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Appendix A Proof of Theorem 1

The closed-loop system can be formulated as
#0(t) = —Satupa, (Azo(t) — Be™ ). (A1)
Let X = Azo(t) — Be~®t. Then the X along the trajectory (A1) can be given as

X = \io(t) + afe™ >t
= = Asatuay (X) +afe " (A2)

Consider the Lyapunov function
1
V(X) = 5X2.

Along the trajectory of (A2), the time derivative of V(X (t)) is
V(X) = =AX saty,,,, (X) +afe 2 X.

Since lim¢— o0 Be~% = 0, there exists a constant t; > 0 such that, for ¢ > t1, |aB|e™ %" < Aumax. Assume that
|X| > umax, for t > t1. Therefore, we have
V(X) —AXsign (X) [satuy,.. (X)] + afe” X

—AUmax ‘X| + Clﬁe_atX < 0.

Then, according to Lyapunov stability theory, there exists a positive constant Tyo > t1 such that, for ¢t > Tp, |X| < Umax,
and thus the controller can be further written as

Sabuyax (W0 (t)) = —Azo(t) + Be™ (A3)

For ¢t > Top, (A1) can be described as
do(t) = —Awo(t) + Be !,

whose solution can be calculated as

t
xo(t) =e Mao(To) + e Mt=s)gmasqg
To

1
=67>\tIQ(T0) + ﬁef)\tA (e()\fa)t _ e(A*OOTO)

—

—e— Ot (67</\7a)t330(T0) + 1 (1 _ ef()\fa)te()\fa)T())) ,
A—a
substituting which into (A3) yields

Sty oy (U0 (1)) = — Azo(t) + Be™

oot (7)\67@7&)%0(%) A8 (1 _ e—()\—a)te()\fa)T()) +ﬁ)
A—a
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—e— 0t (7)\6—()\—01)15330(/110) + AB e—()\—a)te()\—cx)To _ AB +5)
— (03

A—« A=
—e=Ot (9(t) +8),

where

O(t) = o= (A=)t (—Azo(To)—f— A8 e()\fa)T())’ s—__ B ,
A—« A—«

which proves (3) and lim; o () = 0. The proof is finished.

Appendix B Proof of Theorem 2

For simplicity, we denote

A2 Y5 (t)

2 Y (t)
€2

) Fuia(t), wia(t) = —ersat <7) .

€1

up (t) = —eosat (

For ¢t € [0,Tp), the state and controller are bounded. For t > Tp, consider Yz-subsystem in (8), namely, Ya(t) =
Sabuax (U1(t)) = u1(t). Choose the function

1
Wa(Ya(t)) = §Y22(t)7
whose time-derivative along the trajectory of (8) can be calculated as
Wa(t) =Ya(t)ui (t)

+Ys (t)ulyl (t)

- i (2222

A2Ya(t)

= — e2Ya(¢)sign (Ya(¢)) ‘sat ( -

) ’ + Yo (t)u1,1(t).
Assume that |A2Y2| > e2. Since g2 > €1, we have

Wg(t) = —e2|Yo| + |Y2|u1,1(t) < —e2|Ya| +e1|Y2]| <O.
Therefore, there exists a positive constant 77 > Tp such that, for ¢ > T1, |[A2Y2| < €2, and

up (t) = —egsat (7/\22“)) +u,1(t) = —X2Ya(t) + ui,i(t).

Thus (8) can be written as

Y 0 A Y, 0227 [vy 1
Sl=0 7 ey |0 S (—A2Ya +u11 (1))
Y2 00 Y2 00 Y2
00 Y] 022 [v;
- "ltew | 0 ] uaa). (B1)
0 —X2 || Y 00 Yo
Consider Yi-subsystem in (B1), namely,
. A
Vi = 729@)1/2 +ura(t). (B2)
Choose the function 1
i) = 5 i

whose time-derivative along the trajectory of (B2) can be calculated as

Wl(Yl) =Y (%G(t)YQ + ulyl(t))

A
- ge(t)ylyz + Yiu1,1(t)
A1

A
?29(15))/1}/2 — e1Y1sat (

b %
< %\H(t)HYﬂ—alYlsat( ! 1).

