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Abstract With the rapid advancement and increasing demands of multimedia applications in visual communications, the visual quality

of multimedia content has emerged as a pivotal factor, profoundly impacting service quality and user experience. Traditionally, visual

quality assessment has concentrated on individual modalities such as images, videos, and 3D models, with evaluation models designed

separately due to the distinct characteristics of each media type. However, from the perspective of the human vision system, visual quality

across these modalities is interconnected and shares a unified perceptual basis. To address this, we introduce a versatile multimedia visual

quality assessment framework tailored for visual communications, which unifies quality assessment of images, videos, and 3D models within

a single large multi-modal model (LMM). This integrated approach enables simultaneous quality evaluation across all three modalities,

effectively harnessing cross-domain knowledge while reducing the inefficiencies and resource overhead of deploying separate models in

multimodal communication systems. Experimental results show that our proposed framework, X-QA, delivers robust quality assessment

performance across images, videos, and 3D models, establishing a strong technical foundation and opening new possibilities for future

visual communication applications requiring sophisticated multimodal quality evaluations.
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1 Introduction

The escalating demand for high-quality multimedia in visual communications and an enhanced quality of experience
(QoE) has driven the creation of specialized quality assessment tools to predict the quality of diverse media types
[1–4]. These tools are instrumental in improving a wide range of applications critical to visual communication
systems, from low-level image enhancements (e.g., dehazing [5], brightening [6], and denoising [7]) to compression
and transmission frameworks [8, 9], as well as 3D scanning and reconstruction processes [10]. Depending on the
assessment target, current mainstream visual quality assessment typically focuses on three distinct domains: image
quality assessment (IQA), video quality assessment (VQA), and 3D quality assessment (3DQA). IQA examines
traditional technical distortions (e.g., noise, blur, and compression artifacts) alongside aesthetic qualities (e.g.,
color harmony, balance, and emotional impact) that influence visual perception in communication. VQA evaluates
spatial distortions (akin to IQA) and temporal dynamics in video streams (e.g., frame rate, resolution, and motion
artifacts), ensuring seamless and clear playback essential for effective video-based communication. Meanwhile,
3DQA assesses the visual quality of 3D models (e.g., point clouds, voxels, and meshes), focusing on attributes like
texture, resolution, and structural fidelity, which are vital for immersive visual experiences in modern communication
platforms.

However, the structural differences between these modalities (images as pixel-based structures, videos with spatio-
temporal dimensions, and 3D models with three-dimensional spatial properties) combined with the input limita-
tions of traditional models, have historically restricted quality assessment to single-modality approaches. These
conventional models are tailored to specific modalities and are challenging to adapt for cross-modal visual quality
evaluation. Yet, from the perspective of the human visual system (HVS), the visual quality of these three modali-
ties shares common features. For instance, compression in images, videos, and 3D models often results in blurring
(such as unclear textures or indistinct object boundaries) while color shifts or noise similarly degrade the viewing
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Figure 1 (Color online) Traditional multimedia visual quality assessment vs. versatile multimedia visual quality assessment. Given the diverse

formats of multimedia content and the capabilities of traditional models, conventional quality assessment typically involves designing separate

quality evaluators for different modalities. However, humans can accurately perceive the visual quality of various modalities within a single

vision system. This inspires us to propose a versatile quality assessment framework that leverages a one LMM to simultaneously evaluate the

visual quality of images, videos, and 3D content using a single model.

experience across all three. This commonality suggests that consolidating the visual quality assessment of these
modalities into a single model is both logical and feasible. Traditional single-modality models, however, lack the
capacity to perceive and process the complexity of multiple diverse modalities, making such an approach imprac-
tical with conventional methods. Recent advancements in large multimodal models (LMMs) and their application
to visual quality assessment have changed this landscape. With their superior perceptual understanding and vast
model capacity, LMMs can effectively learn to assess all three tasks simultaneously, enabling the development of
a versatile multimedia visual quality assessment framework (as shown in Figure 1). Nevertheless, this approach
introduces two significant challenges.

How can the input for these three modalities be unified for LMMs? LMMs natively support image inputs [11].
Videos can be treated as sequences of sampled frames, while 3D models can be rendered into a series of images
from fixed viewpoints [12]. While this suffices for IQA, both frame sampling for videos and rendering for 3D models
result in the loss of critical quality information (e.g., temporal continuity in videos or geometric features in 3D
models). To address this, we propose an additional quality projector module that employs modality-specific feature
extractors to capture video and 3D-specific characteristics. These features are then integrated into the LMM for
comprehensive analysis, minimizing the loss of quality-related information.

How can mixed training of quality data across the three modalities be achieved? Quality knowledge injection into
LMMs typically involves converting traditional mean opinion score (MOS) annotated datasets into question-answer
pairs for supervised fine-tuning (SFT) [13]. However, the fixed question-answer pair format may interfere with the
model’s ability to distinguish between modalities. To overcome this, we introduce a modality-specific system prompt
strategy, embedding tailored prompts in the text input to guide the LMM in differentiating between modalities.
This enhances the model’s ability to deliver targeted quality assessments for each modality.

