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Appendix A Proof of Theorem 1

The closed-loop system can be formulated as

ẋ0(t) = −satumax

(
λx0(t)− βe−αt

)
. (A1)

Let X = λx0(t)− βe−αt. Then the Ẋ along the trajectory (A1) can be given as

Ẋ = λẋ0(t) + αβe−αt

= −λsatumax (X) + αβe−αt. (A2)

Consider the Lyapunov function

V (X) =
1

2
X2.

Along the trajectory of (A2), the time derivative of V (X(t)) is

V̇ (X) = −λX satumax (X) + αβ e−αtX.

Since limt→∞ βe−αt = 0, there exists a constant t1 > 0 such that, for t > t1, |αβ| e−αt < λumax. Assume that

|X| > umax, for t > t1. Therefore, we have

V̇ (X) = −λXsign (X) |satumax (X)|+ αβe−αtX

= −λumax |X|+ αβe−αtX < 0.

Then, according to Lyapunov stability theory, there exists a positive constant T0 > t1 such that, for t > T0, |X| 6 umax,

and thus the controller can be further written as

satumax (u0(t)) = −λx0(t) + βe−αt. (A3)

For t > T0, (A1) can be described as

ẋ0(t) = −λx0(t) + βe−αt,

whose solution can be calculated as

x0(t) =e−λtx0(T0) + β

∫ t

T0

e−λ(t−s)e−αsds

=e−λtx0(T0) + βe−λt
1

λ− α

(
e(λ−α)t − e(λ−α)T0

)
=e−αt

(
e−(λ−α)tx0(T0) + β

1

λ− α

(
1− e−(λ−α)te(λ−α)T0

))
,

substituting which into (A3) yields

satumax (u0(t)) =− λx0(t) + βe−αt

=e−αt
(
−λe−(λ−α)tx0(T0)−

λβ

λ− α

(
1− e−(λ−α)te(λ−α)T0

)
+ β

)
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=e−αt
(
−λe−(λ−α)tx0(T0) +

λβ

λ− α
e−(λ−α)te(λ−α)T0 −

λβ

λ− α
+ β

)
=e−αt (θ(t) + δ) ,

where

θ(t) = e−(λ−α)t
(
−λx0(T0) +

λβ

λ− α
e(λ−α)T0

)
, δ = −

αβ

λ− α
,

which proves (3) and limt→∞ θ(t) = 0. The proof is finished.

Appendix B Proof of Theorem 2

For simplicity, we denote

u1(t) = −ε2sat

(
λ2Y2(t)

ε2

)
+ u1,1(t), u1,1(t) = −ε1sat

(
λ1Y1(t)

ε1

)
.

For t ∈ [0, T0), the state and controller are bounded. For t > T0, consider Y2-subsystem in (8), namely, Ẏ2(t) =

satumax (u1(t)) = u1(t). Choose the function

W2(Y2(t)) =
1

2
Y 2
2 (t),

whose time-derivative along the trajectory of (8) can be calculated as

Ẇ2(t) =Y2(t)u1(t)

=− ε2Y2(t)sat

(
λ2Y2(t)

ε2

)
+ Y2(t)u1,1(t)

=− ε2Y2(t)sign (Y2(t))

∣∣∣∣sat

(
λ2Y2(t)

ε2

)∣∣∣∣+ Y2(t)u1,1(t).

Assume that |λ2Y2| > ε2. Since ε2 > ε1, we have

Ẇ2(t) = −ε2 |Y2|+ |Y2|u1,1(t) 6 −ε2 |Y2|+ ε1 |Y2| < 0.

Therefore, there exists a positive constant T1 > T0 such that, for t > T1, |λ2Y2| 6 ε2, and

u1(t) = −ε2sat

(
λ2Y2(t)

ε2

)
+ u1,1(t) = −λ2Y2(t) + u1,1(t).

Thus (8) can be written as[
Ẏ1

Ẏ2

]
=

[
0 λ2

0 0

][
Y1

Y2

]
+ θ(t)

[
0 λ2

δ

0 0

][
Y1

Y2

]
+

[
1

1

]
(−λ2Y2 + u1,1(t))

=

[
0 0

0 −λ2

][
Y1

Y2

]
+ θ(t)

[
0 λ2

δ

0 0

][
Y1

Y2

]
+

[
1

1

]
u1,1(t). (B1)

Consider Y1-subsystem in (B1), namely,

Ẏ1 =
λ2

δ
θ(t)Y2 + u1,1(t). (B2)

Choose the function

W1(Y1) =
1

2
Y 2
1 ,

whose time-derivative along the trajectory of (B2) can be calculated as

Ẇ1(Y1) = Y1

(
λ2

δ
θ(t)Y2 + u1,1(t)

)
=
λ2

δ
θ(t)Y1Y2 + Y1u1,1(t)

=
λ2

δ
θ(t)Y1Y2 − ε1Y1sat

(
λ1Y1

ε1

)
6
ε2

δ
|θ(t)| |Y1| − ε1Y1sat

(
λ1Y1

ε1

)
.