2
=
~

Since lim; 00 6(t) = 0, let T> > T} be a constant such that E72|49(t)\ < €1, for t > T». Assume that |A\1Y7| > €1, we have

. £ Y,
Wi(m) < % |0(t)] [Y3| — e1Yisat ( ; 1)



Sci China Inf Sci 3

€
= @I M| - e 1l
<0.

Therefore, it can be concluded that there exists a positive constant T3 > T> such that, for ¢ > T3, |A\1Y1| < €1, and

ulyl(t) = —e1sat (M) = —)\1Y1(t).

€1

Then, for any ¢t > T3, we can get

Y = Ay Y +0(t)AzY, (B3)
where
~A1 0 0 22
Aye=| , A= 0
—A1 —A2 0
Let P > 0 be an unique solution to
Ay,cP+ PAy.=—P.
Choose the Lyapunov function
U(®)=YTpry,
whose time-derivative along the trajectory of (B3) can be calculated as
UY)=-YTPY +20(t)YTPAY
Amax (AT PA
<—YTPY +|0(t)| YTPY + Amax(A; PA2) l6(t)| YT PY.
Amin(F))

Since lim;— o0 6(t) = 0, there exists a constant T4 > T3 such that, for t > Ty,

Amax(ATPAz)

Uy)<-YT'pry +|0(t)|YTPY
(Y) +10(2)] + Noin (P)

0@ YTPYy
< —eY TPy,

where € > 0 is a constant. Therefore, according to Lyapunov stability theory, we have lim¢— oo Y (¢) = 0, which, together
with (4) and (7), indicates that
N _
t 22 1 2 _ 9
fim | 2O 2 g | 3 Y() = lim | 22 % |y@) =o,
t—o0 29 (t) t— oo 0 1

lim z1(t) = lim e” %z (t) =0,
t—o0 t—o0

tl~1>rgo @2 (t) = tlingo z2(t) =0.
The proof is finished by noting lim¢—, o0 u1(t) = 0.

Appendix C Extension to Other Nonholonomic Systems

In this section, we extend the methodologies outlined in Theorems 1 and 2 to a chained nonholonomic system comprising
an integer subsystem and a bilinear subsystem.
Consider the following chained nonholonomic system

®01(t) = wo2(t),

202(t) = satu,,,.. (uo(t)),

21 (t) —ax1(t) + zo2(t)z2(t),
2(t) Sabu . (U1 (2)),

(C1)

where o > 0 is a constant, 2o(t) = [x01(t), zo2(t)]T, and z1(t), 22(t) are system states. The control inputs ug(t), u1(t) € R
are bounded through the saturation function

Sabupy,ay (u) = sign(w) - min{|ul, umax},

where umax > 0 is a given constant.
Consider the state transformation

y(t) = To2xo(t) £ {AOQ ” xo(t),



Sci China Inf Sci 4

where y(t) = [y1(t),y2(¢)]T and A2 > 0. According to [1], the xo-subsystem in (C1) can be reorganized as

Y = At 2y + by 258bu., (u0), (C2)

0 A 1
Ago = [ 2], by = [ ] (C3)
00 1

With the above preparations, we can now obtain the following result.
Theorem C1. Let A\; >a >0, 8#0, and g; > 0, i = 1,2, be constants satisfying

where

€1+ €2 € Umax, €2 > 1. (C4)

Consider the time-varying nonhomogeneous feedback

—at
ug(t) = —eosat (AQ‘W) —e1sat (M - BL) ) (C5)

€2 €1 €1

with sat(z) = sati(z). Then, the origin point is globally attractive, and the state converges locally to zero exponentially.
In particular, there exists a positive constant 75 such that zo2(t) can be expressed as

zo2(t) = e " (01(t) + 61), t =T, (C6)

where 61 = Ba/ ((a — A1) (@ — A2)) is a constant and 61 (¢) is a time-varying function satisfying lim;—, o 61(t) = 0.