Building upon the challenges and motivations outlined earlier, this paper introduces X-QA, the first experimen-
tal framework for versatile multimedia visual quality assessment. Specifically, we begin by converting the MOSs
from existing quality assessment datasets into question-answer pairs with adjective-based ratings (e.g., poor, good,
excellent). For the image modality, we perform no additional preprocessing, directly utilizing the raw data for
quality evaluation. For the video modality, we sample frames at a rate of 1 FPS to conduct spatial quality analysis,
then employ the SlowFast [14] network as a projector to extract temporal quality features from consecutive frames.
For the 3D model modality, we project the model from fixed cubic viewpoints and leverage PointNet++ [15] as a
projector to extract three-dimensional quality features from local patches of the model. To address the challenges of
mixed-modality training, we design distinct system prompts tailored to each modality. These prompts help bridge
the gap between modalities, enabling the model to optimize effectively for diverse data types. Experimental re-



Zhang Z C, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122306:3

sults demonstrate that the proposed X-QA framework achieves strong performance across visual quality assessment
tasks for all three modalities (images, videos, and 3D models). This advancement paves the way for multimedia
applications, such as enhanced content delivery, virtual reality experiences, and automated quality control in 3D
reconstruction, by providing a unified and robust quality assessment solution. In all, the contributions of this paper
can be summarized as follows.

• The paper introduces X-QA, the first experimental framework for versatile multimedia visual quality assess-
ment, integrating quality evaluation of images, videos, and 3D models into a single LMM. This unified approach
contrasts with traditional methods that rely on separate, modality-specific evaluators.

• To enable simultaneous assessment across modalities, the framework converts MOS into adjective-based ques-
tion-answer pairs (e.g., poor, good, excellent). It employs modality-specific preprocessing: direct use of raw images,
1 FPS frame sampling with SlowFast for video temporal features, and fixed cubic viewpoint projections with Point-
Net++ for 3D model features. This ensures comprehensive quality feature extraction despite modality differences.

• To overcome challenges in mixed-modality training, the paper proposes tailored system prompts for each modal-
ity (images, videos, 3D models). These prompts guide the LMM to distinguish and optimize quality assessments
across diverse data types, enhancing cross-modal performance.

2 Related work

2.1 Image quality assessment

Image quality assessment (IQA) predicts perceptual visual quality, vital for visual communication and computa-
tional imaging [16–25]. Wang et al. [26] critiqued error sensitivity metrics like PSNR, shifting IQA toward human
perception-aligned methods. For blind IQA, Moorthy et al. [27, 28] introduced visual importance pooling and
NSS-based indices. Later advances include frequency-domain sharpness [29], gradient statistics with Adaboost [30],
and deep learning for distortion-generic models [31]. Recent efforts target diverse content, like VR images [32],
360-degree IQA [33], smartphone photos [34], and face images [35], using techniques from full-reference [36] to
unsupervised methods [36]. No-reference IQA now leverages multiscale features [37], attention networks [38], and
CNNs [39]. These developments reflect ongoing efforts to enhance IQA accuracy and robustness.

2.2 Video quality assessment

Video quality assessment (VQA) is essential for compression, communication, and enhancement applications [40–42].
Wang et al. [43] focused on structural distortion for perceived quality, while Seshadrinathan et al. [44] integrated
motion into VQA metrics. Advances in human visual perception models include speed perception statistics [45],
multi-dimensional analysis [46], temporal distortion metrics [47], and motion artifact estimation [48]. Efficiency is
boosted by fragment sampling [49–51] and exposure correction assessments [52, 53].

2.3 3D quality assessment

3D quality assessment (3DQA) has grown with VR, AR, and metaverse applications [1]. Alexiou et al. [54] and Su
et al. [55] targeted point cloud quality, with Su building a subjective study database. Diniz et al. [56] introduced
a multi-distance metric for uneven point distributions. Machine learning advances include PQA-Net and MS-
GraphSIM [57], using multi-view projection and multiscale features. No-reference metrics for colored 3D models
[10, 58] and point-to-distribution methods [57] enhance 3DQA. Yang et al. [59] tackled domain adaptation, while
Zhang et al. [60, 61] predicted quality via rendered images/videos. Multi-modal MM-PCQA [62] fuses 2D texture
and 3D geometry. Efficiency gains come from Zhang’s work [63,64], alongside 3D digital human assessments [65,66],
shifting 3DQA from traditional to deep learning methods.

2.4 Large multi-modal models

Large language models (LLMs) like GPT-4 [67], T5 [68], and LLaMA [69] excel in linguistic tasks across diverse
knowledge domains. They expand into multimodal applications by integrating visual inputs via CLIP [70] and
adaptation modules, as seen in LMMs [11, 71–74]. OpenFlamingo [75] employs gated cross-attention in pretrained
language encoders, while InstructBLIP [73] enhances BLIP-2 [76] with vision-language tuning. Open-source LMMs,
such as the LLaVA series [11, 77, 78], leverage GPT-4 [67] to generate data for fine-tuning vision-language models.
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Figure 2 (Color online) Framework of the proposed X-QA. The MOSs of the images, videos and 3D models are converted to adjective quality

ratings. Quality projectors are employed to capture specific quality attributes that might otherwise be overlooked, such as motion features

absent in individual frames for VQA or geometry details lost in projections for 3DQA. This quality knowledge is subsequently integrated into

the LMM through supervised fine-tuning, enabling X-QA to infer quality scores across different modalities.