Since limt→∞ θ(t) = 0, let T2 > T1 be a constant such that ε2
δ
|θ(t)| < ε1, for t > T2. Assume that |λ1Y1| > ε1, we have

Ẇ1(Y1) 6
ε2

δ
|θ(t)| |Y1| − ε1Y1sat

(
λ1Y1

ε1

)
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=
ε2

δ
|θ(t)| |Y1| − ε1 |Y1|

< 0.

Therefore, it can be concluded that there exists a positive constant T3 > T2 such that, for t > T3, |λ1Y1| 6 ε1, and

u1,1(t) = −ε1sat

(
λ1Y1(t)

ε1

)
= −λ1Y1(t).

Then, for any t > T3, we can get

Ẏ = Ay,cY + θ(t)A2Y, (B3)

where

Ay,c =

[
−λ1 0

−λ1 −λ2

]
, A2 =

[
0 λ2

δ

0 0

]
.

Let P > 0 be an unique solution to

Ay,cP + PAy,c = −P.

Choose the Lyapunov function

U(Y ) = Y TPY,

whose time-derivative along the trajectory of (B3) can be calculated as

U̇(Y ) =− Y TPY + 2θ(t)Y TPA2Y

6− Y TPY + |θ(t)|Y TPY +
λmax(AT

2 PA2)

λmin(P )
|θ(t)|Y TPY.

Since limt→∞ θ(t) = 0, there exists a constant T4 > T3 such that, for t > T4,

U̇(Y ) 6− Y TPY + |θ(t)|Y TPY +
λmax(AT

2 PA2)

λmin(P )
|θ(t)|Y TPY

6− εY TPY,

where ε > 0 is a constant. Therefore, according to Lyapunov stability theory, we have limt→∞ Y (t) = 0, which, together

with (4) and (7), indicates that

lim
t→∞

[
z1(t)

z2(t)

]
= lim
t→∞

[
λ2
δ

1

0 1

]−1

Y (t) = lim
t→∞

 δ
λ2
− δ
λ2

0 1

Y (t) = 0,

lim
t→∞

x1(t) = lim
t→∞

e−αtz1(t) = 0,

lim
t→∞

x2(t) = lim
t→∞

z2(t) = 0.

The proof is finished by noting limt→∞ u1(t) = 0.

Appendix C Extension to Other Nonholonomic Systems

In this section, we extend the methodologies outlined in Theorems 1 and 2 to a chained nonholonomic system comprising

an integer subsystem and a bilinear subsystem.

Consider the following chained nonholonomic system
ẋ01(t) = x02(t),

ẋ02(t) = satumax (u0(t)),

ẋ1(t) = −αx1(t) + x02(t)x2(t),

ẋ2(t) = satumax (u1(t)),

(C1)

where α > 0 is a constant, x0(t) = [x01(t), x02(t)]T, and x1(t), x2(t) are system states. The control inputs u0(t), u1(t) ∈ R

are bounded through the saturation function

satumax (u) = sign(u) ·min{|u|, umax},

where umax > 0 is a given constant.

Consider the state transformation

y(t) = T0,2x0(t) ,

[
λ2 1

0 1

]
x0(t),
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where y(t) = [y1(t), y2(t)]T and λ2 > 0. According to [1], the x0-subsystem in (C1) can be reorganized as

ẏ = AT,2y + bT,2satumax (u0), (C2)

where

AT,2 =

[
0 λ2

0 0

]
, bT,2 =

[
1

1

]
. (C3)

With the above preparations, we can now obtain the following result.

Theorem C1. Let λi > α > 0, β 6= 0, and εi > 0, i = 1, 2, be constants satisfying

ε1 + ε2 6 umax, ε2 > ε1. (C4)

Consider the time-varying nonhomogeneous feedback

u0(t) = −ε2sat

(
λ2y2

ε2

)
− ε1sat

(
λ1y1

ε1
−
βe−αt

ε1

)
, (C5)

with sat(x) = sat1(x). Then, the origin point is globally attractive, and the state converges locally to zero exponentially.

