
SCIENCE CHINA
Information Sciences

. Supplementary File .

Delay-dependent stability analysis of load frequency
control of microgrid based on matrix injection

method
Hao-Hui FAN1,2,3, Xing-Chen SHANGGUAN1,2,3*, Yu-Long FAN1,2,3,

Chuan-Ke ZHANG1,2,3, Chen-Guang WEI1,2,3 & Da XU1,2,3

1School of Automation, China University of Geosciences, Wuhan 430074, China
2Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China

3Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China

Appendix A Dynamic MG LFC Model

Firstly, the parameters to be used are listed in Table A1.

Table A1 Parameters

Parameters Explanations

D Damping constant of generator

KI Integral gain of central controller

KP Proportional gain of central controller

Kil Integral gain of local controller

Kpl Proportional gain of local controller

M Moment of inertia of generator

Res Gain of electrolyzer system

Rfc Gain of fuel cell

Rfess Gain of flywheel energy storage system

Rmt Drop characteristics of the micro-turbine

Tes Time constant of electrolyzer system

Tfc Time constant of fuel cell

Tfess Time constant of flywheel energy storage system

∆f Deviation of frequency

∆Pes Power deviation of electrolyzer system

∆Pfc Power deviation of fuel cell system

∆Pfess Power deviation of flywheel energy storage system

∆PL Disturbance of load

∆Pmt Power deviation of micro-turbine

∆PPV Disturbance of solar photovoltaic generation

∆PWT Disturbance of wind turbine generation

Secondly, the model of microgrid(MG) load frequency control (LFC) shown in Fig.A1, which includes the micro-turbine

(MT) with a local controller, a fuel cell (FC), an electrolyzer system (ES), a flywheel energy storage systems (FESS), the
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central controller of the MG, and an external disturbance model. The frequency regulation involves two control loops.

In the primary control loop, frequency regulation of the system involves the MT with a local controller, the FC, the ES,

and the FESS. In the secondary control loop, the central controller achieves secondary frequency regulation of the system

through an open communication network.
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Figure A1 The frequency regulation model of MG.

Thirdly, the dynamic equation for the power deviation of the micro-turbine can be expressed as

∆Ṗmt = α22∆Pmt(t) + α23∆Pfc(t) + α24∆Pes(t) + α25∆Pfess(t) + α26∆f(t)

+ αd,21KI

∫
∆f(t− d(t))dt+ αd,22∆Pmt(t− d(t)) + αd,23∆Pfc(t− d(t))

+ αd,24∆Pes(t− d(t)) + αd,25∆Pfess(t− d(t)) + αd,26∆f(t− d(t))

− αKpl∆Ṗdis(t)− αKil∆Pdis(t), (A1)

where

α =
1

1 +Kpl
, α22 = α(−Kil −

1

MRmt
), α23 = α(

Kpl

Tfc
−Kil −

1

MRmt
),

α24 = α(−
Kpl

Tes
+Kil +

1

MRmt
), α25 = α(

Kpl

Tfess
−Kil −

1

MRmt
),

α26 = α(−
KplRfc

Tfc
+

KplRes

Tes
+

D

MKmt
), αd,21 = −αKil,

αd,22 = αd,23 = −αd,24 = αd,25 = −α
KPKpl

M
,

αd,26 = α(−
KplRfc

Tfc
+

KplRes

Tes
+

D

MKmt
).

Appendix B Proof and discussion of Theorem 1

The part gives the detailed proof of the following Theorem 1. The standard notations to be used are listed in Table B1.

Theorem 1. For given scalars di, i = 1, 2, system (1) is asymptotically stable if there exist P = {Pij}5×5 ∈
S5n+ , {Q,Ri} ∈ Sn+, i = 1, 2, Z = {Zij}4×4 ∈ S4n+ , any matrices {L1, N1} ∈ R3n×10n, {L2, N2} ∈ R3n×2n, S1 ∈
R2n×2n, and S2 ∈ R2n×10n such that the following inequalities holds for d ∈ {d1, d2}.