3 Methods

In this section, we detail the methodology of the proposed X-QA framework (shown in Figure 2), designed to
integrate visual quality assessment across three modalities (images, videos, and 3D models) within a single LMM.
The approach addresses two primary challenges: unifying multimodal inputs for the LMM and enabling effective
mixed-modality training. Below, we describe the data preprocessing, feature extraction, model architecture, and
training strategy, supported by theoretical reasoning and mathematical formulations.

3.1 Data preprocessing and quality projectors

To enable the LMM to process diverse modalities (images, videos, and 3D models), we preprocess the input data to
align with the model’s native capabilities while preserving modality-specific quality information. The preprocessing
varies by modality, as outlined below.

3.1.1 Image modality

For IQA, raw images are used directly as input to the LMMwithout additional preprocessing. Images are represented
as I ∈ R

H×W×3, where H and W denote the height and width, and 3 corresponds to RGB channels. This preserves
traditional distortions (e.g., noise, blur) and aesthetic features (e.g., color harmony), which are critical for quality
evaluation. The LMM processes I natively, leveraging its pre-trained vision encoder to extract spatial quality
features.

3.1.2 Video modality

Key frames sampling. For VQA, videos are processed to capture both spatial and temporal quality aspects. A
video V is represented as a sequence of frames, defined as

V = {F1, F2, . . . , FT }, (1)

where Ft ∈ R
H×W×3 denotes the t-th frame, with H and W representing the height and width of the frame, and 3

corresponding to the RGB channels. T is the total number of frames in the video. To address spatial quality, we
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sample frames at a rate of 1 frame per second (FPS), resulting in a subset

Vs = {Ft1 , Ft2 , . . . , Ftk}, (2)

where k = ⌊T/fps⌋ and fps = 1. These sampled frames are directly fed into the LMM for spatial quality analysis,
analogous to the approach used in IQA.

VQA projector. To capture temporal quality aspects, such as motion artifacts and frame continuity, we employ
the SlowFast network [14] with frozen weights as the VQA quality projector. In its original formulation, SlowFast
processes the full video V using dual pathways: a slow pathway for sparse frames and a fast pathway for dense
frames. In our approach, we utilize only the fast pathway to extract temporal features, as it operates on a higher
frame rate and is better suited to capture fine-grained temporal dynamics. To align with the 1 FPS sampling setting
used for spatial quality analysis, we divide the video V into non-overlapping 1-s clips and extract features from each
clip. Formally, the video V = {F1, F2, . . . , FT } is segmented into a set of clips

C = {C1, C2, . . . , CM}, (3)

where Cm = {Ft(m−1)S+1
, Ft(m−1)S+2

, . . . , FtmS
} represents the m-th 1-s clip, S is the video’s frame rate, and M =

⌊T/S⌋ is the total number of 1-s clips. For each clip Cm, the fast pathway of SlowFast processes the consistent
frame sequences and produces a temporal feature vector

FVm
= σv(Cm), (4)

where σv(·) denotes the fast pathway feature extraction function, and FVm
∈ R

Dt is the temporal feature vector for
the m-th clip, with Dt as the feature dimension. The full set of temporal features for the video is then represented
as

FV = {FV1 , FV2 , . . . , FVM
}, (5)

where FV encapsulates the temporal quality information extracted at 1-s intervals. Finally, we employ a multilayer
perceptron (MLP) to map FV into video motion quality embeddings, which are subsequently fed into the LMM for
perception and analysis. The process described above constitutes the complete VQA projector, which takes a video
as input and produces video motion quality embeddings as output, which can be denoted as

EmbV = α(V ), (6)

where α(·) indicates the VQA projector, V stands for the input video, and EmbV are the output video motion
quality embeddings, respectively.

3.1.3 3D model modality

Projections rendering. For 3DQA, 3D models (e.g., meshes, voxel grids, or point clouds) are preprocessed to
align with the image-based input requirements of LMMs while preserving geometric quality information. Given a
3D model O, if it is not already in point cloud format (i.e., O 6= P , where P ∈ R

N×3 represents a point cloud with N
points and 3D coordinates), it is converted into a point cloud P through sampling or reconstruction techniques (e.g.,
uniform sampling from mesh surfaces or voxel-to-point conversion). The resulting point cloud P is then rendered
from six fixed cubic viewpoints (front, back, left, right, top, and bottom) yielding a set of 2D RGB images

Pr = {I1, I2, . . . , I6}, (7)

where each Ii ∈ R
H×W×3 has height H , width W , and 3 color channels. These rendered images are fed into the

LMM to assess surface-level quality attributes, such as texture fidelity and color distortions.
3DQA projector. To capture 3D-specific quality attributes (e.g., structural integrity and geometric detail),

we employ PointNet++ [15] as a quality feature projector with frozen weights. For quality-specific 3D models,
which often contain a large number of points (N ≫ 2048), directly processing the full point cloud P may be
computationally inefficient. Instead, we sample patches of 2048 points based on the visibility from the projection
viewpoints as the PointNet++ input. For each viewpoint vi (where i = 1, 2, . . . , 6), we identify the subset of visible
points Pvi ⊆ P by determining which points are unobstructed from the camera’s perspective. From Pvi , we sample
fixed-size patches of 2048 points using farthest point sampling to ensure uniform coverage of the visible geometry

