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Abstract In the Internet of Things (IoT) environment, the end-cloud collaborative architecture enables secure sharing and processing

of massive data between the terminals and the cloud. It highlights establishing trusted transmission and computing mechanisms to ensure

security over the data’s full lifecycle. However, privacy issues about illegal access and forgery of sensitive data are increasingly severe

during the computation, storage, and distribution process, thus hindering the development of IoT. Although the bilateral access control

methods for end-cloud collaboration enforce access control on user privilege and ensure data source credibility through authentication

mechanisms, they struggle to balance forward security and communication cost, resulting in limited key updating efficiency and policy

flexibility. To address these practical issues, this paper proposes a novel forward secure bilateral access control scheme named FSBiAC

for end-cloud collaborative IoT, which draws on the idea of matchmaking encryption and puncturable encryption. Our scheme outsources

a significant portion of puncture tasks to reduce local updating overhead, while the bi-directional match between policies and attributes

ensures fine-grained bilateral access control. Detailed proofs demonstrate that FSBiAC achieves semantic security under selectively

chosen plaintext attacks (IND-sCPA) and existential unforgeability under chosen message attacks (EUF-CMA). Simulation shows that

FSBiAC realizes superior computation and storage overhead compared to the previous studies.
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1 Introduction

The Internet of Things (IoT) [1] integrates data sensing, aggregation, computation, and storage. It fundamentally
changes communication between the terminals and the cloud, thereby realizing the connection of all things. As an
important carrier for secure data sharing, cloud-based cryptographic computation plays a crucial role in processing
vast amounts of data. After years of wireless communication applications, the end-cloud collaborative model [2, 3]
further enhances the agility and real-time capabilities of cloud services [4]. Specifically, IoT terminals perform
privacy-preserving computation tasks to respond locally, while the cloud offers communication resources and storage
capacity [5]. End-cloud collaborative IoT improves resource usage and transmission efficiency through coordination
at the physical, network, and application layers, as well as cooperation between the devices and the cloud.

As the IoT network grows, the explosive growth of data and its diverse formats present significant challenges for
storage and management [6,7]. Furthermore, during the computation, storage, and distribution of encrypted data,
privacy incidents caused by illegal access and forgery occur frequently. These incidents range from personal privacy
leaks to infrastructure attacks, thereby posing a serious threat to the stable operation of IoT [8]. Data collected
by lightweight terminals are constantly exposed to the security threats of forgery and tampering [9]. As one of
the general techniques for tamper resistance, traditional authentication methods rely on identity validation, but
their source identification efficiency remains debatable for massive devices. In addition, it is not trivial to efficiently
handle complex access requests in current access control mechanisms for the one-to-one communication model [10],
due to the increasing user scale and high heterogeneity of IoT. How to simultaneously achieve fine-grained access
control for privacy resources [11] and fine-grained authentication for source identification [10] is a crucial issue in
IoT security. The former allows access control of confidential data at a more precise level according to the predefined
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Figure 1 (Color online) Fine-grained bilateral access control in end-cloud computing.

access policies, whereas the latter identifies the sender in a fine-grained manner through the authentication policies,
ensuring source legitimacy.

To achieve both authenticity and privacy, the bilateral access control methods [12] arise at an opportune time. It
requires bi-directional privilege verification before data transmission [13,14], which allows the recipients to identify
the source without decrypting the data. Besides preventing unauthorized entities from accessing sensitive data,
the dual restriction ensures that both parties meet each other’s policies. Matchmaking encryption (ME) [14–16]
for bilateral access control is suitable for the cloud computing paradigm and provides on-demand services in edge
networks. As shown in Figure 1, end-cloud collaborative architecture extends the functionality of cloud computing.
It enables source identification and outsourced data confidentiality. The fog nodes filter out ciphertexts that do
not comply with the authentication policies, while the cloud filters out ciphertexts that do not meet the access
policies. However, as a common issue, the current ME methods perform inadequately in preventing local key
compromise and historical data leakage. If the decryption key suffers from exposure attacks, adversaries may
attempt to decrypt past communication content, thereby threatening the entire transmission [17]. Under the key
rotation, it is impractical for low-power terminals to frequently perform global updates. To address these issues in
ME methods, forward security [18] is implemented to ensure that long-term transmissions do not expose historical
data due to key leakage. In other words, data privacy has no relation to the historical key state, so as to realize the
secure isolation of historical communication content.

As a significant technology for achieving forward security, puncturable encryption (PE) obtained popularity
among researchers. It enables targeted revocation of decryption capabilities by embedding specific labels within the
local key [19]. As a result, the fine-grained bilateral access control combines attribute-based matching encryption
(ABME) [20] and PE emerged [21, 22]. Nevertheless, they face the bottlenecks of high storage overhead, large
communication loads, and complex key management in many-to-many communication models. Resource-limited
terminals perform local key updates and experience longer processing times. Besides, the local storage cost for keys
multiplies with the increasing number of updates [23]. Consequently, there is an enormous scope for current ABME
methods to develop in supporting both lightweight bilateral access control and forward security. Designing a forward
secure bilateral access control method with secure lightweight updates becomes a pressing issue. Considering the
resource constraints and the extensive network distribution, this paper follows the pattern of ME and presents
a novel ABME protocol with secure outsourced updating that supports fine-grained bilateral access control. It
achieves a reasonable balance between secure access control, source identification, and lightweight performance.

1.1 Contribution

To meet the practical demand for secure sharing, alleviate the issues posed by large-scale terminals with limited
resources, and ensure data source credibility, we propose a novel fine-grained bilateral access control scheme for
end-cloud collaborative IoT. The contributions are as follows.

(1) We propose a novel forward secure bilateral access control scheme with fine-grained access control and authen-
tication, called FSBiAC. By employing linear matching between the outsourced decryption key, policy token, and
encrypted file, FSBiAC satisfies the bi-directional verification between data owners and data users. Different from
traditional PE, the puncture operation is divided into outsourced updating and local updating, thus a significant
portion of updates is offloaded to the cloud. This process not only ensures forward security and key exposure attack
defense, but also reduces the users’ local computation and storage costs.
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(2) We define a semantic security model under selective chosen plaintext attacks (IND-sCPA) and an existential
unforgeability model under chosen message attacks (EUF-CMA). Rigorous security analysis proves that FSBiAC can
realize privacy and authenticity under two q-type parallel bilinear Diffie-Hellman exponent assumptions, respectively.

(3) The experimental results show that FSBiAC has significant computational advantages in the local update,
encryption, and decryption operations with the Java pairing-based cryptography (JPBC) library [24]. The storage
complexity of local update will not increase with the number of punctures, which is only 788, 908, and 404 Bytes
for Type-E, Type-A1, and Type-A curves, respectively. When the numbers of shares, attributes, and labels are all
50, the computational efficiency of encryption and decryption on real-world datasets [25] is improved by about 1.5
times and 40 times, respectively, compared to [21].

