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Appendix A Background and notations

The transformation of state equations plays a pivotal role in the control theory community, particularly when it comes to

linear time-invariant (LTI) systems. Partly this is because the effective transformation can facilitate designing controllers,

and partly it is because the canonical form is fascinating in its own right. Some canonical transformations or canonical

forms, such as Frobenius form [1], Brunovsky form [2,3], and Jordan form [4], are profoundly renowned and well documented.

These canonical transformations significantly simplify the relevant design processes. For similar purposes, parallel to the

state-space model, Duan has recently originated the fully actuated system (FAS) approach, introducing mathematical FAS

models heuristically [5]. As pointed out in [5], numerous underactuated systems can be converted into FASs as long as they

satisfy some kind of controllability. Note that the mathematical FASs serve really as control-oriented models for dynamic

systems, which might be looked upon as certain canonical forms of nonlinear systems, rather than represent physical ones

only. To date, under this framework, quite a few control design issues have been effectively resolved [6, 7], and numerous

applications have also been implemented [8,9]. The prerequisite and basis for applying the existing FAS approaches is that

an equivalent FAS model can be directly derived from certain physical laws or other descriptions of control systems. The

systematic conversion criteria for different types of systems are still being studied.

For a specific system, the key point regarding the FAS model transformation problem lies in two aspects: i) how to

check the existence of the corresponding FAS model as well as to provide necessary and sufficient conditions if possible; ii)

how to derive its FAS model systematically if it exists. The pioneering work is conducted by Duan [5], concluding that the

existence is closely related to certain controllability of a system [10]. Most directly, all controllable LTI systems possess

FAS models, which is also necessary and sufficient. A systematic transformation method has also been supplemented via

a frequency-domain approach in [11]. For linear time-delay systems, Refs. [12] and [13] have tried to give solutions based

on differential flatness and right coprime factorization, respectively. Provided that one of state equations has a solution on

a simply connected set containing the origin, the FAS models for four general types of nonlinear underactuated systems

can also be obtained [14]. As a matter of fact, we can also approximate the nonlinear system in practice around the given

trajectory, typically resulting in a linear time-varying (LTV) system [15]. However, to the best of our knowledge, the unique

result regarding the FAS method of LTV systems was reported in [16], which addressed the single-input case only.

Unlike the single-input case, it is more difficult for multi-input LTV systems due to the lack of uniqueness. The researches

regarding canonical forms of LTV continuous- and discrete-time systems widely report on this fact [17–22]. Specifically,

Silverman has proved that a single-input LTV system can be converted into a phase-variable form, also known as Frobenius

canonical form, if and only if it is uniformly controllable. The above result is analogous to that derived by Luenberger

for LTI cases [1]. Unfortunately, it cannot be directly extended to multi-input cases because even though the considered

LTV system is controllable, its controllability indices may not remain fixed. For all controllable LTI systems, most of

canonical transformations depend on controllability indices, while these indices for the LTV case may be time-varying,

resulting in the structure of canonical form changing with time. This forces the design engineer to determine the best form

from the several possibilities. Most directly, provided that the LTV system is controllable with fixed controllability indices,

namely, lexicography-fixedly controllable, Refs. [19,20,23,24] established phase-variable forms successfully, and then obtained

time-invariant closed-loop systems whose eigenvalues were arbitrarily assignable via state feedback. Recently, Hernández

et al. designed a higher-order sliding-mode controller under the assumption of lexicography-fixed controllability, achieving

finite-time stability for perturbed LTV multi-input systems [25]. On the other hand, the treatment of non-lexicographically-

fixed systems also appeared in [15, 26, 27]. The key idea is to construct an auxiliary system, ensuring that the augmented

system possesses lexicographically-fixed controllability. Then, the treatment of the augmented system is trivial using the

existing schemes. Very recently, Dong and Zhou proposed a prescribed-time fault-tolerant controller for lexicographically-

fixed systems, and then extended the achieved result to non-lexicographically-fixed ones through introducing an auxiliary

