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Obtaining the fully actuated system (FAS) model from other de-
scriptions of a system is the prerequisite and basis for applying
existing FAS approaches. The systematic transformation method
for linear time-invariant (LTI) systems has been studied in [1],
showing that an LTI system can be equivalently converted into a
FAS if and only if it is controllable. It has also been shown that
the transformation is closely associated with system controllability,
which similarly applies to linear time-varying (LTV) systems [2].
The background and notations are given in Appendix A.

Problem formulation. Consider the multi-input LTV system as
follows:

i=A{M) z+B(t)u, t>to, (1)

where u € R”, z € R™ are the input and the state, respectively,
to is the initial time, A : Rt — R”X™ and B : Rt — R™X" are
matrix functions.

The model transformation problem should be solved in the
sense of Lyapunov to ensure kinematic equivalence, thereby pre-
serving key dynamical properties of linear systems such as stability
and controllability. Otherwise, the proposed controller may be in-
valid for system (1), since its stability is not necessarily implied by
the stability of the obtained FAS. The Lyapunov transformation
can be described as # = P (t) z with P : Rt — R”*" being non-
singular and continuously differentiable, such that P (t), P~ (t)
and P (t) are bounded.

Define the following two matrix operators:

(O F () = §F ),
OAWD+ GF @)

with F' (t) being any analytic matrix function, and define

O" [F ()] 21.. . I[F®)], E"[F@®)]2E2...E[F ()],

n times n times

where n € N and Z0 [F ()] = II° [F (t)] = F () by default. Then,
the well-known criterion for assessing controllability of system (1)
is given as follows.
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Lemma 1 ([3]). Let A(t) and B (t) be analytic in J = [tg, 00)
and let the controllability matrix @ (¢) be defined as

QW =[Qi(1) Q1) - Qu ()] 3)

with Q; (t) = T [B(t)], i = 1,2,...,n. If rankQ (1) = n
holds for any t; € J, then system (1) is uniformly controllable in
the interval J.

Analogous to the LTI case, @ (t) can be reordered as

QW =] @ @], ()

where Q; = [bi Im[b;] --- It [bl]] , 4 =1,2,...,r with b; be-
ing the i-th column of B (t) and n; the controllability index cor-
responding to b;. Different from LTI systems, the controllability
indices n;, ¢ = 1,2,...,r, depend on ¢, meaning they may not re-
main fixed for all ¢ > tg. But there must exist a maximum finite
number p; within [tg, 00), namely, p; = max;>¢, n; (t). Clearly,
> i_q1 s = n holds. For controllability indices, we introduce a
somewhat outdated concept called lexicographically-fixed control-
lability, which has also been recently discussed in [4].
Definition 1 ([5]). Given the truncated controllability ma-
trix Q (t), if there exists a set of fixed controllability indices n,
i = 1,2,...,r, satisfying 22:1 n; = n within the time interval
[to,00) , then system (1) is said to be lexicography-fixedly control-
lable in [tg, 00) .
To determine the solvability criteria, the following assumptions

on system (1) are introduced.
Assumption 1. The LTV system (1) is lexicography-fixedly
controllable in [tg, 00).
Assumption 2. For all ¢ > tg, all elements of A (t) and B (t)
are at least n-times continuously differentiable.
Problem 1. Find a described by

(O~vmy =1) = P (t) x such that system (1), under Assump-

z
k
k=1~r
tions 1 and 2, is converted into a FAS in the form of

transformation

z;jw( = L(t) 20D +GMu,  (5)

k=1~7mr k=1~r

where L : RT - R™" G :RT - R"™ " are matrix functions.
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Problem 2. Construct a controller based on the FAS model
(5) such that the resulting closed-loop system of the original LTV
system (1) is exponentially stable.