1.2 Related work

To realize both privacy and authenticity, Ateniese et al. [26] first introduced the concept of ME and constructed
an identity-based encryption (IBE) scheme for policy-matched communication between the senders and receivers.
They proved its security under the random oracle model based on the bilinear Diffie-Hellman (BDH) assumption.
Since then, numerous identity-based cryptographic techniques [12, 27–29] have been designed for ME, but none
have ensured the applicability of fine-grained access control in large-scale endpoint environments. Besides, predi-
cate functions in identity-based policies require exponential-sized descriptions and therefore have limited flexibility.
Several lightweight schemes [7, 30–33] offer solid solutions to relieve insufficient granularity for end-cloud collabo-
rative scenarios. Tanveer et al. [7] proposed a lightweight authentication protocol for smart healthcare, which is
based on a random-or-real method to mitigate the inherent risks in the public channel. The flexible attribute-based
encryption (ABE) schemes were proposed by Li et al. [30, 31], which support user revocation and addition at the
group level without disclosing the files and the keys. Nevertheless, Refs. [7, 30, 31] unilaterally pursued lightweight
access control or authentication, resulting in the inability to balance privacy and authenticity. Wu et al. [32,33] put
forward the formal definitions for the fuzzy identity-based ME primitive. If the overlap between the tags of senders
and receivers exceeds a certain threshold, the encrypted files can be correctly decrypted. Since static matching of
tags, the granularity of both two schemes is still not suitable for a wireless network with large amounts of data. Xu
et al. [13,14,34] designed several ABME schemes suitable for cloud-fog computing, which can optimize performance
by offloading some computational tasks to fog nodes and providing bilateral access control. Nevertheless, they did
not consider the impact of key leakage on communication content. Ma et al. [15] introduced the security prop-
erties of blindness and unlinkability, and designed an adaptively secure ME scheme by incorporating anonymous
credentials. Huang et al. [20] designed a certificateless and revocable attribute-based bilateral access control scheme
suitable for edge-cloud environments. To support the functionalities of attribute and identity revocation, however,
the system needs to maintain both the revocation list and attribute information when the users’ roles change.
Zhang et al. [35] introduced a cloud-enabled publish/subscribe system that features attribute-based bilateral access
control. It significantly improves matching efficiency and ensures the anonymity of publishers. Unfortunately, the
data access privilege relies solely on the AND-Gate structure. Hu et al. [36] introduced a bilateral data-sharing
scheme based on extended ME. It effectively addresses the privacy challenges in vehicular networks but has not
escaped the one-to-one communication model in its revocation process.

On the other hand, PE primitive was first proposed by Green et al. [37]. They draw on the idea of puncturable
pseudorandom function (PPRF) proposed by Goldreich [38]. Specifically, a constrained PPRF key can delete the
pseudorandom output parts for specific inputs, such that PPRF no longer computes the values of those inputs.
Hence, PPRF embodies a forward secure mechanism with a selective non-decryptable feature. Technically, PE and
PPRF are not inherently related, but PE similarly restricts user keys from decrypting specific ciphertexts through
label embedment. Phuong et al. [39] introduced attribute-based puncturable encryption (ABPE), which achieves
targeted revocation for specific labels and ensures fine-grained access control. Several schemes for ABPE based on
revocation trees were presented [23, 40]. Unfortunately, the parallel employment of puncture policies and access
policies within the tree structure significantly affects the overall computational performance. In [23, 40], the initial
puncture key, as a crucial component for local decryption, is exposed to untrusted clouds, greatly reducing the
scheme’s security. Additionally, the number of public parameters is fixed relative to the attribute size, which results
in lacking scalable key management and flexible data distribution. Recently, Liu et al. [41] proposed a puncturable
and traceable broadcast encryption scheme that facilitates the hash uniform distribution to prevent malicious
encryptors. Nie et al. [21] constructed an attribute-based puncturable and matchmaking encryption scheme, which
realizes bi-directional fine-grained access control, data authenticity, and forward security. A fog-based online ride-
hailing system was designed in [22], capable of both fine-grained and bilateral matching. It ensures the authenticity
of passenger orders and meets the time constraints of passenger requests. Besides, this scheme allows both parties
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Table 1 Functional comparison in various schemes. – : meaningless; ✓ : support; ✕ : non-support; Tree: access tree structure; LSSS:

linear secret sharing scheme; F1: IND-sCPA (indistinguishability under selective chosen plaintext attacks); F2: IND-CCA (indistinguishability

under chosen ciphertext attacks); F3: IND-aCPA (indistinguishability under adaptive chosen plaintext attacks); F4: EUF-CMA (existential

unforgeability under chosen message attacks).

Characterization Ref. [7] Ref. [12] Ref. [14] Ref. [20] Ref. [21] Ref. [22] Ref. [23] Ref. [32] Ref. [35] Ref. [36] Ref. [40] FSBiAC

Bilateral access control # ! ! ! ! ! # ! ! ! # !
Forward security # # # # ! ! ! # # # ! !

Lightweight key rotation ! # # ! # # ! # # ! ! !
Outsourced decryption ! # ! ! # # ! # ! ! ! !

Exposure attacks defense # # # # ! ! # # # # # !
Large universe application # # ! # ! ! # # ! # # !

Access structure – – LSSS – LSSS LSSS Tree Tree – LSSS Tree LSSS

Security model – F1F3 F1F4 F2 F1F4 F1F4 F1 F1F4 F4 – F1 F1F4

to specify policies, with encrypted orders only revealed when both parties’ policies are matched. Nevertheless,
in [21,22], the puncture process and key maintenance are performed locally by the receivers, which results in heavy
communication and storage overhead. Thus, these schemes are unsuitable for resource-limited and large-scale
terminal devices.

The functional comparison of FSBiAC with the current studies is provided in Table 1. In summary, PE achieves
forward security by embedding labels into keys or ciphertexts. It provides solid content protection and defends
against malicious key attacks. Simply combining PE with ME obviously fails to meet the dual requirements of
efficient key updates and ciphertext privacy. Current bilateral access control methods cannot efficiently address the
issue of historical data exposure after key leakage, due to neglect of the balance between the computational cost of
key updates and forward security features. Besides, some schemes lack policy flexibility and remain limited to the
one-to-one communication model.

Roadmap. We provide the preliminaries in Section 2. Section 3 introduces the specific system entities, threat
model, algorithm description, and security model, followed by concrete construction and correctness analysis. Sec-
tion 4 describes IND-sCPA and EUF-CMA in detail. Section 5 analyzes the theoretical and experimental perfor-
mance of our scheme, respectively. Section 6 concludes this paper.