In particular, there exists a positive constant T2 such that x02(t) can be expressed as

x02(t) = e−αt (θ1(t) + δ1) , t > T2, (C6)

where δ1 = βα/ ((α− λ1) (α− λ2)) is a constant and θ1(t) is a time-varying function satisfying limt→∞ θ1(t) = 0.

Proof. For simplicity, we denote

u0(t) = −ε2sat

(
λ2y2

ε2

)
+ u0,1(t),

u0,1(t) = −ε1sat

(
λ1y1

ε1
−
βe−αt

ε1

)
.

Consider y2-subsystem in (C2), namely, ẏ2 = satumax (u0(t)) = u0(t). Choose the function

V2 =
1

2
y22 ,

whose time-derivative along the trajectory of (C2) and (C5) can be calculated as

V̇2 = y2u0(t)

= −ε2y2sat

(
λ2y2

ε2

)
+ y2u0,1(t)

= −ε2y2sign (y2)

∣∣∣∣sat

(
λ2y2

ε2

)∣∣∣∣+ y2u0,1(t).

Assume that |λ2y2| > ε2. Since ε2 > ε1, we have

V̇2 = −ε2 |y2|+ |y2|u0,1(t) 6 −ε2 |y2|+ ε1 |y2| < 0.

Therefore, there exists a positive constant T1 such that, for t > T1, |λ2y2| 6 ε2, and

u0(t) = −ε2sat

(
λ2y2

ε2

)
+ u0,1(t) = −λ2y2 + u0,1(t).

Thus, (C2) can be written as [
ẏ1

ẏ2

]
=

[
0 λ2

0 0

][
y1

y2

]
+

[
1

1

]
(−λ2y2 + u0,1(t))

=

[
0 0

0 −λ2

][
y1

y2

]
+

[
1

1

]
u0,1(t).

Consider the y1-subsystem in the above equation, namely, ẏ1 = u0,1(t). According to the proof of Theorem 1, it can be

concluded that there exists a positive constant T2 > T1 such that, for t > T2,
∣∣−λ1y1 + βe−αt

∣∣ 6 ε1, and

u0,1(t) = −ε1sat

(
λ1y1

ε1
−
βe−αt

ε1

)
= −λ1y1 + βe−αt.
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Figure D1 Time evolution of state variables and control inputs for system (1)

Then, for any t > T2, we can get

ẏ(t) = Ay,cy(t) + bT,2βe−αt, (C7)

where

Ay,c =

[
−λ1 0

−λ1 −λ2

]
.

Choose the function

Y (t) = eαty(t) + εy ,

where Y (t) = [Y1(t), Y2(t)]T and εy = (Ay,c + αI2)−1bT,2β. Then the time-derivative of Y (t) along the trajectory of (C7)

can be calculated as

Ẏ (t) = eαtẏ(t) + αeαty(t) = (Ay,c + αI2)Y (t)− (Ay,c + αI2) εy + bT,2β = (Ay,c + αI2)Y (t),

which means that limt→∞ Y (t) = 0 since λ1 > α and λ2 > α. Hence, x0(t) can be expressed as

x0(t) =T−1
0,2 y(t)

=e−αt
(
T−1
0,2 Y (t)− T−1

0,2 (Ay,c + αI2)−1bT,2β
)

=e−αt

 1
λ2
− 1
λ2

0 1

Y (t)−
β

(α− λ1) (α− λ2)

[
1

−α

] ,

which implies that

x02(t) = e−αt (θ1(t) + δ1) ,

where

θ1(t) = Y2(t), δ1 =
βα

(α− λ1) (α− λ2)
.

Therefore, (C6) has been proven, and it follows that limt→∞ θ1(t) = 0. The proof is finished.

For the saturation design of the controller u1(t) in [x1(t), x2(t)]-subsystem of (C1), we can follow a similar process as

outlined in Section of Design of control law u1(t), which is omitted here for brevity.

Appendix D Numerical Simulation

In this section, we conduct a numerical simulation for system (1) with the controllers u0(t) and u1(t) as described in

Theorems 1 and 2.

For the simulation, to verify the effectiveness of the proposed method when x0(0) = 0, we set the initial condition as

[x0(0), x1(0), x2(0)] = [0,−8, 10]. Additionally, the parameters are chosen as λ = 0.5, β = 1, α = 0.2, ε1 = 0.3, ε2 = 0.5, λ1 =

0.2, and λ2 = 1. Figure D1 clearly illustrates that the proposed method successfully drives both the system states and the

control inputs to zero in the presence of input saturation.
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