addi-

tionally, BRB-t outperforms the hidden Markov model by 55.86%

in MSE. When compared to Lian et al., BRB-t exhibits an MSE

improvement of 59.09%. Furthermore, BRB-t improves upon FIS

& PSO by 63.28% in terms of MSE. Obviously, the BRB-t model

possesses relatively significant advantages.

Conclusion. This work addresses the problems of transport im-

pact, lack of fault data and uncertain expert knowledge of complex

electromechanical equipment. The calculation method for the in-

fluencing factors of complex road conditions is proposed. Then,

the BRB-t model considering the influencing factors of complex

road conditions is developed. The application scenarios of this

article are suitable for complex electromechanical equipment with

high reliability and high value, such as rockets and satellites.

Acknowledgements This work was supported partly by National
Natural Science Foundation of China (Grant Nos. 62573349, 62203365,
62203461, 61673387), Young Talent Promotion Program of Shaanxi
Association for Science and Technology (Grant No. 20230125), China
Postdoctoral Science Foundation (Grant No. 2023M742843), Aero-
nautical Science Foundation (Grant No. 2023Z034053004), and Key
Research and Development Program of Shaanxi (Grant No. 2025CY-
YBXM-102).

References
1 Li M, Shi Y, Li M, et al. Solving the vehicle routing problem for a

reverse logistics hybrid fleet considering real-time road conditions.
Mathematics, 2023, 11: 1–19

2 Zhou S, Liu X, Tian Y, et al. Multi-fault diagnosis of district
heating system based on PCA-BP neural network. Process Saf
Environ Protection, 2024, 186: 301–317

3 Jia Y, Li Y, Xu M, et al. A fault diagnosis scheme for harmonic
reducer under practical operating conditions. Measurement, 2024,
227: 114234

4 Lian Z, Zhou Z, Hu C, et al. A belief rule-based performance
evaluation model for complex systems considering sensors distur-
bance. IEEE Trans Rel, 2024, 73: 1245–1257

5 Dieste-Velasco M I. Fault detection in analog electronic circuits
using fuzzy inference systems and particle swarm optimization.
Alexandria Eng J, 2024, 95: 376–393

https://doi.org/10.1016/j.psep.2024.03.101
https://doi.org/10.1016/j.measurement.2024.114234
https://doi.org/10.1109/TR.2023.3311436
https://doi.org/10.1016/j.aej.2024.01.054