2 Preliminaries

This section provides some preliminaries, including linear secret sharing scheme, share generation matrix, Lagrange
interpolation function, (q − 1)-type assumption, and (q − 2)-type assumption.

Linear secret sharing scheme and share generation matrix. Assume P is a set of participants, and M

is an l × n sharing generation matrix. Let ρ(·) be a mapping function that maps each row of the matrix M to a
specific participant in P. For the access structure Θ ⊆ 2P\∅, the linear secret sharing scheme [42] consists of the
following two steps.

(1) Secret division: This algorithm takes as input the secret value s to be shared. It randomly selects µ2, . . . , µn
from Zp to form secret vector µ = (s, µ2, . . . , µn)

⊤
. Define λ = M · µ, which means computing λρ(k) = Mk · µ. It

outputs
{

λρ(k)
}

k∈[1−l]
as the shares of secret value. Here, Mk denotes the k-th row of matrix M, and the share

λρ(k) belongs to participant ρ(k).
(2) Secret reconstruction: This algorithm takes as input an authorized set S ∈ Θ, and computes a set of

constants {uk}k∈[1−l] ⊂ Zp such that
∑

k∈I Mk ·uk = (1, 0, . . . , 0). Here, I represents the rows that satisfy ρ(k) ∈ S.

It reconstructs secret value by computing
∑

k∈I λρ(k) · uk = s.
Lagrange interpolation function. Given (n + 1) known points (x0, y0), (x1, y1), . . . , (xn, yn), the Lagrange

interpolation function can construct an interpolating polynomial through the above data points. The n-th degree
polynomial P (x) and the basis functions Li(x) can be expressed as P (x) =

∑n
i=0 Li(x) · yi, in which Li(x) =

∏

j∈[0,n]
x−xj

xi−xj
(j 6= i). Li(x) takes the value 1 at x = xi and 0 at all other x = xj . In consequence, P (x) passes

through all known points.
(q−1)-type assumption. Let g be the generator of the cyclic group G0 with prime order p, and Z be a random

element in GT . Choose a, ϑ, b1, . . . , bq from Z
∗
p. If any probabilistic polynomial time (PPT) adversary A cannot

distinguish between
(

y, e(g, g)a
q+1ϑ

)

and (y,Z ∈ GT ) with a non-negligible advantage, then (decisional) (q − 1)-

type assumption is said to hold [43]. The advantage of A is defined as Adv
(q−1)
A = |Pr

[

A(Z = e(g, g)a
q+1ϑ,y) = 1

]
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Figure 2 (Color online) Our bilateral access control architecture for end-cloud collaborative IoT.

−Pr [A(Z ∈ GT ,y) = 1] |. And y is given by

[

g, gϑ, g1/a, {ga
i

, gbj , gϑbj , ga
ibj , ga

i/b2j , ∀(i, j) ∈ [q, q]}, {ga
ibj/b

2
j , ∀(i, j, j′) ∈ [2q, q, q], j 6= j′},

{ga
i/bj , ∀(i, j) ∈ [2q, q], j 6= q + 1}, {gϑa

ibj/b
′
j , gϑa

ibj/b
2
j , ∀(i, j, j′) ∈ [q, q, q], j 6= j′}

]

.

(q−2)-type assumption. Let g be the generator of the cyclic group G0 with prime order p, and Z be a random
element in GT . Choose ϑ, ̺, ς, b1, . . . , bq from Z∗

p. If any PPT adversary F , given y, can only compute e(g, g)ϑ̺ς

with negligible probability Pr
[

F (q−2)(y) = e(g, g)ϑ̺ς
]

, then (computational) (q − 2)-type assumption holds [42].
And the vector y is given by

[

g, gϑ, g̺, gς , g(ϑς)
2

, {gbi , gϑςbi , gϑς/bi , gϑ
2ςbi , g̺/b

2
i , g̺

2/b2i , ∀i ∈ [q]},

{gϑςbi/bj , g̺bi/b
2
j , gϑ̺ςbi/b

2
j , g(ϑς)

2bi/bj , ∀i, j ∈ [q, q], i 6= j}

]

.

3 System overview and construction

This section provides the system architecture, security model, formal algorithms, and construction.

3.1 System architecture

As shown in Figure 2, FSBiAC involves four entities: authoritative server (AS), semi-trusted cloud (SC), data owner
(DO), and data user (DU).

(1) AS: As a trusted entity, AS is responsible for generating system public parameters and master secret key,
as well as generating decryption keys for DU based on attribute sets. (2) SC: Acting as an honest-but-curious
cloud server, SC is responsible for performing several verification operations on encrypted files, outsourced keys, and
policy tokens. Additionally, SC assists DU in securely computing the puncture of outsourced update key. (3) DO:
As the data sender, DO is responsible for executing data encryption and sending encrypted files to SC. (4) DU:
As the data receiver, DU is responsible for performing local key updating and decryption operation. Since a large
portion of decryption tasks has been outsourced to SC, DU only needs to carry out lightweight decryption to recover
the plaintext.

In our architecture, SC is a semi-honest and inquisitive server that honestly performs verification at the access
policy layer and the authentication layer, but is interested in outsourced keys and encrypted files. It may generate
illegal communication with the terminals.

3.2 Formal algorithm description

FSBiAC consists of the following eight algorithms, including ParamGen, UKeyGen, TokenGen, OutUpdt,
LocUpdt, Encrypt, AttrVrfy, and FullDec algorithms.
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(pp,msk) ← ParamGen(U, 1κ, d): This algorithm takes as input large attribute universe U, system security
parameter κ, and the maximum number of labels d, and outputs system public parameters pp and master secret
key msk. It is executed by AS.

(IK0, UK)← UKeyGen(pp,msk,ΘR): This algorithm takes as input public parameters pp, master secret key
msk, and DU’s attribute set ΘR, and outputs initial update key IK0 and outsourced decryption key UK. It is
executed by AS.

Tok ← TokenGen(pp,R): This algorithm takes as input public parameters pp and DU’s authentication policy
R, and outputs policy token Tok. It is executed by DU.

(Z, ik, IKx) ← OutUpdt(pp,msk, IKx−1, lx): This algorithm takes as input public parameters pp, master
secret key msk, the last updated key IKx−1 and any length specific label lx 6= l0, and outputs accumulated value
Z, commitment ik of δ, and outsourced update key IKx. It is executed by SC.

IK ′
0 ← LocUpdt(pp, IK ′

0): This algorithm takes as input public parameters pp and current local update key
IK ′

0, and outputs updated key. It is executed by DU.

EF ← Encrypt(M, pp,ΘS,L, S): This algorithm takes as input public parameters pp, plaintext M, DO’s
attribute set ΘS , label set L, and DO’s access policy S, and outputs encrypted file EF . It is executed by DO.