system [28].
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However, the biggest limitation in the previous research lies in a scotoma that whether lexicographically-fixed systems

or non-lexicographically-fixed systems are only considered in the problem of pole placement [26, 27, 29] and lack attention

to other issues. Due to the unpopularity of pole placement issues, it is unfortunate that some fundamental definitions and

brilliant ideas have gradually become lifeless in the long history of control theory. Compared with canonical form or pole

placement of LTV systems, recent advances and interest lie in data-driven methods [30,31] and output-feedback stabilization

using normal forms [32]. By solving convex feasibility/optimization problems involving data-dependent LMIs, a controller

based on a model-free, data-driven representation of the closed-loop LTV system is designed in [30]. To avoid the need

for sufficient data to start the control process, a completely online data-driven adaptive control method is proposed in [31].

Compared with the mature model-based theory, a unified research paradigm and theoretical analysis framework have not

been established for data-driven strategies.

As mentioned above, to pursue a more general research paradigm involving recent advancements, Duan has proposed a

terminology, that is, the FAS model, from a new and higher perspective. It has attracted much attention to various hot

topics. The benefits are evident with the development of FAS theories and applications. Both the previous research and the

FAS approach complement each other, improving and developing in tandem. This paper confirms the originality of invoking

lexicographically-fixed/non-lexicographically-fixed controllability into the framework of the FAS theory, establishing a basis

for FAS approaches regarding LTV systems. The contributions are summarized below.

1. The relationship between the existence of a FAS model and controllability of an LTV system is indicated. It is

identified that the single-input LTV system can be converted into a FAS if and only if it is uniformly controllable,

while lexicographically-fixed controllability is a sufficient condition for the multi-input case;

2. A systematic transformation scheme from the state-space description of LTV systems to FAS models is introduced

to fill the vacuum in the framework of the FAS theories;

3. For non-lexicographically-fixed systems, a stabilizing controller based on the FAS approach can still work in the sense

that the derived FAS model is not of the original system but of the augmented one.

Notations: Ir represents the identity matrix, N is the set of natural numbers, and Rr and Rr×m are the spaces of

r-dimensional vectors and r×m dimensional matrices, respectively. The inverse, transpose and determinant of a matrix A

are denoted by A−1, AT and det (A) , respectively. blockdiag (Ak, k = 1, 2, . . . , µ) stands for a block diagonal matrix with

its diagonal blocks being Ak, k = 1, 2, . . . , µ. exp (·) denotes the matrix exponential function. The superscript (i) denotes

i-th time derivative for a vector function, and the superscript or subscript “∼” stands for the traversal sequence, which is a

habitual symbol in the FAS theory and somewhat different from the traditional mathematical notation. In particular, for

a set of square matrices Ai ∈ Rr×r and vectors xi, µi ∈ N, i = 0, 1, . . . ,m− 1, we introduce the following notations in the

FAS theories [5, 10]:

x(0∼µ0) =


x

ẋ

...

x(µ0)

 ,

x
(µ0∼µ1)
i∼j =


x
(µ0∼µ1)
i

x
(µ0∼µ1)
i+1

...

x
(µ0∼µ1)
j

 , j ⩾ i, µ1 ⩾ µ0,

x
(µ0∼µk)
k

∣∣∣
k=i∼j

=


x
(µ0∼µi)
i

x
(µ0∼µi+1)
i+1

...

x
(µ0∼µj)
j

 , j ⩾ i, µk ⩾ µ0,

[Ai]0∼m−1 =
[
Ai,0 Ai,1 · · · Ai,m−1

]
,

and

Φ (A0∼m−1) =


0 I

. . .

I

−A0 −A1 · · · −Am−1

 .
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Appendix B Proofs of the main results

Appendix B.1 Proof of Theorem 1

To facilitate the process of deriving Theorem 1, the following proposition is introduced.