Transformation from LTV systems into FASs. In view of As-
sumption 1 and Q (t) defined in (4), we know Q (t) is nonsingular
on t € [tg,00). Its inverse can be partitioned as

_ T
QW =[q0 - Tt F0 G| (©)

with q;; € R*, i = 1,2,...,r, j = 0,1,...,n; — 1. Letting
O = »,;—1 M4, we take all the oj-th rows of (6) and construct
the transformation matrix as follows:

Py q;{‘nifl
Py E [q;l:nifl]

P(t) = , P, = (7)
Py =ni—1 [q;f’nrl]

Based on this construction, we have the following result.

Theorem 1. Let the LTV system (1) satisfy Assumptions 1 and
2, and define zy|,_;,., = T (t) x where

T
T(t) = |:(jl,n1—1 62,n271 ‘j'r,nrfl] . (8)

Then system (1) can be converted into a FAS defined in (5), where
G (t) is given by

1 X12 -+ X1
1 - Xop
G(t)= 9)
1

with X ;,7=1,2,...,r — 1,7 = 2,3,...,r, being uniquely speci-
fied functions, and L (t) is provided in Appendix B.
Controller design. The controller can be designed as

u=-G 1! (t)
[A1loon, —1 ZEONM Y
[A2]0ny—1 Zé0N7L271)

L(t) 200~ =D . (10
() 2D (10)
O~np.—1
[AT}ONnrfl Z£ " )
where [Ak]0~nk—1 € R "k k =1,2,...,r are arbitrarily given

vectors. The following result holds.

Theorem 2. If the transformation is in the sense of Lyapunov,
the controller (10) based on the FAS model (5) solves Problem
2, such that the state response of the original LTV system (1) is
determined by

z(t) =P (t)exp (Pot) Zo (11)

with ®o = blockdiag (<1> ([Ai]oer) i= 1,2,...,7«) Hurwitz
and Zg = z](eownkil) (0)’k o
=l~r

Further generalizations. Assumption 1 may be too strict. For

a non-lexicographically-fixed system, the key difference is that the
matrix Q (t) given by (4) is not square and must be redefined as

QW =] & &), (12)

where O; = [bi b - nurl[bi}], i =1,2,...,r with u

defined as before. Following the idea in [5], we can construct
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an auxiliary system, making the augmented system lexicography-
fixedly controllable. Accordingly, Assumption 1 is replaced by the
following.

Assumption 3. The LTV system (1) is non-lexicography-
fixedly controllable on t € [tg,00), but the maximum values of
all controllability indices p;, ¢ = 1,2,...,r are known.

Define ne = Y ;_; pti —n. The augmented system instead of (1)
is then considered

t=A(t)z+ B(t)u, (13)

T
where & = [mT x;r ] € R**7e is the extended state and

B(t)

A= B. (1)

14
Ae,l (t) Ae,2 (t) ( )

A(t) Onxne:| B =

with A1 : RT — R?%eXn A, 5 : Rt — R"eXne and B : RT —
R™e X" being the auxiliary system matrices to be determined. We
then provide the following extended results.

Lemma 2 ([5]). For system (1) satisfying Assumptions 2 and 3,
there exists an auxiliary system of dimension ne:

e = Ac,1 (t) x4+ Acy2 (t) ze + Be () u,

such that system (13) is lexicography-fixedly controllable over
te [to7 OO)

Corollary 1. Consider the LTV system (1) under Assumptions
2 and 3. A controller based on the FAS approach can still be es-
tablished for the augmented system (13), provided the state trans-
formation is in the sense of Lyapunov.

The proofs and remarks of Theorems 1 and 2 are provided in
Appendixes B and C, respectively, and simulations are presented
in Appendix D.

Conclusion. This work introduced a method for transforming
multi-input LTV systems into FASs based on existing algebraic ap-
proaches. For LTV systems, the obtained FAS models streamline
the control design process by enabling controllers to be formulated
efficiently and directly. As control-oriented models, they are ex-
pected to play a crucial role in addressing a wide range of control
problems.
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