TF/ ⊥← AttrVrfy(pp,EF, T ok, UK, IKx): This algorithm takes as input public parameters pp, encrypted
file EF , policy token Tok, outsourced update key IKx, and outsourced decryption key UK, and finally outputs
transformed file TF . It is executed by SC.

M← FullDec(pp, IK ′
0, TF ): This algorithm takes as input public parameters pp, the current local update key

IK ′
0, and transformed file TF , and finally outputs plaintextM. It is executed by DU.

3.3 Security model definition

To verify the security of FSBiAC, this section defines the security models for IND-sCPA and EUF-CMA.

IND-sCPA model. The security model for our FSBiAC is formally described. The game below captures the
interactions between an adversary A and a challenger C. A first declares a target access policy S∗ = (M∗, ρ∗) and
a target label set L∗ = (l∗1 , . . . , l

∗
d).

(1) Initialization. C obtains public parameters pp and master secret key msk by ParamGen, then transfers pp
to A. Besides, C remains msk and sets up two empty list Ex and Ey.

(2) The first query phase. After initializing a counter V = 0, A adaptively queries outsourced decryption key
UK and the most recent update key IKx. C responds as follows.

(a) UKeyGen Query. After the query being sent on an attribute set ΘR = (ΘR,1, . . . ,ΘR,k), C performs
UKeyGen and returns IK0 and UK, where ΘR is not satisfied with S∗. Lastly, C sends them to A.
(b) OutUpdt Query. After the key query is sent on a label lx and (x − 1)-th outsourced update key, C performs

OutUpdt and obtains (IKx, Z, īk, lx), where lx /∈ L∗ = (l∗1 , . . . , l
∗
d). Then C sends IKx to A. Lastly, C increments

the counter V and stores (IKx, lx, Z, īk) in execution record Ex.
(c) LocUpdt Query. A sends on a label lx and (x− 1)-th local update key to C. C first checks if there is a record

lx in Ex, where lx /∈ L∗ = (l∗1 , . . . , l
∗
d). If the tuple (lx, Z, īk) exists, C executes LocUpdt and returns IK ′

0 to A. If
it does not exist, C simultaneously executes OutUpdt Query and LocUpdt Query, followed with incrementing V and
storing (IK ′

0, IKx, lx, Z, īk) in Ex.
(d) Corrupt Query. This query is executed only once, i.e., when A issues for the first time, C assigns Ex to Ey and

provides A with the last x-th update key (IK ′
0, IKx). Subsequently, all Corrupt Query do not return any result. If

{l1, · · · , ld} ∪ Ex = ∅, it returns ⊥.
(3) Challenge. Two same-size messageM0 andM1 are selected byA. It sends (M0,M1, S

∗,L∗) to C. Notice that
{l∗1, . . . , l

∗
d} ∈ L

∗ has never been issued by Corrupt Query. Next, C takes pp,Mψ, S
∗ = (M∗, ρ∗) and {l∗1, . . . , l

∗
d} ∈ L

∗

as input, then runs Encrypt. It sends the challenge ciphertext EF ∗ to A, where ψ ∈ {0, 1}.
(4) The Second Query Phase. A requests C with the same operations in the first query phase.

(5) Guess. A generates a guess bit ψ′ ∈ {0, 1}, and wins in this game if ψ = ψ′. The advantage of adversary A
is defined as AdvsCPA

A = |Pr [ψ′ = ψ]− 1/2| .

Definition 1 (IND-sCPA). Our scheme is secure under IND-sCPA if any PPT adversary has at most a negligible
advantage in distinguishing ψ ∈ {0, 1}.

EUF-CMA model. The security model in EUF-CMA is formally described by the following EUF-CMA game.
It captures the interaction between a polynomial time forger F and a challenger C. F is allowed to access various
oracles. It attempts to forge signatures or break encryption through interactions. FSBiAC ensures that even if F
has query privileges, it cannot effectively forge valid ciphertext.



Hong K Y, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122305:7

(1) Initialization. The forger F specifies a target attribute set Θ∗
S = (Θ∗

S,1, . . . ,Θ
∗
S,k) and sends it to C. C runs

ParamGen to generate relevant public parameters pp and master secret key msk, and finally sends pp to F .
(2) Query Phase. The challenger C provides two relevant oracles TokenGen Query and Signature Query, allowing

the forger F to make queries. C responds as follows.

(a) TokenGen Query. F selects an authentication policy R = (N, σ), then C runs TokenGen to generate the
corresponding policy token Tok, and finally sends it to F .
(b) Signature Query. F selects a plaintextM, an authentication policy R = (N, σ), and an attribute set ΘS =

(ΘS,1, . . . ,ΘS,k). It is worth noting that R = (N, σ) in Signature Query must not match Θ∗
S. C runs Encrypt to

generate the signature components {{Cτ,6, Cτ,7}τ∈[1−k], C8, C9} corresponding to encrypted file. Finally, C returns
the tuple to F .

(3) Forgery. Once F completes the above Query Phase, it generates a forged signature {C∗
τ,6, C

∗
τ,7, C

∗
8 , C

∗
9}τ∈[1−k]

under the target attribute set Θ∗
S = (Θ∗

S,1, . . . ,Θ
∗
S,k) that satisfies the target authentication policy R∗ = (N∗, σ∗).

Note that F must not have queried the signature on Θ∗
S. Besides, the advantage of forger F is defined as

AdvCMA
F (1κ) = Pr[ExpCMA

F (1κ) = 1].

Definition 2 (EUF-CMA). Our scheme is secure under EUF-CMA if any PPT forger F has at most a negligible
advantage AdvCMA

F (1κ) in forging signatures.

3.4 Forward secure bilateral access control construction

According to the formal definitions in Section 3.2, we describe the concrete construction.
ParamGen: This algorithm takes as input a large attribute universe U, system security parameter κ, and the

maximum number of labels d. It randomly selects a multiplicative cyclic group G0 and GT with prime order p and
generator g, and designates a mapping e : G0 ×G0 → GT . Then, it selects w, v, u, h from GT and α, β from Zp. It
initializes label l0 and randomly selects coefficients for a d-degree polynomial from Zp. Subsequently, it definesQ(·) =
gq(·) and q(0) = β. Two collision-resistant hash functions H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → G0 are defined.
Finally, this algorithm outputs system public parameters pp = {w, v, u, h, g,Q(1), . . . , Q(d), e(g, g)α, gβ, l0, H1, H2}
and master secret key msk = α.

UKeyGen: This algorithm takes as input pp, msk, and DU’s attribute set ΘR = (ΘR,1, . . . ,ΘR,k). It selects
random ω, t from Zp, and calculates the initial update key IK0 = ik[0,1−4]:

ik0,1 = gω, ik0,2 = l0, ik0,3 = (gβ)ω+t, ik0,4 = Q(H1(l0))
ω.