Ψ1 ST
2 − d(ET

AS1 − ET
BΦT

2 ) d1dN
T
1 + d2dL

T
1

∗ dΦ1 +He{S1} d1dN
T
1 + d2dL

T
2

∗ ∗ −d212R̂2

 < 0, (B1)

where

ei = [0n×(i−1)n, In, 0n×(10−i)n], i = 1, 2, . . . , 10
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es = Ae1 +Ade3, e0 = 0n×10n,

Ei = [eTi − eTi+1, e
T
i + eTi+1 − 2eTi+4, e

T
i − eTi+1 + 6eTi+4 − 12eTi+7]

T, i = 1, 2, 3

ea = d21de9 + d22de10 + d2dd1de6, eb = (d1 + d2)e6 − 2d1e9 − 2d2e10,

Π1 = [eT1 , d1e
T
5 , d1de

T
6 + d2de

T
7 , d

2
1e

T
8 , e

T
a ]

T,

Π2 = [eTs , e
T
1 − eT2 , e

T
2 − eT4 , d1(e

T
1 − eT5 ), d12e

T
2 − d1de

T
6 − d2de

T
7 ]

T,

Π3 = [eT2 , e
T
1 , e

T
0 , d1de

T
6 + d2de

T
7 ]

T,Π4 = [eT4 , e
T
1 , d1de

T
6 + d2de

T
7 , e

T
0 ]

T,

Π5 = [eT0 , e
T
s , e

T
2 ,−eT4 ]

T,

Π6 = [d1de
T
6 + d2de

T
7 , d12e

T
1 , e

T
a , d12(d1de

T
6 + d2de

T
7 )− eTa ]

T,

EA = [eT9 + eT10 − eT6 , e
T
7 − eT6 ]

T, EB = [eT7 − eT6 , e
T
b ,Π

T
2|d=0,Π

T
5 ]

T,

R̂i = diag{Ri, 3Ri, 5Ri}, i = 1, 2

Υ1 = He{ΠT
1 PΠ2}+ eT1 Qe1 − eT2 Qe2,

Υ2 = ΠT
3 ZΠ3 −ΠT

4 ZΠ4 +He{ΠT
5 ZΠ6},

Υ3 = eTs (d
2
1R1 + d212R2)es − ET

1 R̂1E1,

P5 = [0n, 0n, 0n, 0n, In]× P,

P5i = P5 × [0n×(i−1)n, In, 0n×(5−i)n]
T, i = 3, 5

Zi = [0n×(i−1)n, In, 0n×(4−i)n]× Z, i = 3, 4

Zii = Zi × [0n×(i−1)n, In, 0n×(4−i)n]
T, i = 3, 4

Φ1 =

[
0n P55

∗ 0n

]
,Φ2 =

[
0n 0n P5 Z3 − Z4

Z44−Z33
2

− P53 P55 0n×5n 0n×4n

]
,

Θ11 = −He

dET
AS2 +

[
E2

E3

]T [
N1 + dN2EA

L1 + dL2EA

] ,

Ψ1 = Υ1 +Υ2 +Υ3 +Θ11 − d3EAΦ1EA − d2He{ET
AΦ2EB}.

Table B1 Notations

Notations Explanations

Rn The sets of n-dimensional vectors

Rm×n The sets of m× n-dimensional real matrices

Sn×n
+ The sets of n× n-dimensional symmetric positive definite matrices

X > 0 (⩾ 0) Symmetric and positive-definite (semi-positive-definite) matrix, X

XT The transpose of matrix X

X−1 The inverse of matrix X

col{· · · } The block-diagonal matrixes

He{X} X +XT

diag{· · · } The block-diagonal matrixes

Proof. To simplify the representation of Lemma 1, the following condition is given:

F3(d) =ηT
(
d3ΓT

1 Ξ1Γ1 + d2He{ΓT
1 Ξ2Γ2}+ Ξ3 +

ΓT
3 Ξ4Γ3

d1d
+

ΓT
4 Ξ5Γ4

d2d

)
η, (B2)

where Γ1 ∈ Rp×m,Γ2 ∈ Rl×m,Γ3 ∈ Rq×m,Γ4 ∈ Rr×m. Ξ1 ∈ Sp,Ξ2 ∈ Rp×l,Ξ3 = dΩp1 +Ωp0 ∈ Sm is convex with respect

to Ξ4 ∈ Sq , Ξ5 ∈ Sr; {p, q, r, l,m} ∈ N, and p < m, q < m, r < m. Ωpi ∈ Sm, i = 0, 1.

