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Appendix A Dynamic MG LFC Model
Firstly, the parameters to be used are listed in Table Al.

Table A1 Parameters

Parameters | Explanations

D Damping constant of generator

Kr Integral gain of central controller

Kp Proportional gain of central controller

K; Integral gain of local controller

Ky Proportional gain of local controller

M Moment of inertia of generator

Res Gain of electrolyzer system

Ry Gain of fuel cell

Riess Gain of flywheel energy storage system

R Drop characteristics of the micro-turbine
Tes Time constant of electrolyzer system

Tk Time constant of fuel cell

Ttess Time constant of flywheel energy storage system
Af Deviation of frequency

AP Power deviation of electrolyzer system

AP Power deviation of fuel cell system

A Press Power deviation of flywheel energy storage system
AP, Disturbance of load

APt Power deviation of micro-turbine

APpy Disturbance of solar photovoltaic generation
APwr Disturbance of wind turbine generation

Secondly, the model of microgrid(MG) load frequency control (LFC) shown in Fig.A1, which includes the micro-turbine
(MT) with a local controller, a fuel cell (FC), an electrolyzer system (ES), a flywheel energy storage systems (FESS), the
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central controller of the MG, and an external disturbance model. The frequency regulation involves two control loops.
In the primary control loop, frequency regulation of the system involves the MT with a local controller, the FC, the ES,
and the FESS. In the secondary control loop, the central controller achieves secondary frequency regulation of the system
through an open communication network.
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Figure A1 The frequency regulation model of MG.

Thirdly, the dynamic equation for the power deviation of the micro-turbine can be expressed as
APt = 022 AP (t) + 023 APre(t) + a24 A Pes(t) + 0252 Pregs () 4+ s Af(t)
+auaKy [ Af(t = d©)dt + a2 APt~ d(0) + aazs APt — d(t)

+ 0g,24 A Pes(t — d(t)) + g, 25 A Press (t — d(t)) + aq,26 Af(t — d(t))

— aKp APy (t) — aKi APy (t), (A1)
where
1 1 K, 1
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Ky 1 Ky 1
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gy = a(— + K+ -———),a25 = — K — s
( Tes ! MRmt) (Tfess ! MRmt)
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age = a——2C 4 P ), a1 = —aky,
ch Tes M Kmt
KpKy;
0d,22 = Qd,23 = ~Qd24 = Qd,25 = O,
Qg.06 = a(_ Klefc + Klees + D )
’ Tke Tes MKt

Appendix B Proof and discussion of Theorem 1

The part gives the detailed proof of the following Theorem 1. The standard notations to be used are listed in Table B1.

Theorem 1. For given scalars d;, ¢+ = 1,2, system (1) is asymptotically stable if there exist P = {P;;j}sx5 €
S {Q,Ri} € ST, i = 1,2, Z = {Zij}axa € S, any matrices {L1, N1} € R3X10n {1, Ny} € R3"X2n g ¢
R27X2n and Sp € R2?*107 gych that the following inequalities holds for d € {d1,d2}.

Uy ST —d(EYS) — EL®T) digNT + dog LT
* d®; + He{S1} diaNT +dogLT| <0, (B1)

o A
* * —diyR2
where

€; = [Onx(i—l)n7[n7OnX(IO—i)n]vi =12,...,10
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es = Aey + Ages,eo = Onx10m,

Ei=[ef —efr.ef el —2e 6] —elpq +6ei,—12¢]7]",i=1,2,3
eq = d? je9 + d3 €10 + daadiges, ey = (d1 + d2)es — 2d1eg — 2daero,

el diel dige + dageT, d2ed , eT]T,
el el —e3,e3 —ef,di(el —eF),dize] — diged — daget]™,

T
761 » €0 ,dldee + d2de7] g = [64,61 7d1des + d2d677€o} s

T}T

T
1
T
s
T
2
T
0763762’_64

€ )

=]

=1

=le
=

Il = [diaed + doae? ,dizel ey, di2(draed + dager) —eq]”
Ex=leg +elg—eg,e1 —eg]  Ep=le7 —eg,e,10540,
R; = diag{R;,3R;,5R;},i=1,2