It selects random elements r, r1, . . . , rk from Zp and outputs the outsourced decryption key UK = uk[1−4], where
τ ∈ [1− k]:

uk1 = (gβ)tgαwr, uk2 = gr, ukτ,3 = grτ , ukτ,4 =
(

uΘR,τh
)rτ

v−r.

TokenGen: This algorithm takes as input pp and DU’s authentication policy R = (N, σ), where R contains an
l×n matrix N (the matrix elements all belonging to Zp) and a mapping σ : [1− l]→ Zp. It selects random v2, . . . , vn
from Zp to form secret vector v = (1, v2, . . . , vn)

⊤, and computes π = N · v = (π1, π2, . . . , πl)
⊤. It calculates the

row set I in vector π corresponding to DU’s attributes ΘR, represented as I = {i : σ(i) ∈ ΘR ∧ σ : [1− l]→ Zp}.
It selects l random numbers γi from Zp, calculates and outputs policy token Tok = {Ti,1, Ti,2, Ti,3}:

Ti,1 =
(

uσ(i)h
)−γi

, Ti,2 = gγi, Ti,3 = gπiwγi .

OutUpdt: This algorithm takes as input pp and an arbitrary length-specific tag lx 6= l0, then selects random
δ, xx,0, zx from Zp. It calculates and outputs the accumulated value Z =

∑x
ξ=1 zξ, a commitment īk = (gβ)δ of δ,

and an outsourced update key IKx = ik[x,1−4]:

ikx,1 = gzx·xx,0/x, ikx,2 = lx, ikx,3 = (gβ)zx·(δ+xx,0)/x, ikx,4 = Q(H1(lx))
zx·xx,0/x.

LocUpdt: This algorithm takes as input pp, īk and the current local update key IK ′
0. It selects a random xx,1

from Zp, and then outputs new local update key IK ′
0 = ik′[0,1−4]:

ik′0,1 = gxx,1 · ik0,1 = gω+xx,1 , ik′0,2 = ik0,2 = l0,

ik′0,3 = (gβ)xx,1/īk · ik0,3 = (gβ)ω+t+xx,1−δ,

ik′0,4 = Q(H1(l0))
xx,1 · ik0,4 = Q(H1(l0))

ω+xx,1 .
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Encrypt: This algorithm takes as input pp, plaintext M, DO’s attribute set ΘS = (ΘS,1, . . . ,ΘS,k), label set
L = (l1, . . . , ld), and DO’s access policy S = (M, ρ). Here, S contains an l × n matrix M (matrix elements all
belonging to Zp) and a mapping ρ : [1 − l] → Zp. It selects a secret value ϑ and random µ2, . . . , µn from Zp to
form secret vector µ = (ϑ, µ2, . . . , µn)

⊤ and computes λ = (λ1, λ2, . . . , λl)
⊤ = M · µ. It selects l random numbers

ηj from Zp and computes ciphertext components {C, {Cj,1, Cj,2, Cj,3}j∈[1−l]}:

C =M· e(g, g)αϑ, Cj,1 = (uρ(j)h)−ηj , Cj,2 = gηj , Cj,3 = wλj vηj .

For x ∈ [1 − d], it computes Cx,4 = Q(H1(lx))
ϑ. It computes the commitment of ϑ as C5 = gϑ. Randomly

selects ̟, s1, . . . , sk from Zp and calculates ciphertext components {Cτ,6 = gsτ , Cτ,7 = (uΘs,τh)sτw−̟, C8 =
g̟, C9 = g̟ · H2(C6−8)}1), where τ ∈ [1 − k]. The encrypted file EF is {{Cj,1, Cj,2, Cj,3}j∈[1−l], {Cx,4}x∈[1−d],
C5, {Cτ,6, Cτ,7}τ∈[1−k], C8, C9, C, S,ΘS}.

AttrVrfy: This algorithm takes as input pp, EF , Tok, IKx, and UK.
• Fine-Grained Authentication. It selects a random number γ from Zp, and re-randomizes policy token Tok′ =

{T ′
i,1, T

′
i,2, T

′
i,3, T4} as follows:

T ′
i,1 = (Ti,1)

γ = (uσ(i)h)−γ·γi, T ′
i,2 = (Ti,2)

γ = gγ·γi, T ′
i,3 = (Ti,3)

γ = gγ·πiwγ·γi , T4 = gγ .

If ΘS is an authorized set, this algorithm can obtain a set of constants {ci ∈ Zp}i∈I such that
∑

i∈I ciπi = 1, and

thus the equation
∏

i∈I

(

e(T ′
i,1, Cτ,6) · e(T

′
i,2, Cτ,7) · e(T

′
i,3, C8)

)ci · e(T4, H2(C6−8)) = e(T4, C9) holds. If ΘS is an
unauthorized set, this algorithm returns a termination symbol ⊥.
• Outsourced Puncture Decryption. According to the interpolation function in Section 3.2, define (d+1) function

values as {H1(ikx,2), H1(lℓ)ℓ∈[1−d]}. Then for ξ ∈ [x]∗, it computes (d + 1) Lagrange coefficients {χ∗, χ1, . . . , χd}

such that the equation χ∗ · q(H1(ikx,2)) +
∑d

ℓ=1(q(H1(lℓ)) · χℓ) = q(0) = β holds. Afterwards, it performs the
following calculation:

Q =
x
∏

ξ=1

(

e (ikξ,3, C5) /e

(

ikξ,1,
d
∏

ℓ=1

(Cℓ,4)
χξ

)

· e (ikξ,4, C5)
χ∗

)

.

If {χ∗, χ1, . . . , χd} cannot be computed, this algorithm returns ⊥.
• Fine-Grained Access Control. The encrypted file EF contains DO’s access policy S = (M, ρ). Compute the row

set J in λ corresponding to DU’s attributes ΘR, i.e., J = {j : ρ(j) ∈ ΘR ∧ ρ : [1− l]→ Zp}. If ΘR is an authorized
set, this algorithm can obtain a set of constants {fj ∈ Zp}j∈J and compute the secret ϑ =

∑

j∈J fjλj , and thus
successfully compute the following equation:

P = e (C5, uk1) /
∏

j∈J

(e (Cj,3, uk2) · e (Cj,1, ukτ,3) · e (Cj,2, ukτ,4))
λj .

If ΘR is unauthorized, this algorithm returns ⊥. It outputs transformed files TF = {Q,P , Z, C,Cx,4, C5}.
FullDec: This algorithm takes as input pp, the current local update key IK ′

0, and transformed file TF . It
performs local puncture decryption:

B = e(ik′0,3, C5)/e

(

ik′0,1,

d
∏

ℓ=1

(Cℓ,4)
χξ

)

· e(ik′0,4, C5)
χ∗

.