Proposition B1 ( [17]). Given two matrix operators defined in (2) , the following relations hold

Ξk
[
q̄Ti,ni−1

]
bj = q̄Ti,ni−1Π

k [bj ] , i, j = 1, 2, . . . , r, k = 0, 1, . . . , ni − 1. (B1)

Using Proposition B1, let us prove Theorem 1:

Under Assumption 1, we suppose n1 ⩾ n2 ⩾ · · · ⩾ nr ⩾ 1 without loss of generality. In light of the specific expression of

T (t) , for each i = 1, 2, . . . , r, we have

zi = q̄Ti,ni−1x. (B2)

Taking derivative of the above and using the operators defined in (2), yield

żi =
(
˙̄qTi,ni−1 + q̄Ti,ni−1A (t)

)
x+ q̄Ti,ni−1B (t)u

= Ξ
[
q̄Ti,ni−1

]
x+ q̄Ti,ni−1Π

0 [B (t)]u. (B3)

Noticing Proposition B1 and Q̄−1 (t) Q̄ (t) = In, we have

q̄Ti,ni−1Π
k [bi] = Ξk

[
q̄Ti,ni−1

]
bi = 0, k = 0, 1, . . . , ni − 2, (B4)

and

q̄Ti,ni−1Π
ni−1 [bj ] = Ξni−1

[
q̄Ti,ni−1

]
bj =


1, i = j

0, i > j

Xi,j , i < j,

(B5)

where Xi,j is a uniquely specified function of time. Substituting the above into (B3) gives

żi = Ξ
[
q̄Ti,ni−1

]
x. (B6)

Then, calculating higher order derivatives until the ni-th order gives

z
(2)
i = Ξ2

[
q̄Ti,ni−1

]
x

z
(3)
i = Ξ3

[
q̄Ti,ni−1

]
x

...

z
(ni)
i = Ξni

[
q̄Ti,ni−1

]
x+ ui +

∑r
j=i+1 Xi,juj .

(B7)

Additionally, leveraging the definition of the controllability indices, it is not hard to see that the row vector Ξni

[
q̄Ti,ni−1

]
is a

linear combination of the rows of P (t) given by (7). In other words, there exists the linear coefficients lij,k (t) , j = 1, 2, . . . , r,

k = 0, 1, . . . , nj − 1, such that

Ξni

[
q̄Ti,ni−1

]
=

r∑
j=1

nj−1∑
k=0

lij,k (t) Ξk
[
q̄Tj,nj−1

]
.

In the matrix form of (B6)-(B7), one can obtain

z
(nk)
k

∣∣∣
k=1∼r

= L (t) z
(0∼nk−1)
k

∣∣∣
k=1∼r

+G (t)u, (B8)

where z
(0∼nk−1)
k

∣∣∣
k=1∼r

= P (t)x, G (t) is given by (9) and

L (t) =


l11,0 · · · l11,n1−1 · · · l1r,0 · · · l1r,nr−1

l21,0 · · · l21,n1−1 · · · l2r,0 · · · l2r,nr−1

...
...

...
...

lr1,0 · · · lr1,n1−1 · · · lrr,0 · · · lrr,nr−1

 . (B9)

Note that G (t) is commonly an upper-triangular matrix and nonsingular for ∀t ⩾ t0. Finally, in terms of the control of

system (1), the key step is to check whether P (t) is a Lyapunov matrix. Assumption 2 cannot ensure that the above

transformation is a Lyapunov one. If the elements of A (t), B (t) are further bounded with bounded derivatives, it might

hold to a large extent. The proof is completed. □
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Appendix B.2 Proof of Theorem 2

The decoupling controller (10) results in the following set of closed-loop subsystems

z
(nk)
k + [Ak]0∼nk−1 z

(0∼nk−1)
k = 0, k = 1, 2, . . . , r, (B10)

Thus, we can select the matrices [Ak]0∼nk−1 , k = 1, 2, . . . , r, to arbitrarily assign the eigenstructure of the closed-loop

system

ż
(0∼nk−1)
k

∣∣∣
k=1∼r

= Φ0 z
(0∼nk−1)
k

∣∣∣
k=1∼r

, (B11)

whose response is given by

z
(0∼nk−1)
k (t)

∣∣∣
k=1∼r

= exp (Φ0t)Z0. (B12)

Clearly, Assumption 1 directly ensures that P (t) is nonsingular for ∀t ⩾ t0. Combining (B12) with z
(0∼nk−1)
k

∣∣∣
k=1∼r

=

P (t)x yields (11). Next, let us discuss the effectiveness of the designed controller (10) for system (1).