P ′ = {P ′
1, P

′
2, . . . , P

′
L}, (8)



Zhang Z C, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122306:6

where P ′ represents the sampled point cloud patches. Then we use PointNet++ to extract the local geometric
features from each patch P ′

l

FP ′
l
= σp(P

′
l ), (9)

where σp(·) is the PointNet++ feature extraction function. The full set of geometry features for the point cloud is
then represented as

FP ′ = {FP ′
1
, FP ′

2
, . . . , FP ′

L
}, (10)

where FP ′ represents the set of the geometry features extracted from all the patches. Similarly, we employ an MLP
layer to map FP ′ into point cloud geometry quality embeddings and the overall 3DQA projector can be denoted as

EmbP = β(P ), (11)

where β(·) indicates the VQA projector, P stands for the input point cloud, and EmbP are the output point cloud
geometry quality embeddings, respectively.

3.2 Model architecture

The X-QA framework builds upon a pre-trained LMM (mPLUG-Owl2-7B as default [79]) with a vision encoder Ev

and a language decoder Dl. The architecture is extended with modality-specific quality projectors and a unified
quality assessment head, as described below. For an input X (where X is I for images, Vs for the sampled video
frames, or Pr for the rendering projections of 3D models), the vision encoder generates visual embeddings

EmbX = Ev(X), (12)

where EmbX ∈ R
Dv and Dv is the embedding dimension. For videos and 3D models, modality-specific features (FV

and FP , respectively) are projected into the same embedding space via the MLP layers α(·) and β(·) as described
previously

EmbV = α(V ), EmbP = β(P ), (13)

where EmbV ,EmbP ∈ R
Dv . These embeddings are concatenated to form a fused representation

Embf = EmbV ⊕ EmbP , (14)

where Embf ∈ R
2Dv is the combined feature vector. If the input does not include video data (i.e., V = ∅), then

EmbV = 0 ∈ R
Dv ; similarly, if the input does not include a 3D model (i.e., P = ∅), then EmbP = 0 ∈ R

Dv . The
visual embeddings EmbX and fused embeddings Embf are fed into the language decoder Dl, guided by modality-
specific prompt text T (detailed in Section 3.3)

Qt = Dl(EmbX ,Embf , T ), (15)

whereQt represents the predicted quality score token, which can be regarded as the probability distribution (denoted
as X ) on all possible tokens of the language model. To evaluate quality levels, we perform a closed-set softmax over

a predefined set of five quality scores {γi}5i=1, yielding probabilities ηγi
for each level, where

∑5
i=1 ηγi

= 1. The
probability for each γi is computed as

ηγi
=

eXγi

∑5
j=1 e

Xγj

, (16)

where Xγi
is the logit corresponding to the quality score γi. The final predicted score of the LMM, denoted SLMM,

is calculated as a weighted sum of the quality scores G(γi), where G(γi) = i represents the numerical value of each
level (e.g., i = 1, 2, 3, 4, 5)

SLMM =

5∑

i=1

ηγi
G(γi) =

5∑

i=1

i ·
eXγi

∑5
j=1 e

Xγj

, (17)

where SLMM represents the final predicted quality score.



Zhang Z C, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122306:7

3.3 Mixed-modality training strategy

3.3.1 Quality assessment datasets transformation

To train the LMM on mixed-modality quality data, we first convert MOSs from existing quality assessment datasets
into adjective-based question-answer pairs via equidistant interval partition [13]. Specifically, we uniformly divide
the range between the highest score (M) and the lowest score (m) into five distinct intervals, and assign the scores
in each interval as respective levels

L(s) = li if m+
i− 1

5
× (M −m) < s 6 m+

i

5
× (M −m), (18)

where {li|5i=1} = {bad, poor, fair, good, excellent} are the standard text rating levels as defined by ITU [80].

3.3.2 System prompts

Due to the inherent differences across modalities, using a fixed prompt template for all quality assessment tasks
may confuse the model and lead to conflicting interpretations. To address this, we design modality-specific system
prompts tailored to each input type (images, videos, and 3D models) to facilitate clearer differentiation and improve
the model’s learning process. Specifically, the system prompts are formulated as follows.

Prompt template for image.

–#User: <image> <Emb f> How would you rate the quality of the image?
–#Assistant: the quality of the image is <quality token>.
Prompt template for video.

–#User: <frames> <Emb f> Based on the key frames and motion features, how would you rate the quality of the
video?

–#Assistant: the quality of the video is <quality token>.
Prompt template for 3D model.

–#User: <projections> <Emb f> Based on the cubic projections and geometric features, how would you rate
the quality of the 3D model?

–#Assistant: the quality of the 3D model is <quality token>,
where <image>, <frames>, and <projections> represent the embedding placeholders for the corresponding image,
video frames, and 3D model projections, respectively. <Emb f> denotes the embedding placeholder mapped by the
quality projector, and <quality token> is the final predicted quality score token output by the LMM.

