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With widespread applications in areas such as two-wheeled robot

systems, the control problems of nonholonomic systems have at-

tracted significant attention. Among these, the chained nonholo-

nomic system, a special class of nonholonomic systems, has been

extensively studied since its introduction in [1]. Due to the in-

herent structural properties of nonholonomic systems, they do not

satisfy Brockett’s necessary condition [2]. As a result, stabiliza-

tion can only be achieved through discontinuous time-invariant

control, smooth time-varying control, or hybrid control strategies.

For chained nonholonomic systems, various approaches have been

proposed, including smooth time-varying feedback [1] and nons-

mooth control laws [3].

Every actuator in a control system operates within inherent

limitations [4]. For nonholonomic systems, input saturation is a

critical issue, as it can significantly affect system stability and

performance, underscoring the importance of addressing this chal-

lenge for practical implementation. In the context of nonholo-

nomic mobile robots, the global tracking and stabilization control

problem with unknown parameters was examined [5]. Addition-

ally, switching control strategies to manage input saturation in

chained nonholonomic systems were investigated in [3]. However,

many of these saturation control approaches are either overly com-

plex in design or heavily dependent on frequent switching between

control laws, which pose significant challenges for practical engi-

neering applications.

In this study, we investigate the global bounded time-varying

control problem for a class of chained nonholonomic systems,

which comprises an integer subsystem and a bilinear subsystem.

For the scalar integer subsystem, a nonhomogeneous controller is

proposed. In addressing the bilinear subsystem with a linear term,

a cascade connection of saturation-function-based time-varying

controllers is introduced, facilitated by a linear time-varying state

transformation. The proposed methodology can be extended to

second-order integer subsystems. The presented control strategies

are rigorously shown to guarantee global attractivity of the origin

point and local exponential convergence of the state to zero.

The technical contributions of this study are threefold. First,

unlike the chained nonholonomic systems studied in [1, 3], i.e.,

ẋ0 = u0, ẋi = u0xi+1, i = 1, 2, . . . , n − 1, ẋn = u, the non-

holonomic system studied in this study includes a linear term,

and the proposed method is also applicable to chained nonholo-

nomic systems that incorporate a second-order integrator and a

bilinear subsystem. Second, in contrast to traditional saturation

control methods for nonholonomic systems, such as the switch-

ing control approaches in [3], the proposed controllers are locally

smooth and can guarantee global attractivity of the origin point.

Third, unlike traditional homogeneous controllers [3], the proposed

controller employs a nonhomogeneous saturation control strategy,

with a relatively simple design structure.

Problem introduction. Consider the following chained nonholo-

nomic system with input saturations:














ẋ0(t) = satumax
(u0(t)),

ẋ1(t) = −αx1(t) + satumax
(u0(t))x2(t),

ẋ2(t) = satumax
(u1(t)),

(1)

where α > 0, satϕ(y) = sign(y)min{|y|, ϕ}, x0(t) and x(t) =

[x1(t), x2(t)]T are system states, and u0(t) ∈ R and u1(t) ∈ R are

control inputs, with umax being a positive constant.

This study will design a continuous nonhomogeneous controller

u0(t) and a continuous controller u1(t) for this system such that

the states x0(t), x1(t), and x2(t) converge to zero globally.

Design of control law u0(t). A continuous nonhomogeneous

controller u0(t) can be designed as follows.

Theorem 1. Let λ > α > 0 and β 6= 0 be some constants.

Consider the time-varying continuous nonhomogeneous controller

u0(t) = −λx0(t) + βe−αt. (2)

Then, the origin point is globally attractive and locally converges

to zero exponentially. In particular, there exists a positive con-

stant T0, such that, for t > T0, satumax
(u0(t)) can be expressed

as

satumax
(u0(t)) = e−αt(θ(t) + δ), (3)

where δ = −αβ/(λ− α) and θ(t) is a time-varying function satis-

fying limt→∞ θ(t) = 0.

The proof of Theorem 1 can be found in Appendix A.