Proof.  For simplicity, we denote

A
uo(t) = —egsat ( 2y2> + uo,1(¢),
€2
A1y1 ﬂe_at)

up,1(t) = —esat (
€1 €1

Consider y2-subsystem in (C2), namely, g2 = satu,, .. (vo(t)) = uo(t). Choose the function

1
Vo = =43,
2 2?!2

whose time-derivative along the trajectory of (C2) and (C5) can be calculated as
VQ = yguo(t)

A2y2
= —egygsat (E—y) + y2uo,1(¢)
2

A
sat ( 242 ) ‘ + yo2uo,1(t).
€2

= —e2yosign (y2)
Assume that |Aay2| > €2. Since g2 > €1, we have
Vo = —ea |y2| + |y2| o1 (t) < —e2 |y2| + &1 |y2| < 0.
Therefore, there exists a positive constant 77 such that, for ¢t > T1, |A2y2| < €2, and
ug(t) = —egsat (Azijz) +u0,1(t) = —A2y2 + uo,1 ().

Thus, (C2) can be written as

y 0 A
{yl} = [ 2} e (=A2y2 +uo,1(1))
Y2 00 Y2
0 O 1
= Tt 0,1 (t)-
0 —X2 Y2

Consider the y;-subsystem in the above equation, namely, §1 = uo,1(¢). According to the proof of Theorem 1, it can be
concluded that there exists a positive constant T > T such that, for t > T5, |—)\1y1 + ,Be_at| < e1, and

Ayr  Bemot

uO,l(t) = —g1sat (
£1 £1

) = —A\1y1 + Be” L
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Figure D1 Time evolution of state variables and control inputs for system (1)

Then, for any t > T>, we can get
y(t) = Ay,cy(t) + bT,2/89_atv (07)

- 0
Aye = ! .
—A1 —A2
Y (t) = e'y(t) + ey,

where Y (t) = [Y1(t), Y2(t)]T and ey = (Ay,c + al2)"1br 28. Then the time-derivative of Y (¢) along the trajectory of (C7)
can be calculated as

where

Choose the function

Y (t) = e2y(t) + aety(t) = (Ay,c +al2)Y(t) — (Ay,c + ala) ey + br2f = (Ay,c + al2) Y(t),
which means that lim;— 0 Y (t) = 0 since A1 > « and A2 > a. Hence, z¢(t) can be expressed as
zo(t) =Ty 5 y(t)
=e o (To3Y (8) = T3 (Ay.c + al2) " br,28)

B 11 3 1
_ at Ao Ao _
= o 1 |"? (‘1—)\1)(‘1—)\2)[—@] ’

which implies that
zo2(t) = e~ (01(t) +61),
where
Ba
(a=2X1)(a—X2)
Therefore, (C6) has been proven, and it follows that lim¢— o 61(¢t) = 0. The proof is finished.
For the saturation design of the controller uq(t) in [z1(t), z2(t)]-subsystem of (C1), we can follow a similar process as
outlined in Section of Design of control law w1 (t), which is omitted here for brevity.

91(t) = Yg(t), 01 =

Appendix D Numerical Simulation

In this section, we conduct a numerical simulation for system (1) with the controllers ug(t) and wi(t) as described in
Theorems 1 and 2.

For the simulation, to verify the effectiveness of the proposed method when zo(0) = 0, we set the initial condition as
[z0(0),z1(0),z2(0)] = [0, —8, 10]. Additionally, the parameters are chosen as A = 0.5, 8 = 1,a = 0.2,e1 = 0.3,e2 = 0.5, \| =
0.2, and A2 = 1. Figure D1 clearly illustrates that the proposed method successfully drives both the system states and the
control inputs to zero in the presence of input saturation.
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