Rewrite the FAS (5) into its state-space form

ż
(0∼nk−1)
k

∣∣∣
k=1∼r

= Ā (t) z
(0∼nk−1)
k

∣∣∣
k=1∼r

+ B̄ (t)u, (B13)

where

Ā (t) =
[
Āi,j

]
, B̄ (t) =


B̄1 (t)

B̄2 (t)

...

B̄r (t)

 , (B14)

with

Āi,i =


0 1

...
. . .

0 0 · · · 1

lii,0 lii,1 · · · lii,ni−1

 ∈ Rni×ni ,

Āij =


0 0 · · · 0

...
...

...

0 0 · · · 0

lij,0 lij,1 · · · lij,nj−1

 ∈ Rni×nj , i ̸= j,

B̄i (t) =


0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

0 · · · 1 Xi,i+1 · · · Xi,r

 ∈ Rni×r. (B15)

It can be verified that the above equations, together with P (t) given by (7), satisfy Ā (t) =
(
P (t)A (t) + Ṗ (t)

)
P−1 (t)

B̄ (t) = P (t)B (t) ,
(B16)

implying that system (B13) is equivalent to system (1) as long as translation z
(0∼nk−1)
k

∣∣∣
k=1∼r

= P (t)x is in the sense

of Lyapunov. Once the above holds and Φ0 is taken as a Hurwitz matrix, controller (10) ensures exponential stability of

the closed-loop system in the sense of eliminating the time-varying elements in the system matrix and arbitrarily assigning

the eigenvalues of the closed-loop subsystems (B10) via state feedback. Additionally, the proof of Corollary 1 is trivial and

identical except that the considered system is changed into the augmented system (11). Problem 2 is handled properly and

the proof is done. □

Appendix C Additional remarks

Due to the limitation of the length of letter articles, we supplement some important demonstrations to facilitate readers’

understanding.
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Appendix C.1 Transformation from LTV systems into FASs

Remark 1. Lexicographically-fixed controllability is a somewhat outdated concept in the control community, resulting

in unfamiliarity for readers. Let us elaborate on it based on the algebraic geometric description of linear systems [33, 34].

It is well known that an n-dimensional LTI system is completely controllable if and only if its controllable subspace is

Rn. In other words, for a controllable LTI system, we can always construct a set of bases in Rn, which are chosen from

column vectors of its controllability matrix Q. Although the corresponding controllability matrix Q (t) is also full rank for

LTV systems, there may be a situation that we can never select a fixed set of column vectors of Q (t) to span Rn for all

t ⩾ t0, meaning that another different set of column vectors has to be reselected from Q (t) at some moments. The above

feature of controllable LTV systems just leads to the formation of two concepts, namely, lexicographically-fixed systems and

non-lexicographically-fixed systems, where lexicographically-fixed ones are directly extended from LTI cases. Additionally,

lexicographically-fixed controllability is not hard to verify for a specific LTV system. Specifically, one just needs to verify

whether there exist n − r column vectors of Q (t) combining with all columns of B (t) such that the matrix constructed

by them is full rank for ∀t ⩾ t0. Traversing all possible situations, we know there are Cn−r
(n−1)r

cases in total. Thus, the

verification process is only tedious but not difficult for multi-input systems.

Remark 2. Assumptions 1 and 2 seem too strict at first sight, but they are quite necessary to solve Problem 1. By

constructing the auxiliary system (13), Assumption 1 can be relaxed to Assumption 3, and the generalization of Theorem

1 then becomes Corollary 1. The combination of the two theorems actually covers all controllable LTV systems. As for

Assumption 2, the condition of n-times differentiability is imposed in Lemma 1, namely, Controllability Criterion. If it is

not satisfied, the controllability matrix cannot be well-defined. Once controllability of the system is ambiguous, the solution

to Problem 1 may not exist, because Duan declared explicitly that systems having FAS models should obey a certain kind

of controllability property [10]. To date, there exists no recognized controllability criterion for a general non-smooth LTV

system, causing great obstacles to extending the result of this paper to non-smooth systems.