3.3.3 Loss function

The training minimizes the cross-entropy loss between predicted probabilities Q = {ηγi
}5i=1 and ground-truth labels

Q∗:

L = −
5∑

i=1

Q∗
i log(ηγi

), (19)

where Q∗ is the one-hot label. The model is fine-tuned using supervised fine-tuning (SFT) on a mixed dataset with
modality-specific prompts.

4 Experiment

4.1 Experimental setup

To comprehensively cover IQA, VQA, and 3DQA, we select 11 popular datasets across these domains for experi-
mentation. Additionally, to ensure a fair and robust performance comparison, we evaluated our proposed X-QA
framework against 23 mainstream methods spanning IQA, VQA, and 3DQA.

4.1.1 Training datasets

For training, we utilized the training subsets of five datasets: KonIQ, SPAQ, LSVQ, SJTU-PCQA, and WPC, as the
foundation for X-QA. These datasets are chosen for their diversity and prominence in their respective domains, with
no overlap between their training and test splits. Notably, while X-QA is designed to handle multiple modalities
within a single model, the competing methods were trained solely within their specific domains due to their modality-
specific limitations.
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Table 1 Brief introduction of the employed quality assessment datasets.

Dataset Year Scale Content Task

Quality assessment datasets for images

LIVEC [81] 2016 1162 Real-world images with authentic distortions from user devices Quality assessment of authentically-distorted images

KonIQ [82] 2018 10073 Images from public multimedia dataset YFCC100m [83] Quality assessment of in-the-wild images

KADID-10K [84] 2019 10125 24 different types of distorted images Weakly-supervised image quality assessment

SPAQ [34] 2020 11125 Smartphone-captured images with diverse scenes Quality assessment of smartphone images

AGIQA-3K [85] 2023 2982 AI-generated images from various generative models Quality assessment of AI-generated images

Quality assessment datasets for videos

KoNViD-1K [86] 2017 1200 Public-domain video sequences from YFCC100m [83] Unified video quality assessment

LIVE-VQC [87] 2018 585 Videos of unique content, captured by users Quality assessment of real-world videos

LSVQ [88] 2021 39075 Real-world distorted videos and video patches Quality assessment of user-generated videos

Quality assessment datasets for 3D contents

SJTU-PCQA [89] 2020 420 6 different types of distorted point clouds Colorful point cloud quality assessment

WPC [90] 2021 740 3 different types of distorted point clouds Colorful point cloud quality assessment

WPC2.0 [91] 2021 400 Video-based compressed point clouds Compressed point cloud quality assessment

4.1.2 Testing datasets

To evaluate X-QA’s performance, we used the test splits of the aforementioned datasets (KonIQ, SPAQ, LSVQ,
SJTU-PCQA, WPC) and further included six additional datasets: LIVEC, KADID-10K, AGIQA-3K, KoNViD-1K,
LIVE-VQC, and WPC2.0. These datasets, detailed in Table 1, are excluded from training to rigorously assess
generalzaition performance.

4.1.3 Quality assessment competitors

We compared X-QA against 23 established methods, categorized by domain:
• IQA methods (8): BRISQUE [92], NIQE [93], NIMA [94], DBCNN [95], HyperIQA [96], MUSIQ [97], CLIP-

IQA+ [98], LIQE [99];
• VQA methods (8): TLVQM [100], VSFA [101], VIDEVAL [102], PVQ [88], BVQA [103], DisCoVQA [104],

SimpleVQA [105], FAST-VQA [106];
• 3DQA methods (7): IT-PCQA [107], ResSCNN [108], PQA-Net [90], 3D-NSS [10], GMS-3DQA [64], MM-

PCQA [62], LMM-PCQA [12].
Performance results are reported with Spearman’s rank correlation coefficient (SRCC) and Pearson’s linear corre-

lation coefficient (PLCC) as metrics. For the main experiment, competing methods are evaluated in an intra-dataset
setting (trained and tested within the same dataset), while X-QA is trained across all listed training datasets,
demonstrating its versatility and superior performance across modalities.

4.2 Training details

The training of X-QA is conducted with 8 NVIDIA A800-80 GB GPU (requiring about 48 h in total). The
vision transformer (ViT) initialization is derived from the pre-training stage, utilizing an updated CLIP-L/14
model [70]. Similarly, the large language model (LLM) initialization is based on LLaMA-2 [109]. The visual
abstractor initialization combines the pre-training stage with mPLUG-Owl2. The image resolution is set to 448×448
pixels for both configurations. A batch size of 256 is employed, alongside a maximum learning rate (lr max) of 2e−5,
which follows a cosine decay learning rate schedule. The learning rate warmup ratio is configured at 0.03, with no
weight decay applied (set to 0). Gradient accumulation is performed over 16 steps, and the numerical precision is
maintained at bfloat16. Training is conducted for a single epoch, with 250 warm-up steps. The optimizer used is
AdamW, with optimizer sharding enabled. Additional configurations include activation checkpointing and a model
parallelism level of 2, while pipeline parallelism is set to 1.