Lemma 1: ( [3]). Consider F3(d) defined in (B2). F3(d) ⩽ 0 satisfies for all d ∈ {d1, d2}, if there exists L1 ∈ Rr×m,

L2 ∈ Rr×p, N1 ∈ Rq×m, N2 ∈ Rq×p, S1 ∈ Rp×p, and S2 ∈ Rp×m, such that the following holds.

G(d) =


Ξ3 +Θ11 dΓT

2 Ξ
T
2 +Θ12 d1dN

T
1 + d2dL

T
1

∗ dΞ1 +He{S1} d1dN
T
2 + d2dL

T
2

∗ ∗ d1dΞ4 + d2dΞ5

 < 0, (B3)

where
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Θ11 = −He

dΓT
1 S2 +

[
Γ3

Γ4

]T [
N1 + dN2Γ1

L1 + dL2Γ1

] ,Θ12 = ST
2 − dΓT

1 S1.

For ease of reading, the following vectors are defined:

ξ(t) =col

{
x(t), x(t− d1), x(t− d), x(t− d2),

∫ t

t−d1

x(s)

d1
ds,

∫ t−d1

t−d

x(s)

d1d
ds,

∫ t−d

t−d2

x(s)

d2d
ds,

∫ t

t−d1

∫ t

θ

x(s)

d21
ds dθ,

∫ t−d1

t−d

∫ t−d1

θ

x(s)

d21d
ds dθ,

∫ t−d

t−d2

∫ t−d

θ

x(s)

d22d
ds dθ

}
,

ς1(t) =col

{
x(t),

∫ t

t−d1

x(s) ds,

∫ t−d2

t−d1

x(s) ds,

∫ 0

−d1

∫ t

t+θ
x(s) ds dθ,

∫ −d2

−d1

∫ t−d1

t+θ
x(s) ds dθ

}
,

ς2(t) =col

{
x(s), x(t),

∫ t−d1

s
x(u) du,

∫ s

t−d2

x(u) du

}
.

Consider the following Lyapunov-Krasovskii functional (LKF) candidate:

V (t) = V1(t, xt) + V2(t, xt) + V3(t, ẋt), (B4)

where

V1(t, xt) = ςT1 (t)Pς1(t),

V2(t, xt) =

∫ t

t−d1

xT(s)Qx(s)ds+

∫ t−d1

t−d2

ςT2 (t, s)Zς2(t, s) ds,

V3(t, ẋt) =

2∑
i=1

(di − di−1)

∫ −di−1

−di

∫ t

t+θ
ẋT(s)Riẋ(s)dsdθ.

with calculating the derivative of the V (t), the following inequality can be obtained:

V̇ (t) = V̇1(t, xt) + V̇2(t, xt) + V̇3(t, ẋt)

⩽ ξT(t)

(
3∑

i=1

Υi − J1 − J2

)
ξ(t),

(B5)

where

J1 = d1

∫ t

t−d1

ẋT(s)R1ẋ(s) ds,

J2 = d12

∫ t−d1

t−d
ẋT(s)R2ẋ(s) ds+ d12

∫ t−d

t−d2

ẋT(s)R2ẋ(s) ds.

which are estimated, based on auxiliary function-based integral inequalities [4], as,

J1 ⩾ ξT(t)ET
1 R̂1E1ξ(t), (B6)

J2 ⩾ ξT(t)

(
d12ET

2 R̂2E2

d1d
+

d12ET
3 R̂2E3

d2d

)
ξ(t). (B7)

Combining (B1), (B4) and (B5), the following inequality can be obtained:

V̇ (t) ⩽ ξT(t)Ω(d)ξ(t), (B8)

with

Ω(d) = Υ1 +Υ2 +Υ3 −
d12ET

2 R̂2E2

d1d
−

d12ET
3 R̂2E3

d2d
.