Appendix C.2 Implement of controller

Remark 3. The key goal of the paper is to provide a systematic model transformation method from LTV systems to FASs.

The given controller (10) is the most typical one within the framework of the FAS theories and is just to demonstrate the

control-oriented feature of the FAS model. The simulation is applied to validate the kinematic equivalence (preserving key

dynamical properties of systems, such as stability and controllability) between the original system and its FAS description.

Thus, the performance of controller (10) is not good compared to other advanced controllers based on the FAS approach.

Besides, controller (10) is not the final form in applications, and its realization should be conducted via substituting

z
(0∼nk−1)
k

∣∣∣
k=1∼r

= P (t)x into (10), which is in the form of

u = −G−1 (t)
(
L (t) + blockdiag

(
[Ak]0∼nk−1 , k = 1, 2, . . . , r

))
P (t)x. (C1)

Thereby, the measurement of high-order derivatives z
(1∼nk−1)
k

∣∣∣
k=1∼r

, is not necessary. Thanks to the above FAS method,

we directly preform the eigenvalue assignment for LTV system (1). This result can be looked upon as a generalized version

of the multi-input LTI cases [5] or the single-input LTV systems [16].

Remark 4. Almost all the controller designs based on the FAS model possess a similar structure like Eqs. (10) or (C1).

To make full use of the full-actuation feature, it is inevitable to compute the inverse of the input matrix G (t) and to

cancel the undesired term L (t). Note that G (t) given by (9) is commonly an upper-triangular matrix with all diagonal

elements being one. Thereby, the nonsingularity of G (t) is independent of the time variable t and the numerical stability

of computing the inverse is definitely guaranteed. However, the specific expressions of G (t) and L (t) cannot be determined

quickly before a series of matrix transformation operations, which is quite a common drawback among the numerous FAS

methods. Additionally, the high computational cost can be looked upon as a trade-off for obtaining a constant linear closed-

loop system to an extent. There is no good method, but it can be optimized as much as possible. The back-substitution

method, whose time complexity is O
(
r3

)
, can be applied to derive the inverse of an upper-triangular matrix, since the

corresponding constant factor is less than the inverse of the general matrix. The Strassen algorithm might also be used to

decrease the time complexity of matrix multiplication [35].

Let us end this sub-appendix with an algorithm:

Algorithm C1 A FAS method for the LTV system

Given the LTV system (1),

1. check its lexicographically-fixed controllability;

2. obtain the matrix Q̄ (t) using the controllability indices ni, i = 1, 2, . . . , r;

3. calculate the inverse of Q̄ (t) and construct T (t) , P (t) ;

4. convert system (1) into the FAS (B8), according to the proof of Theorem 1, after confirming that P (t) is a Lyapunov matrix;

5. design a controller in the form of (10).

Appendix C.3 The auxiliary system

The generalization for non-lexicographically-fixed systems needs to construct an auxiliary system such that the augmented

system satisfies Assumption 1. For a given system, the augmentation dimension ne =
∑r

i=1 µi − n is unique, but the

introduced auxiliary system is not unique. Before elaborating on it, the following mathematical result is invoked.
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Proposition C1. Any matrix Q of the dimension n1 ×n2 (n1 < n2) of rank n1 can be extended into a matrix Qg of the

dimension n2 × n2 with full rank n2.