T = He{H’lI‘PHQ} + erlFQel — engz,

Yo = 1T ZII5 — 1] Z114 + He{IIT Z1s},

T3 = el (d?R1 + d3yRa)es — B RiFn,

Ps = [0n,0p,0n, 00, In] X P,

T]T

Psi = P5 x [OTL><<7:71)TL7Invonx(577;)n]T7i =3,5
Zi = [Onx(i—l)n’ln,onx(zl_i)n} X Z,i=3,4
Ziz = Zi X [Onx(i—l)mInyonx(z;_i)n]T,i =3,4

By — On, 0n Ps Z3 — Zy
2= Z44;Z33

On Pss

*  Op

Py =

)

— P53 P55 Onxsn Onxan

Es

T
N1 + dNo E
©11 = —He { dE} S5 + { ! 2

L1+ dL2E4

3

Uy =T1+ Yo+ Y3+011 —d3ExP1E4 — d*He{EL®2ER}.

Table B1 Notations

Notations Explanations

R™ The sets of n-dimensional vectors

Rmxm The sets of m x n-dimensional real matrices

spxn The sets of n x n-dimensional symmetric positive definite matrices
X >0 (> 0) | Symmetric and positive-definite (semi-positive-definite) matrix, X
XT The transpose of matrix X

X! The inverse of matrix X

col{---} The block-diagonal matrixes

He{X} X+XxT

diag{---} The block-diagonal matrixes

Proof. To simplify the representation of Lemma 1, the following condition is given:

rT=,T; 1“25551“4) .

Fs(d) =n" (d3r 210 + d?He{IT=,T0) + 55 + T
di4 dad

(B2)

where I'y € RPX™ Ty € RIX™ 'y ¢ RIX™ Ty € R"*™ =) € SP, 2y € RPX! 23 = dQp1 + Qpo € S™ is convex with respect

to 24 €89, 25 €S"; {p,q,r,I,m} eN,andp<m, g<m, r<m. Qp; €S™, i=0,1.

Lemma 1: ( [3]). Consider F3(d) defined in (B2). F3(d) < 0 satisfies for all d € {d1,da}, if there exists L1 € R™*™,

Lo € R"%*P Nj € RIX™ Ny € R1%*P S € RPXP and Sy € RP*™ such that the following holds.

E3+ 011 dI'TET + ©12 digN{ + dogLT
G(d) = * d=1 + He{S1} d1aNF + doqLT| <0,

* * d14Z4 + d24=5

where
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T
r
©11 = —He {dr?sz + [ 3]
Iy

For ease of reading, the following vectors are defined:

tox(s t=d1 p(g t=d (g
0 :col{z(t),m(tdl),z(td),x(tdg),/t st,/t st/t 7(5) 4,

—dp d1 —d dig do d2d

/tdl/m““@/fdl/tdl“ o )
s1(t) =col {:z:(t),/t_d1 x(s)ds,/t 0 z(s) ds, /d1 /+8 s)dsdb, / /t " dsd@}
() =co1{z(s),x(t),/:7d1 o(u )du,/Hl2 (u )du}.

Consider the following Lyapunov-Krasovskii functional (LKF) candidate:

N1 + dN2T
! 2 ,010 = 52T — dFrlrsl.
L1+ dLoT'y

V(t) =W (tvxt) + VQ(t,CEt) + V3(t7 it)7 (B4)
where
Vi(t, z¢) = sF (£)Ps1(t),
t —dy
Va(t,ze) = / 2T (s)Qu(s)ds + sF (t,8) Zs2(t, s) ds,
t—dy t—do

2 —d;i_1 ot
Va(t, i) = (di — d,-_l)/ / T (s)Rs&(s)dsdo.
i=1 —d; t+0

with calculating the derivative of the V(t), the following inequality can be obtained:
V(t) = Vi(t,ze) + Va(t, zt) + Va(t, &t)