It can be found that the non-convex terms (d3-and d2-dependent terms) only appear in He{ΠT
1 PΠ2} of Υ1 and Υ2.

These terms are nonlinear with respect to d and need to be subtracted in Ψ1. After simple mathematical calculations, (B8)

can be rewritten as the form of (B2) with η = ξ(t) and

Γ1 = EA ∈ R2n×10n, Γ3 = E2 ∈ R3n×10n

Γ2 = EB ∈ R11n×10n, Γ4 = E3 ∈ R3n×10n

Ξ1 = Φ1 ∈ S2n, Ξ3 = Υ(d) = Ψ1 −Θ11 ∈ S10n

Ξ2 = Φ2 ∈ R2n×11n, Ξi = −d12R̂2 ∈ S3n, i = 4, 5


. (B9)

Thus, for any {L1, N1} ∈ R3n×10n, {L2, N2} ∈ R3n×2n, S1 ∈ R2n×2n and S2 ∈ R2n×10n, applying Lemma 1 shows that if

LMI (B1) holds for d ∈ {d1, d2}, then Ω(d) < 0 holds for all d(t) ∈ [d1, d2], which further implies V̇ (t) ⩽ −ϵ∥x(t)∥2 for a

sufficiently small ϵ > 0.

If P > 0, Q > 0, Z > 0, Ri > 0, i = 1, 2 and LMI (B1) hold, system (1) is stable, completing the proof.
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Appendix C CASE STUDIES

To verify the accuracy of the calculated delay stability margin, specifically the gap between the calculated and actual

maximum tolerable delay, and thus demonstrate the effectiveness of the method proposed in this paper, relevant simulation

analyses are conducted using MATLAB’s Simulink platform.

Assume the system experiences a disturbance of 0.01 p.u. at t = 10s with controller gains of KP = 5 and KI = 0.2.

The frequency responses corresponding to the delay margins t2 (calculated using the method introduced in this paper), t3
(from [1]), and t1 representing the critical maximum delay found through simulation are shown in Fig. C1.
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Figure C1 Frequency deviation response curves under different delay conditions.

In order to simulate the random changes in the time delay of a real MG, 200 randomly selected scenarios are generated.

The controller gains are configured as KP = 5 and KI = 0.2, and the time delay randomly chosen from the range [0, 9.57].

Fig. C2 shows the results of two hundred simulations with initial conditions ∆f ∈ [−0.02, 0.02] to validate the effectiveness

of the proposed method. The results demonstrate that the MG maintains asymptotic stability despite the presence of time

delay.

Figure C2 Frequency deviation under 200 simulation results.
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Figure C3 Actual load variation.

To simulate the frequency response of a time-delay MG in an actual power environment, load demand (Fig. C3) and

renewable energy sources (RESs) power fluctuations [2] (Fig. C4) are applied to the system. The MG controller gains are

set to KP = 5 and KI = 0.2, and the time delay is chosen randomly from the range [0, 9.57]. To observe peak frequency
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Figure C4 RESs power fluctuations.
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Figure C5 Frequency response curves under load fluctuations and RESs permeation.

fluctuations, a 0.2 p.u. domestic load is connected at 200s, and a 0.2 p.u. industrial load is connected at 400s and RESs is

connected at 800s. According to the results of Fig. C5, the system maintains a frequency deviation within ±0.01 Hz during

normal operation. A dip of 0.256 Hz occurs when the domestic load is connected at 200s, and a dip of 0.254 Hz occurs when

the industrial load is connected at 400s. At 800s, an overshoot of 0.601 Hz occurs when the RESs are connected. These

results indicate that the system remains stable despite the influence of time delay in an actual power environment.
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