Applying the above proposition, we can always extend Q̃ (t) defined in (12) into Q̃g (t) with full rank (n+ ne) , e.g.,

choosing all unit coordinate vectors of the space Rne . Denote the augmentation vectors as hi,j , i = 1, 2, . . . , r, j =

1, 2, . . . , µi, satisfying
[
h1,1 · · · h1,µ1 · · · hr,1 · · · hr,µr

]
∈ Rn×(n+ne). Using the theorem in [26], the auxiliary system

can be formed as

[
Ae,1 Ae,2

]
=



hT
1,2 + d

dt
hT
1,1

...

hT
1,µ1+1 + d

dt
hT
1,µ1

...

hT
r,2 + d

dt
hT
r,1

...

hT
r,µr+1 + d

dt
hT
r,µr



T

Q̃−1
g (t) ,

Be (t) =
[
h1,1 h2,1 · · · hr,1

]
, (C2)

where hi,µi+1, i = 1, 2, . . . , r, are freely chosen vectors. An illustrative example can be found in [26] to facilitate under-

standing (see also Example 2 in Appendix D.2).

Remark 5. We have to emphasize that although the augmented system (14) can be converted into a FAS such that the

established controller is also effective and efficient, this does not directly imply that the FAS model of original system (1)

cannot be found. The way to derive the FAS model is not unique. To the best knowledge of the authors, another effective

way is to introduce the elementary module theory over principal ideal rings [36], because the essence of Problem 1 is to find

flat outputs of controllable LTV systems and to form the corresponding differential homeomorphism between the original

state variables and flat outputs [37,38]. It is unnecessary to build the auxiliary system within the framework of this purely

abstract algebraic method (see [39] for more details).

Remark 6. The auxiliary system inevitably has an impact on the original system’s performance. Admittedly, it is not

easy to thoroughly analyze the influence because there are too many factors to consider. For instance, the construction of

the auxiliary system is not unique; the eigenvalues of the obtained linear closed-loop system are arbitrarily chosen as long

as the system is ensured to be stable; the initial values of the auxiliary system are selected freely to an extent. Additionally,

the Lyapunov synthesis method is of little help in analyzing the transient response. In Ref. [26], the authors carried out a

comparative simulation of different eigenvalues, concluding that arbitrarily assigning a stable pole of the auxiliary system

did not noticeably influence the dynamics of the original system.

Appendix D Illustrative examples

Appendix D.1 Lexicographically-fixed case

Example 1. Let us consider the following example in [17] to validate Algorithm C1

ẋ =


0 1 0

cos t sin t 1 + e−t

1 sin t 1

x+


0 1 + 0.2 sin t

0 1

1 0

u, t ⩾ 0, (D1)

whose controllability matrix is given by

Q (t) =


0 0.2 sin t+ 1 0 1− 0.5 cos t e−t + 1 α3

0 1 e−t + 1 α1 α2 α4

1 0 1 1.2 sin t+ 1
(
e−t + 1

)
sin t+ 1 α5

 , (D2)

where

α1 = sin t+ (0.2 sin t+ 1) cos t,

α2 = 2e−t +
(
e−t + 1

)
sin t+ 1,

α3 = 0.8 sin t+ (0.2 sin t+ 1) cos t,

α4 = e−t + 0.2 cos t+ 2.2 sin t+ sin t cos t− 1.6 cos2 t− 0.2 cos3 t+ 1.2e−t sin t+ 2.2,

α5 = 1.2 sin t− 1.4 cos t+ sin2 t+ (0.2 sin t+ 1) cos t sin t+ 2. (D3)
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From (D2), one can derive that system (D1) is uniformly controllable with the fixed controllability indices being n1 = 2

and n2 = 1. Then, it follows from (4) that

Q̄ (t) =
[
b1 Π [b1] b2

]
=


0 0 0.2 sin t+ 1

0 e−t + 1 1

1 1 0

 , (D4)

which is nonsingular for ∀t ⩾ 0. Its inverse is given by

Q̄−1 (t) =
1

ε


5et −et (sin t+ 5) ε

−5et et (sin t+ 5) 0

5
(
et + 1

)
0 0

 , (D5)

with ε =
(
et + 1

)
(sin t+ 5) .