The SlowFast [14] network is fixed and initialized with the pre-trained weights on the Kinetics-400 [110] dataset
while the PointNet++ network is fixed and initialized with the pre-trained weights on the ModelNet40 [111] dataset.
This choice of weights fixing is based on two considerations: (1) SlowFast and PointNet++ are pre-trained on large-
scale datasets (Kinetics-400, ModelNet40), allowing them to extract robust motion and geometric features without
further tuning; (2) freezing these networks reduces training cost and memory usage, while avoiding overfitting on
the limited quality-labeled video and 3D datasets.

4.3 Main performance

To evaluate the effectiveness of the proposed X-QA, we conduct extensive experiments across IQA, VQA, and 3DQA
tasks, with results reported in Table 2. Unlike competing methods, which are trained and tested within their specific
domains (intra-dataset setting), X-QA is trained on a mixed dataset of KonIQ, SPAQ, LSVQ, SJTU-PCQA, and
WPC, enabling it to handle all three modalities simultaneously.
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Table 2 (Color online) Performance comparison across IQA, VQA, and 3DQA datasets. The proposed X-QA is trained on all the listed datasets

(KonIQ, SPAQ, LSVQ, SJTU-PCQA, and WPC). Other quality assessment competitors are tested with the intra-dataset setting (trained and

tested within the same dataset). First in red, second in blue.

Index
Datasets

IQA VQA 3DQA

KonIQ SPAQ LSVQtest LSVQ1080P SJTU-PCQA WPC

Criteria SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

IQA methods

A BRISQUE (TIP 2012) [92] 0.645 0.641 0.633 0.620 – –

B NIQE (TIP 2013) [93] 0.430 0.451 0.413 0.426 – –

C NIMA (TIP 2018) [94] 0.859 0.896 0.907 0.910 – –

D DBCNN (TCSVT 2020) [95] 0.875 0.884 0.908 0.913 – –

E HyperIQA (CVPR 2020) [96] 0.906 0.917 0.908 0.909 – –

F MUSIQ (ICCV 2021) [97] 0.929 0.924 0.917 0.921 – –

G CLIP-IQA+ (AAAI 2023) [98] 0.895 0.909 0.881 0.883 – –

H LIQE (CVPR 2023) [99] 0.928 0.912 0.922 0.919 – –

VQA methods

I TLVQM (TIP 2019) [100] – 0.772 0.774 0.589 0.616 –

J VSFA (ACMMM 2019) [101] – 0.801 0.796 0.675 0.704 –

K VIDEVAL (TIP 2021) [102] – 0.794 0.783 0.545 0.554 –

L PVQ (CVPR 2021) [88] – 0.827 0.828 0.711 0.739 –

M BVQA (TCSVT 2022) [103] – 0.852 0.854 0.772 0.788 –

N DisCoVQA (TCSVT 2023) [104] – 0.859 0.850 0.734 0.772 –

O SimpleVQA (ACMMM 2022) [105] – 0.867 0.861 0.764 0.803 –

P FAST-VQA (ECCV 2022) [106] – 0.876 0.877 0.779 0.814 –

3DQA methods

Q IT-PCQA (CVPR 2022) [107] – – 0.865 0.828 0.487 0.432

R ResSCNN (TOMM 2022) [108] – – 0.860 0.810 0.722 0.714

S PQA-net (TCSVT 2021) [90] – – 0.837 0.858 0.702 0.712

T 3D-NSS (TCSVT 2022) [10] – – 0.714 0.738 0.647 0.651

U GMS-3DQA (TOMM 2024) [64] – – 0.910 0.917 0.830 0.833

V MM-PCQA (IJCAI 2023) [62] – – 0.910 0.922 0.841 0.855

W LMM-PCQA (ACMMM 2024) [12] – – 0.937 0.940 0.882 0.873

Proposed versatile method

X X-QA (ours) 0.939 0.942 0.931 0.932 0.886 0.884 0.799 0.828 0.940 0.941 0.891 0.880

X-QA consistently outperforms domain-specific methods across all evaluated datasets, achieving the highest
SRCC and PLCC scores in nearly all cases. For IQA, on KonIQ and SPAQ, X-QA achieves SRCC/PLCC of
0.939/0.942 and 0.931/0.932, respectively, surpassing top IQA methods like MUSIQ (0.929/0.924 on KonIQ) and
LIQE (0.922/0.919 on SPAQ). In VQA, X-QA excels on LSVQtest and LSVQ1080P with SRCC/PLCC of 0.886/0.884
and 0.799/0.828, respectively, outperforming FAST-VQA (0.876/0.877 and 0.779/0.814). For 3DQA, X-QA achieves
SRCC/PLCC of 0.940/0.941 on SJTU-PCQA and 0.891/0.880 on WPC, exceeding LMM-PCQA (0.937/0.940 and
0.882/0.873). These results are visually summarized in Figure 3, where radar charts compare the top-six methods
across each modality. X-QA demonstrates superior performance across all axes, reflecting its ability to leverage cross-
domain knowledge effectively. Notably, its unified training approach not only enhances accuracy but also eliminates
the need for modality-specific models, reducing computational overhead. This versatility and high performance
establish X-QA as a robust solution for multimedia quality assessment, aligning closely with the human visual
system’s integrated perception of quality across diverse modalities.