Finally, this algorithm recovers the plaintext C · Q1/Z · B/P =M.

3.5 Correctness analysis

(1) Correctness of AttrVrfy algorithm.
• Fine-Grained Authentication. Assume that ΘS is an authorized set, then

∑

i∈I ciπi = 1:

e(T4, C9) = e(gγ , g̟ ·H2(C6−8)) = e (g, g̟)
γ·

∑
i∈I πici · e(gγ , H2(C6−8))

=
∏

i∈I

(

e
(

(uσ(i)h)−γ·γi , gsτ
)

· e
(

gγ·γi, (uΘS,τh)sτ
)

· e
(

gγ·γi, w−̟
)

1) H2(C6−8) denotes concatenating the ciphertexts {{Cτ,6, Cτ,7}τ∈[1−k], C8} together to perform compression on a string with arbitrary

length.
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· e (gγ·πi, g̟) · e (wγ·γi , g̟))ci · e(gγ , H2(C6−8))

=
∏

i∈I

(

e
(

(uσ(i)h)−γ·γi , gsτ
)

· e
(

gγ·γi, (uΘS,τh)sτw−̟
)

· e (gγ·πiwγ·γi , g̟)
)ci
· e(gγ , H2(C6−8))

=
∏

i∈I

(

e(T ′
i,1, Cτ,6) · e(T

′
i,2, Cτ,7) · e(T

′
i,3, C8)

)ci · e(T4, H2(C6−8)).

• Outsourced Puncture Decryption. Assume that ikx,2 6∈ {l1, ..., ld}, then,

Q =

x
∏

ξ=1

e (ikξ,3, C5)

e
(

ikξ,1,
∏d
ℓ=1(Cℓ,4)

χξ

)

· e (ikξ,4, C5)
χ∗

=

x
∏

ξ=1

e
(

(gβ)zξ·(δ+xξ,0)/x, gϑ
)

e
(

gzξ·xξ,0/x,
∏d
ℓ=1(Q(H1(lℓ))ϑ)χξ

)

·
x
∏

ξ=1

1

e
(

Q(H1(lξ))zξ·xξ,0/x, gϑ
)χ∗ =

x
∏

ξ=1

e
(

gzξ·δ·β/x, gϑ
)

· e
(

gzξ·xξ,0·β/x, gϑ
)

e
(

gxξ,0/x, gϑ
)zξ(χ∗·q(H1(lx))+χℓ·

∑
d
ℓ=1 q(H1(lℓ)))

=

x
∏

ξ=1

e
(

gzξ·δ·β/x, gϑ
)

· e
(

gzξ·xξ,0·β/x, gϑ
)

e
(

gxξ,0/x, gϑ
)zξ·q(0)

=

x
∏

ξ=1

e
(

gzξ·δ·β/x, gϑ
)

= e
(

g
∑x

ξ=1 zξ·δ·β , gϑ
)

= e (g, g)
Zδβϑ

.

• Fine-Grained Access Control. Assume that ΘR is an authorized set, then ϑ =
∑

j∈J fjλj :

∏

j∈J

(e (Cj,3, uk2) · e (Cj,1, ukτ,3) · e (Cj,2, ukτ,4))
λj =

∏

j∈J

(

e
(

wλj vηj , gr
)

· e
(

(uρ(j)h)−ηj , grτ
)

·e
(

gηj , (uΘR,τh)rτ v−r
))λj

=
∏

j∈J

(

e
(

wλj , gr
)

· e (vηj , gr) · e
(

(uρ(j)h)−ηj , grτ
)

· e
(

gηj , (uΘR,τh)rτ
)

·e
(

gηj , v−r
))λj

=
∏

j∈J

e
(

wλj , gr
)fj

= e (w, gr)
∑

j∈J λjfj = e(g, w)ϑr .

P = e(C5, uk1)/e(g, w)
ϑr = e(gϑ, (gβ)tgαwr)/e(g, w)ϑr = e(gϑ, gα) · e(gϑ, gβt).

Remark : According to linear secret sharing scheme and Lagrange interpolation function in Section 2, the cor-
rectness of AttrVrfy is divided into the following three parts. Specifically, if the authentication policy R = (N, σ)
embedded in Tok′ is matched by ΘS , Fine-Grained Authentication is achieved. Furthermore, if the coefficients
{χ∗, χ1, . . . , χd} can reconstruct β in the exponent, Outsourced Puncture Decryption is realizable. Similarly, if the
access policy S = (M, ρ) in EF is matched by ΘR, FSBiAC enables Fine-Grained Access Control.

(2) Correctness of FullDec algorithm.

B =
e
(

ik0,3
′, C5

)

e
(

ik0,1
′,
∏d
ℓ=1(Cℓ,4)

χξ

)

· e
(

ik0,4
′, C5

)χ∗ =
e
(

(

gβ
)ω+t+xx,1−δ

, gϑ
)

e
(

gω+xx,1,
∏d
ℓ=1(Q(H1(lℓ))ϑ)χξ

)

·
1

e(Q(H1(l0))ω+xx,1 , gϑ)
χ∗ =

e
(

(

gβ
)ω+t+xx,1−δ

, gϑ
)

e (gω+xx,1 , gϑ)
q(0)

= e(g, g)ϑβ(t−δ).

M = C · Q1/Z · B/P =M·
e(g, g)αϑ · e(g, g)(Zδβϑ)·1/Z · e(g, g)ϑβ(t−δ)

e(gϑ, gα) · e(gϑ, gβt)
=M·

e(g, g)αϑ · e(g, g)ϑβt

e(gϑ, gα) · e(gϑ, gβt)
.

4 Security proof and analysis

This section rigorously proves the privacy and authenticity based on the security model in Section 3.3, including
IND-sCPA and EUF-CMA. Besides, we conduct an in-depth analysis of forward security and exposure attack
defense, then examine how the Lagrange interpolation function in Section 2 facilitates secure outsourced updating.
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4.1 IND-sCPA security proof

Theorem 1 (IND-sCPA security). If (q − 1)-type assumption in Section 2.3 holds, the proposed scheme can
achieve IND-sCPA security.

Relying on the construction in Section 3.4, the selective semantic security game can be established. If there exists
a PPT adversary A that can break the game with a non-negligible advantage ε, a simulator B can be constructed
to solve (q − 1)-type problem.

(1) Initialization. A first declares a target policy S∗ = (M∗, ρ∗) and a set of target label L∗ = (l∗1 , . . . , l
∗
d). B

accepts the given instances from decisional (q−1)-type assumption, and obtains S∗ and L∗ from A. Then, B sets up
two empty list Ex and Ey. B selects α̃ from Zp, and computes e(g, g)α = e(g, g)α̃ ·e(ga, ga

q

), implicitly setting msk =

α = aq+1 + α̃. Subsequently, B sets w = ga, and randomly selects ṽ, ũ, h̃ from Zp, finally sets public parameters

pp as follows: v = gṽ ·
∏

(j,k)∈[l,n](g
ak/bj )M

∗
j,k , u = gũ ·

∏

(j,k)∈[l,n](g
ak/b2j )M

∗
j,k , h = gh̃ ·

∏

(j,k)∈[l,n](g
ak/b2j )−ρ

∗(j)·M∗
j,k .