According to Algorithm C1, define zk|k=1∼2 ≜ T (t)x, with

T (t) =
1

ε

[
−5et et (sin t+ 5) 0

5
(
et + 1

)
0 0

]
, (D6)

and construct a transformation matrix

P (t) =
1

ε


−5et et (sin t+ 5) 0
β1
ε

β2 ε

5
(
et + 1

)
0 0

 , (D7)

where

β1 = et
(
5 sin 2t+ 31 cos t− 5 sin t+ 31et cos t−

(
1 + et

)
cos3 t+ 5et sin 2t− 25

)
,

β2 =
et

et + 1

(
6 sin t− 5et + 5et sin t+ sin2 t+ et sin2 t

)
. (D8)

After confirming P (t) given by (D7) is a Lyapunov matrix, we have

z
(nk)
k

∣∣∣
k=1∼2

= L (t) z
(0∼nk−1)
k

∣∣∣
k=1∼2

+G (t)u, (D9)

where

L (t) =

[
l11,0 l11,1 l12,0

l21,0 0 l22,0

]
, G (t) =

[
1 X12

5ε

0 1

]
, (D10)

with

l21,0 =
5
(
e−t + 1

)
sin t+ 5

, l22,0 =
5− cos t

sin t+ 5
,

l11,1 =
1

ε

(
7 sin t+ 6et sin t+

(
1 + et

)
sin2 t+ 5

)
,

l11,0 =
e−t

ε2

((
25.75 + 71.5et + 65.75e2t + 30e3t

)
sin t+

(
60.5et + 121e2t + 60.5e3t

)
cos t

+
(
10et + 20e2t + 10e3t

)
sin 2t−

(
5 + 12et + 9e2t + 2.5e3t

)
cos 2t− 41e2t + 2.5e3t

−
(
0.25 + 0.5et + 0.25e2t

)
sin 3t −

(
0.5et + e2t + 0.5e3t

)
cos 3t− 13et + 5

)
,

l12,0 =
1

40ε2

((
1636 + 2982et + 516e2t

)
sin t+

(
2610et + 1380e2t

)
cos t

+
(
300et − 22e2t

)
sin 2t+

(
124e2t − 260− 336et

)
cos 2t+ 1257et

+
(
6et + 28e2t − 12

)
sin 3t+

(
20e2t − 10et

)
cos 3t+ 797e2t

+e2t sin 4t−
(
et + e2t

)
cos 4t+ 1260

)
,

X1,2 = et
(
31 cos t+ 25 sin t+ 10 sin t cos t− 5 cos2 t− cos3 t− 20

)
. (D11)

Then, applying Theorem 2, we design a controller in the form of (10) with [A1]0∼n1−1 =
[
6 5

]
, [A2]0∼n2−1 = 1, whose

specific realization is given by (C1).

The simulation results, with initial condition x0 =
[
3 −2 1

]T
, are shown in Figs. D1–D3. It follows from Figs. D1–D2

that the strict equivalence in the Lyapunov sense is achieved. Notice that the system dimension of FAS (D9) is still 3,

meaning that ż1 should be looked upon as a new state variable rather than just a derivative of z1. That is, if we denote

y1 = z1, y2 = ż1, y3 = z2, then the state-space representation of FAS (D9) is equivalent to system (D1) in the sense

of yi, i = 1, 2, 3, being new state variables. We are just accustomed to directly using ż1 in the legend of Fig. D1. The

established controller ensures an exponential stability, which is in agreement with Theorem 2. Thanks to the framework of

the FAS theories, the closed-loop system becomes an LTI system whose eigenvalues are −2, −3 and −1.
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Appendix D.2 Non-lexicographically-fixed case

Example 2. To demonstrate the effectiveness of Corollary 1, a Brockett integrator form discussed in [40] is taken into

account 
ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1.

(D12)

Assuming that the desired trajectory is 
x∗
1 = − cos 2t

2

x∗
2 = sin 2t

4

x∗
3 = sin 2t

16
− sin 6t

48
,

(D13)

we have the following proposition.