4.4 Generalization performance

To assess the generalization capability of X-QA, we evaluate its performance on six datasets excluded from training:
KADID-10K, LIVEC, AGIQA-3K (IQA); KoNViD-1K, LIVE-VQC (VQA); and WPC2.0 (3DQA). These datasets,
detailed in Table 1, test the framework’s ability to handle unseen data across modalities. Results are reported in
Table 3, with SRCC and PLCC as metrics. For comparison, only the top-performing are included.

X-QA demonstrates exceptional generalization, outperforming domain-specific methods across all tested datasets.
In IQA, X-QA achieves SRCC/PLCC of 0.701/0.698 on KADID-10K (vs. CLIP-IQA+ at 0.661/0.663), 0.881/0.880
on LIVEC (vs. LIQE at 0.871/0.869), and 0.731/0.784 on AGIQA-3K (vs. LIQE at 0.718/0.765). For VQA, it
scores 0.870/0.878 on KoNViD-1K (vs. SimpleVQA at 0.860/0.861) and 0.834/0.841 on LIVE-VQC (vs. FAST-
VQA at 0.823/0.844). In 3DQA, X-QA reaches 0.845/0.856 on WPC2.0, surpassing LMM-PCQA (0.834/0.821).
These results highlight X-QA’s ability to adapt to diverse, unseen distortions and content types, from AI-generated
images to compressed point clouds. The superior generalization stems from X-QA’s unified training on a mixed
dataset (KonIQ, SPAQ, LSVQ, SJTU-PCQA, WPC), which exposes it to a broad range of quality features across
modalities. In contrast, competing methods, trained on narrower domain-specific datasets, struggle to extrapolate
effectively to new data. This cross-modal robustness positions X-QA as a versatile solution for real-world multimedia
applications, where quality assessment often involves unpredictable content and distortions.
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Figure 3 (Color online) Illustrations of performance comparison for top-six methods across (a) IQA, (b) VQA, and (c) 3DQA tasks.

Table 3 (Color online) Generalization performance comparison across IQA, VQA, and 3DQA datasets. The proposed X-QA is trained on

KonIQ, SPAQ, LSVQ, SJTU-PCQA, and WPC datasets. The IQA competitors are trained on KonIQ and SPAQ datasets, the VQA methods

are trained on LSVQ datasets, and the 3DQA methods are trained on SJTU-PCQA and WPC datasets.

Datasets
IQA VQA 3DQA

KADID-10K LIVEC AGIQA-3K KoNViD-1K LIVE-VQC WPC2.0

Criteria SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

IQA methods

MUSIQ (ICCV 2021) [97] 0.549 0.529 0.821 0.829 0.664 0.677 – –

CLIP-IQA+ (AAAI 2023) [98] 0.661 0.663 0.769 0.787 0.675 0.721 – –

LIQE (CVPR 2023) [99] 0.625 0.626 0.871 0.869 0.718 0.765 – –

VQA methods

BVQA (TCSVT 2022) [103] – 0.819 0.800 0.776 0.784 –

SimpleVQA (ACMMM 2022) [105] – 0.860 0.861 0.799 0.813 –

FAST-VQA (ECCV 2022) [106] – 0.859 0.855 0.823 0.844 –

3DQA methods

GMS-3DQA (TOMM 2024) [64] – – 0.781 0.771

MM-PCQA (IJCAI 2023) [62] – – 0.798 0.795

LMM-PCQA (ACMMM 2024) [12] – – 0.834 0.821

Proposed versatile method

X-QA (ours) 0.701 0.698 0.881 0.880 0.731 0.784 0.870 0.878 0.834 0.841 0.845 0.856

4.5 Ablation study

We conduct an ablation study to evaluate the contributions of each component in the X-QA, including modalities
(IQA, VQA, 3DQA), quality projectors (SlowFast for VQA, PointNet++ for 3DQA), and system prompts. Results
are presented in Table 4.

(1) Removing any component results in a performance drop across all metrics, confirming the necessity of each
module. For instance, excluding IQA reduces VQA from 0.843 to 0.828 (SRCC) and 3DQA from 0.916 to 0.901,
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Table 4 Ablation study on the X-QA framework. Columns indicate the presence (X) or absence (×) of modalities (IQA, VQA, 3DQA), quality

projectors (Proj.), and system prompt (Prompt). Performance is reported as the average SRCC and PLCC across datasets: KonIQ and SPAQ

(IQA), LSVQtest and LSVQ1080P (VQA), SJTU-PCQA and WPC (3DQA).

Ablation variant
Components IQA Avg. VQA Avg. 3DQA Avg.

IQA VQA 3DQA Proj. Prompt SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

Full model (X-QA) X X X X X 0.935 0.937 0.843 0.856 0.916 0.911

w/o IQA × X X X X 0.869 0.866 0.828 0.841 0.901 0.896

w/o VQA X × X X X 0.924 0.926 0.768 0.767 0.905 0.900

w/o 3DQA X X × X X 0.928 0.930 0.833 0.846 0.812 0.801

w/o projector X X X × X 0.932 0.935 0.798 0.811 0.868 0.863

w/o system prompt X X X X × 0.911 0.913 0.816 0.829 0.887 0.882

Table 5 Parameters and inference latencies (average time cost for each instance) of the X-QA framework for IQA, VQA, and 3DQA tasks.