Besides, B randomly selects (d + 1) points γ0, . . . , γd from Zp, where γ0 is only used as a distinguishing term and
is not used in the simulation. By computing gβ = g1/a, B implicitly sets q(0) = β = 1/a. It sets q(σ) = γσ, so that
Q(σ) = gq(σ) = gγσ . Finally, B transfers pp to A and remains msk.

(2) The First Query Phase. After initializing a counter V = 0, A adaptively queries UK and IKx.

(a) UKeyGen Query. After the query is sent on an attribute set ΘR = (ΘR,1, . . . ,ΘR,k) (ΘR must not be
satisfied with S

∗), B randomly selects ω̃ and t̃ from Zp. Then, it sets IK0 = ik[0,1−4], where ik0,1 = gω̃, ik0,2 = l0,

ik0,3 = (gβ)ω̃+t̃, ik0,4 = Q(H1(l0))
ω̃ . Next, B calculates UK as follows:

uk1 = (g1/a)t̃ · ga
q+1

· gα̃ · gar̃
∏

i∈[1−n]

gλia
q+2−i

= gt̃/a · gar̃ · gα̃
n
∏

i=2

(ga
q+2−i

)λi ,

uk2 = gr̃
∏

i∈[1−n]

(ga
q+1−i

)λi , ukτ,3 = grτ = gr̃τ · g

r̃·
∑

i′∈[1−l]
ρ∗(i′)/∈ΘR

b
i′

ΘR,τ−ρ∗(i′)

· g

∑
(i,i′)∈[n,l]
ρ∗(i′)/∈ΘR

λibi′
aq+1−i

ΘR,τ−ρ∗(i′)

,

ukτ,4 = (uΘR,τh)rτ · v−r = Ψ · Φ, (uΘR,τh)rτ = Ψ ·
∏

j∈[1−l]
ρ∗(j)/∈ΘR

g〈λ,M
∗
j 〉a

q+1/bj ,

v−r = v−r̃



gṽ
∏

(j,k)∈[l,n]

ga
k·M∗

j,k/bj





−
∑

i∈[1−n] λi·a
q+1−i

= Φ ·
∏

j∈[1−l]
ρ∗(j)/∈ΘR

g−〈λ,M∗
j 〉a

q+1/bj .

Since ΘR does not satisfy the target policy S∗, there must exist a vector λ = (λ1, λ2, . . . , λn)
⊤ such that λ1 = −1

and for the row i ∈ I, it holds that 〈M∗
i ,λ〉 = 0. Through the calculation on IK, the implicit setting r can be

achieved by r = r̃ +
∑

i∈[1−n] λi · a
q+1−i, where r is randomly selected from Zp. Beside, rτ is randomly selected

from Zp, and both Φ and Ψ can be calculated by specific (q − 1)-type instance [43]. Lastly, B sends the tuple
(IK0 = ik[0,1−4], UK = uk[1−4]) to A.
(b) OutUpdt Query. After the key query is sent on a label lx /∈ L∗ = (l∗1 , . . . , l

∗
d), a unauthorized attribute set

ΘR = (ΘR,1, . . . ,ΘR,k) and (x − 1)-th outsourced update key, B check the counter V about x, and add lx to the
execution record Ex. When A first performs Corrupt Query, B returns the latest update key IKx−1 to A and assigns
all labels in Ex to Ey. When no Corrupt Query is performed, or L∗ has a non-empty intersection with Ex, B randomly

selects δ̃, x̃0, z̃x from Zp, and sets the last outsourced update key IKx as īk = (g1/a)δ̃, ikx,1 = gz̃x·x̃0/x, ikx,2 = lx,

ikx,3 = (g1/a)z̃x·(δ̃+x̃0)/x, ikx,4 = Q(H1(lx))
z̃x·x̃0/x. Finally, B calculates Z̃ =

∑x
ξ=1 z̃ξ, increments the counter V ,

and sends the tuple (IKx, lx, Z̃, īk) to A.
(c) LocUpdt Query. A sends on a label lx /∈ L∗ = (l∗1 , . . . , l

∗
d), an unauthorized attribute set ΘR = (ΘR,1, . . . ,ΘR,k)

and (x − 1)-th local update key to B. If the tuple (lx, IKx, Z̃, īk) has been recorded, B randomly selects x̃1 from
Zp, sets the last local update key IK ′

0 as follows:

ik′0,1 = gω̃+x̃1 , ik′0,2 = l0, ik′0,3 = (g1/a)ω̃+t̃+x̃1−δ̃, ik′0,4 = Q(H1(l0))
ω̃+x̃1 .

Otherwise, if the tuple (lx, Z, īk) exists, B simultaneously executes OutUpdt Query and LocUpdt Query, followed
with incrementing V and storing (IK ′

0, IKx, lx, Z, īk) in Ex. Lastly, B sends the tuple to A.
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(d) Corrupt Query. When A sends the first query, B assigns Ex to Ey, and returns the x-th update key (IK ′
0, IKx).

For all subsequent queries, B returns ⊥.

(3) Challenge. Two same-size messageM∗
0 andM∗

1 are selected by A. It sends (M∗
0,M

∗
1, S

∗,L∗) to B. Notice
that {l∗1, . . . , l

∗
d} ∈ L

∗ has never been issued by Corrupt Query. B randomly selects ψ ∈ {0, 1} and constructs the
challenge encrypted components as follows:

C =M∗
ϕ · T · e

(

g, gϑ
)α̃
, Ci,1 =

(

gϑbi
)−ũρ∗(i)−h̃

·
∏

(j,k)∈[l,n]
j 6=i

(

gϑa
kbi/b

2
j

)−(ρ∗(i)−ρ∗(j))·M∗
j,k

,

Ci,2 =
(

gϑbi
)−1

= g−ϑ·bi , Ci,3 = wλ̃i ·
(

gϑbi
)−ṽ
·

∏

(j,k)∈[l,n]
j 6=i

(

gϑa
kbi/bj

)−M
∗
j,k

, Cx,4 =
(

gϑ
)γx

.