Proposition D1. The linearization model of system (D12) around the given trajectory (D13) is

∆ẋ =


0 0 0

0 0 0

0 sin 2t 0

∆x+


1 0

0 1
sin 2t

4
0

∆u, (D14)

where ∆x = x− x∗ and ∆u = u− u∗.

Proof. In view of (D12), one can obtain its linearization model

∆ẋ =
∂f (x, u)

∂x

∣∣∣∣
x∗,u∗

∆x+
∂f (x, u)

∂u

∣∣∣∣
x∗,u∗

∆u, (D15)

where

∂f (x, u)

∂x

∣∣∣∣
x∗,u∗

=


0 0 0

0 0 0

0 u∗
1 0

 ,
∂f (x, u)

∂u

∣∣∣∣
x∗,u∗

=


1 0

0 1

x∗
2 0

 . (D16)

Substituting the given trajectory (D13) into the above, yields (D14). The proof is done. □
The controllability matrix of system (D14) can be expressed as

Q (t) =


1 0 0 0 0 0

0 1 0 0 0 0
sin 2t

4
0 − cos 2t

2
sin 2t − sin 2t −2 cos 2t

 . (D17)

Notice that system (D14) is typically non-lexicographically-fixed, because the controllability indices are n1 = 2, n2 = 1

over t ∈ [0, π/4) but n1 = 1, n2 = 2 at t = π/4. Clearly, the maximum values are µ1 = µ2 = 2. Leveraging the technique

proposed in [26], the generalized truncated controllability matrix Q̃g can be constructed as

Q̃g =


1 0 0 0

0 0 1 0
sin 2t

4
− cos 2t

2
0 sin 2t

h1,1 h1,2 h2,1 h2,2

 , (D18)

whose determinant is

det
(
Q̃g

)
= h1,2 sin 2t+

1

2
h2,2 cos 2t. (D19)

Remarking that all elements of the extension row are freely chosen, we take

h1,2 = sin 2t, h2,2 = 2 cos 2t, (D20)

to ensure det
(
Q̃g

)
̸= 0 for all t ⩾ 0. Then, according to (C2), we set for simplicity

d

dt
h1,1 = −h1,2,

d

dt
h1,2 = −h1,3, (D21)

d

dt
h2,1 = −h2,2,

d

dt
h2,2 = −h2,3, (D22)
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such that
[
Ae,1 Ae,2

]
= 01×4. Thereby, the final augmented LTV system is in the form of

∆ ˙̃x =


0 0 0 0

0 0 0 0

0 sin 2t 0 0

0 0 0 0

∆x̃+


1 0

0 1
sin 2t

4
0

cos 2t
2

− sin 2t

∆u, (D23)

where ∆x̃ =
[
∆xT xe

]T
. It can be readily verified that the augmented system (D23) is strictly lexicographically-fixed

with µ1 = µ2 = 2. Applying Theorem 1, we obtain the single-order FAS model of system (D23) as

¨̃z =

[
0 0 0 4

0 −1 0 0

]
z̃(0∼1) +∆u, (D24)

where

z̃(0∼1) =


0 sin2 2t −2 cos 2t sin 2t

0 sin 4t 4 sin 2t 2 cos 2t
−1
4

sin 4t
4

sin 2t cos 2t
2

0 1− sin2 2t 2 cos 2t − sin 2t

∆x̃. (D25)

Then, the controller in the form of (10), where [A1]0∼µ1−1 =
[
6 5

]
, [A2]0∼µ2−1 =

[
3 2

]
, is easily established. The

simulation, with initial condition ∆x̃0 =
[
0.2 −0.1 −0.3 0

]T
, has been conducted. Figs. D4 and D5 show the state

evolutions of the original system and the auxiliary system, respectively. The simulation results are identical to the statement

of Corollary 1.
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Figure D1 Evolution of z
(0∼nk−1)
k

∣∣∣∣
k=1∼2

for Example 1
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Figure D2 State responses for Example 1
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Figure D3 Control inputs for Example 1
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Figure D4 Evolution of z̃(0∼1) for Example 2
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Figure D5 State responses for Example 2
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Figure D6 Control inputs for Example 2
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