Task format
Parameters Latencies

Projector LMM Projector LMM

IQA 0 7.3 B 0 101 ms

VQA 34.6 M 7.3 B 807 ms 350 ms

3DQA 1.7 M 7.3 B 1165 ms 276 ms

while eliminating projectors lowers VQA from 0.843 to 0.798 and 3DQA from 0.916 to 0.868. This consistent decline
underscores that all components—IQA, VQA, 3DQA, projectors, and prompts—contribute to the framework’s
overall effectiveness. (2) Notably, removing a modality’s data most significantly impacts its corresponding domain,
highlighting each domain’s critical role in its own performance. Without IQA, the IQA average drops sharply
from 0.935/0.937 to 0.869/0.866 (SRCC/PLCC), a decrease of 0.066/0.071. Similarly, excluding VQA reduces
VQA performance from 0.843/0.856 to 0.768/0.767 (drop of 0.075/0.089), and removing 3DQA lowers 3DQA from
0.916/0.911 to 0.812/0.801 (drop of 0.104/0.110). These substantial declines demonstrate that each modality’s
training data primarily enhances its own quality assessment, though cross-modal benefits remain evident in smaller
drops elsewhere. (3) Eliminating projectors has a pronounced effect on VQA and 3DQA, where additional temporal
and geometric information is lost, but minimally affects IQA. VQA performance falls from 0.843/0.856 to 0.798/0.811
(drop of 0.045/0.045), and 3DQA decreases from 0.916/0.911 to 0.868/0.863 (drop of 0.048/0.048), reflecting the loss
of SlowFast’s motion features and PointNet++’s structural features. In contrast, IQA only drops from 0.935/0.937
to 0.932/0.935 (drop of 0.003/0.002), as it relies solely on raw image inputs without projector enhancement, making
it less sensitive to this ablation. (4) Removing the system prompt introduces confusion in the model, leading
to performance degradation across all modalities due to conflicting interpretations of mixed-modality data. These
consistent reductions emphasize the prompt’s role in guiding the LMM to differentiate modalities, preventing quality
assessment inconsistencies.

4.6 Computational cost analysis

Table 5 presents the parameter scale and average inference latency of the proposed X-QA framework across IQA,
VQA, and 3DQA tasks, distinguishing between the costs incurred by the quality projectors and the LMM. Notably,
the LMM remains consistent across all tasks, with 7.3 billion parameters and moderate latency, underscoring its
scalability. In contrast, the task-specific projectors (absent in IQA but crucial for VQA and 3DQA) introduce
only modest parameter overhead (34.6 M for SlowFast and 1.7 M for PointNet++), yet substantially improve
performance as evidenced in the ablation studies. However, these projectors increase latency significantly: 807 ms
for VQA and 1165 ms for 3DQA. This reflects the computational burden of extracting temporal and geometric
features, particularly in 3DQA where point cloud processing is more complex.

4.7 Statistical test

To rigorously validate the performance of the proposed X-QA framework, we perform a statistical significance test in
this section. Adopting the experimental methodology from [112], we assess the differences between predicted quality
scores and subjective ratings for all pairwise model combinations. Results are presented in Figure 4, comprising
heatmaps for IQA, VQA, and 3DQA modalities. In IQA, X-QA (index X) significantly outperforms six of the eight
competing methods. For VQA, X-QA excels over seven of the eight methods. In 3DQA, X-QA surpasses six of the
seven methods. These findings, grounded in the heatmap data, affirm that X-QA delivers consistently superior or
equivalent performance across all three modalities compared to most state-of-the-art methods.
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(a) (b) (c)

Figure 4 Statistical significance heatmaps for X-QA and competing methods across (a) IQA, (b) VQA, and (c) 3DQA methods (the index is

indicated in Table 2). A black/white block means the row method is statistically worse/better than the column one. A gray block means the

row method and the column method are statistically indistinguishable.

5 Conclusion

In this paper, we tackle the challenge of unifying visual quality assessment across images, videos, and 3D models,
drawing inspiration from the human visual system’s cohesive perception of multimedia content in visual communi-
cations. Conventional approaches, limited by modality-specific models, overlook cross-domain quality insights and
impose substantial resource demands, hindering their applicability in integrated communication systems. To ad-
dress these shortcomings, we introduce X-QA, the first framework to seamlessly integrate image quality assessment
(IQA), video quality assessment (VQA), and 3D quality assessment (3DQA) into a single large multimodal model
(LMM) tailored for visual communications. Leveraging modality-specific preprocessing (raw images, SlowFast for
videos, PointNet++ for 3D models) and customized system prompts, X-QA adeptly manages diverse inputs and
enhances mixed-modality training, ensuring robust quality evaluation across varied visual communication scenar-
ios. Looking forward, X-QA paves the way for future advancements, such as expanding to additional modalities
and optimizing prompt strategies for more precise assessments in complex communication contexts. Its versatility
and efficiency establish it as a transformative tool for next-generation visual communication applications, where
consistent and comprehensive quality evaluation across diverse content types is paramount for delivering superior
user experiences.
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