Remark 1. This study introduces a nonhomogeneous term,

βe−αt, into the controllers (2). The purpose of this term is to

ensure that satumax
(u0(t)) maintains the form given in (3), even
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when x0(0) = 0. Traditional control strategies (e.g., [3]) typically

handle the scenario x0(0) = 0 by employing switching control to

drive x0(t) away from the origin. Once x0(t1) 6= 0 at some t1 > 0,

a predefined control strategy is applied. In contrast, the method

proposed in this theorem is locally smooth and ensures that the

origin point is globally attractive, with the state converging to zero

exponentially in a local sense.

Design of control law u1(t). Take the linear time-varying state

transformation
{

z1(t) = eαtx1(t),

z2(t) = x2(t).
(4)

By using (4), x-subsystem in (1) can be written as

{

ż1 = eαtsatumax
(u0)x2,

ż2 = satumax
(u1).

(5)

Considering t > T0, then the controller satumax
(u0(t)) can be ex-

pressed in the form shown in (3). Substituting satumax
(u0(t))

shown in (3) into (5), we can get, for t > T0,

{

ż1 = δz2 + θ(t)z2,

ż2 = satumax
(u1).

(6)

Let

Y (t) =

[

λ2

δ
1

0 1

][

z1(t)

z2(t)

]

. (7)

Then the time-derivative of Y = Y (t) = [Y1(t), Y2(t)]T along (6)

can be calculated as

Ẏ = AT,2Y + θ(t)

[

0 λ2

δ

0 0

][

Y1

Y2

]

+ bT,2satumax
(u1), (8)

where

AT,2 =

[

0 λ2

0 0

]

, bT,2 =

[

1

1

]

. (9)

With the above preparations, we can get the following results.

Theorem 2. Let λi > 0, and εi > 0, i = 1, 2, be some constants

satisfying

ε1 + ε2 6 umax, ε2 > ε1.

Consider the following time-varying feedback:

u1(t) = −ε2sat

(

λ2Y2(t)

ε2

)

− ε1sat

(

λ1Y1(t)

ε1

)

(10)

with sat(x) = sat1(x). Then, the origin point is globally attrac-

tive, and the state converges locally to zero exponentially.

The proof of Theorem 2 can be found in Appendix B.

As observed from (6), this study transforms the nonholonomic

system into a saturation control problem for a linear integrator

system with time-varying terms by employing a nonhomogeneous

time-varying feedback (3). Subsequently, the method outlined

in [4] is applied to design the saturation controller (10) step by

step, following a bottom-up approach.

Unlike previous saturation control strategies for nonholonomic

systems, such as those in [3], the control strategies (3) and (6)

proposed in this study leverage the special structure of the non-

holonomic system. They do not require switching and achieve lo-

cally smooth exponential convergence, making them simpler. Fur-

thermore, an extension of these strategies to other nonholonomic

systems is provided in Appendix C, while a numerical simulation

demonstrating their effectiveness can be found in Appendix D.

Conclusion. In this work, we have studied the global time-

varying control problem for a class of chained nonholonomic sys-

tems with input saturations. Nonhomogeneous controllers were

constructed for both the scalar and second-order integer subsys-

tems. For bilinear subsystems with a linear term, a cascade con-

nection of saturation-function-based time-varying controllers was

proposed by employing a linear time-varying state transformation.

The proposed control strategies were rigorously proven to be glob-

ally attractive and locally exponentially convergent. Unlike ex-

isting saturation control strategies for nonholonomic systems, the

proposed approach is locally smooth and linear. The effectiveness

of the proposed approach has been demonstrated through a nu-

merical example. In the future, we plan to extend the method

studied in this work to nonholonomic systems with perturbation

nonlinearities.

Acknowledgements This work was supported by National Science
Fund for Distinguished Young Scholars (Grant No. 62125303), Sci-
ence Center Program of National Natural Science Foundation of China
(Grant No. 62188101), and Azrieli International Postdoctoral Fellow-
ship.

Supporting information Appendixes A–D. The supporting infor-
mation is available online at info.scichina.com and link.springer.com.
The supporting materials are published as submitted, without typeset-
ting or editing. The responsibility for scientific accuracy and content
remains entirely with the authors.

References
1 Murray R M, Sastry S S. Nonholonomic motion planning: steering

using sinusoids. IEEE Trans Automat Contr, 1993, 38: 700–716
2 Brockett R W. Asymptotic stability and feedback stabilization.

In: Differential Geometric Control Theory. Boston: Birkhäuser
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