& (B5)
t) (Z Yi—Ji— J2> &(t),
i=1
where ,
I = d1/ 7 (s)Ru(s) ds
t—dy
t—dy t—d
Jo = dlg/ T (s)Rad(s) ds + dlz/ T (s)Rai:(s) ds
t—d t—dp
which are estimated, based on auxiliary function-based integral inequalities [4], as,
Sz €N ET RiE€(1), (B6)
di2ETRoEy  di2ET R E
T2 > €7 (1) 128y Roly | dabiy RaFog £(1). (B7)
diq daog
Combining (B1), (B4) and (B5), the following inequality can be obtained:
V(1) < ET(0)QADE(), (B8)

with
di2EfRoEs  di2ETRoEs

Qd)="T1+ Y2+ T3 —
(@) ! 2 ? diq dag

It can be found that the non-convex terms (d3-and d?-dependent terms) only appear in He{IIT PII>} of Y1 and Ys.
These terms are nonlinear with respect to d and need to be subtracted in ¥;. After simple mathematical calculations, (B8)
can be rewritten as the form of (B2) with n = £(t) and

[y = E4 € R2WX10n o — g, ¢ R37X10n
Ty = Eg € RInX10n  p, _ p. o g3nx10n

2 = &y € $27, 3 =7T(d) = ¥; —O1; € SO"
Eo =0y e RV = = _d19Ry €S, i=4,5

(B9)

Thus, for any {L1, N1} € R37"X10n [1, No} € R37%2n G ¢ R27X27 and Sy € R27X107 applying Lemma 1 shows that if
LMI (B1) holds for d € {d1,dz}, then Q(d) < 0 holds for all d(t) € [d1, d2], which further implies V (t) < —e||z(t)||? for a
sufficiently small € > 0.

IfP>0,Q>0,7Z>0,R; >0, i=1, 2 and LMI (B1) hold, system (1) is stable, completing the proof.
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Appendix C CASE STUDIES

To verify the accuracy of the calculated delay stability margin, specifically the gap between the calculated and actual
maximum tolerable delay, and thus demonstrate the effectiveness of the method proposed in this paper, relevant simulation
analyses are conducted using MATLAB’s Simulink platform.

Assume the system experiences a disturbance of 0.01 p.u. at ¢t = 10s with controller gains of Kp = 5 and K; = 0.2.
The frequency responses corresponding to the delay margins ta (calculated using the method introduced in this paper), t3
(from [1]), and t; representing the critical maximum delay found through simulation are shown in Fig. C1.
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Figure C1 Frequency deviation response curves under different delay conditions.

In order to simulate the random changes in the time delay of a real MG, 200 randomly selected scenarios are generated.
The controller gains are configured as Kp = 5 and K; = 0.2, and the time delay randomly chosen from the range [0, 9.57].
Fig. C2 shows the results of two hundred simulations with initial conditions A f € [—0.02,0.02] to validate the effectiveness
of the proposed method. The results demonstrate that the MG maintains asymptotic stability despite the presence of time

delay.
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Figure C2 Frequency deviation under 200 simulation results.
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Figure C3 Actual load variation.

To simulate the frequency response of a time-delay MG in an actual power environment, load demand (Fig. C3) and
renewable energy sources (RESs) power fluctuations [2] (Fig. C4) are applied to the system. The MG controller gains are
set to Kp = 5 and K1 = 0.2, and the time delay is chosen randomly from the range [0,9.57]. To observe peak frequency
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Figure C4 RESs power fluctuations.
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Figure C5 Frequency response curves under load fluctuations and RESs permeation.

fluctuations, a 0.2 p.u. domestic load is connected at 200s, and a 0.2 p.u. industrial load is connected at 400s and RESs is
connected at 800s. According to the results of Fig. C5, the system maintains a frequency deviation within +0.01 Hz during
normal operation. A dip of 0.256 Hz occurs when the domestic load is connected at 200s, and a dip of 0.254 Hz occurs when
the industrial load is connected at 400s. At 800s, an overshoot of 0.601 Hz occurs when the RESs are connected. These
results indicate that the system remains stable despite the influence of time delay in an actual power environment.
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