Among the above components, we have ϑi = −ϑ · bi, i ∈ [l], x ∈ [d]. The secret vector is set as v =
(

ϑ, ϑa+ ṽ2, ϑa
2 + ṽ3, . . . , ϑa

n−1 + ṽn
)⊤

(ṽ2, . . . , ṽn is randomly selected from Zp), and the sharing vector of M∗

is λi =
∑

τ∈[1−n]M
∗
i,τϑa

τ−1 +
∑n

τ=2 M
∗
i,τ ṽτ =

∑

τ∈[1−n]M
∗
i,τϑa

τ−1 + λ̃i, in which λ̃i =
∑n

τ=2M
∗
i,τ ṽτ . Then,

B defines the assumption term gϑ as C5. If ψ = 0, let the distinguishing term as T = e(g, g)ϑ·a
q+1

, then

C = M∗
ϕ · e(g, g)

ϑ·aq+1

· e(g, gϑ)α̃ = M∗
ϕ · e(g, g)

α·ϑ. Otherwise, B randomly selects T from GT , then defines

C =M∗
ϕ · T · e(g, g

ϑ)α̃. Finally, B returns the challenge tuple (C,Ci,1, Ci,2, Ci,3, Cx,4, C5) to A.
(4) The Second Query Phase. A requests B with the same operations in the first query phase, but the queried

plaintextM must be different fromM∗
0 andM∗

1. If previous queries have led to the corruption of L∗ = {l∗1 , . . . , l
∗
d},

then UKeyGen, OutUpdt and LocUpdt queries return ⊥.
(5) Guess. A generates a guess bit ϕ′ ∈ {0, 1}, and wins in this game if ϕ = ϕ′. B constructs an environment that

is equivalent to the interaction between A and C. When ψ = 0, we have T = e(g, g)s·a
q+1

; A knows the effective
ciphertext of M∗

ϕ, thus Pr[ϕ′ = ϕ|ψ = 0] = ε + 1/2. When ψ = 1, T is randomly chosen from GT , hence no
information about ϕ can be obtained from A’s view, thus Pr[ϕ′ = ϕ|ψ = 1] = 1/2.

The advantage of B in solving (q − 1)-type Problem is Adv
(q−1)
B = 1/2 · Pr[ϕ′ = ϕ|ψ = 0]− 1/2 · Pr[ϕ′ = ϕ|ψ =

1] = 1/2 · (1/2 + ε) − 1/2 × 1/2 = ε/2. If there exists a PPT adversary A that can break the proposed scheme
with a non-negligible advantage, A’s ability can be leveraged to solve (q − 1)-type problem. Since this assumption
is proven to be unsolvable in polynomial time, FSBiAC achieves IND-sCPA security.

4.2 EUF-CMA security proof

Theorem 2 (EUF-CMA security). If (q − 2)-type assumption in Section 2.3 holds, the proposed scheme can
realize EUF-CMA security.

Relying on the construction in Section 3.4, the following existential unforgeability game can be established.
Specifically, if there exists a PPT forger F that can forge a legal signature with a non-negligible advantage ε, a
simulator B can be constructed to solve (q − 2)-type problem.

(1) Initialization. The forger F specifies the target attribute set Θ∗
S = (Θ∗

S,1, . . . ,Θ
∗
S,k). B accepts the given

instances from (q − 2)-type assumption, and obtains Θ∗
S from F . B randomly selects α̃, h̃ from Zp, then computes

e(g, g)α = e(gϑ, g̺), where it implicitly set msk = α = ϑ · ̺, and ϑ and ̺ are already offered in (q − 2) instance.

B randomly selects ũ, h̃ from Zp, and calculates the relevant parameters pp as w = gϑ, u = gũ ·
∏

i∈[1−k] g
̺/b2i , h =

gh̃ ·
∏

i∈[1−k] g
ϑς/bi ·

∏

i∈[1−k]

(

g̺/b
2
i

)−Θ∗
S,i

. Finally, B selects a collision-resistant hash function H2 : {0, 1}∗ → G0,

and transfers pp to F . For brevity, B only offers parameter settings associated with authentication in this process.
The above parameters are properly distributed in F ’s view and can be calculated by the given term in (q − 2)
instance and the target attribute set Θ∗

S.

(2) Query Phase. The forger F issues TokenGen Query and Signature Query. C responds as follows.

(a) TokenGen Query. F selects an authentication policy R = (N, σ) and transfers it to B. Here, the target
attribute set Θ∗

S = (Θ∗
S,1, . . . ,Θ

∗
S,k) must be not satisfied with R = (N, σ). Since Θ∗

S is an unauthorized set for

R = (N, σ), there exists a vector ν = (1/ϑ̺, v2, . . . , vn)
⊤
, and for all τ ∈ [1 − l] where σ(τ) ∈ Θ∗

S , it holds
that 〈Nτ ,ν〉 = 0. In consequence, by randomly selecting ṽ2, . . . , ṽn from Zp, the vector v which contains 1/ϑ̺,
can be implicitly set as v = ϑ̺ν + (0, ṽ2, . . . , ṽn)

⊤. For each row in [1 − l], the share vector is set as πτ =
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ϑ̺〈Nτ ,ν〉 + 〈Nτ , (0, ṽ2, . . . , ṽn)
⊤〉 = ϑ̺〈Nτ ,ν〉 + π̃τ . If σ(τ) ∈ Θ∗

S, then it must hold that 〈Nτ ,ν〉 = 0, thus there

exists πτ =
〈

Nτ , (0, ṽ2, . . . , ṽn)
⊤
〉

. If σ(τ) /∈ Θ∗
S , then B randomly selects γ̃τ from Zp and sets Tok as follows:

Tτ,1 =
(

uσ(τ)h
)−γ̃τ

·





∏

i∈[1−k]

g
ϑς
bi ·

∏

i∈[1−k]

g
̺(σ(τ)−Θ∗

S
)

b2
i · gσ(τ)·ũ+h̃





̺〈Nτ ,ν〉−
∑

i∈[1−k]
ϑςbi〈Nτ ,ν〉

σ(τ)−Θ∗
S

,

Tτ,2 = (g̺)
−〈Nτ ,ν〉 · gt̃τ ·

∏

i∈[1−k]

(

gϑςbi
)

〈Nτ ,ν〉

σ(τ)−Θ∗
S , Tτ,3 = gπ̃τ · wγ̃τ ·

∏

i∈[1−n]

(

gϑ
2ςbi
)

〈Nτ ,ν〉

σ(τ)−Θ∗
S .

Here, by calculating the above equation, B implicitly sets γτ = −̺〈Nτ ,ν〉+
∑

i∈[1−k] ϑςbi〈Nτ ,ν〉/(σ(τ)−Θ∗
S)+ γ̃τ ,

and finally sends Tok = {Tτ,1, Tτ,2, Tτ,3)}τ∈[1−k] to F .

(b) Signature Query. F selects a plaintextM and an attribute set ΘS = (ΘS,1, . . . ,ΘS,k) 6= Θ∗
S , and transfers it

to B. For all τ ∈ [1− k], B implicitly sets sτ = bτ by computing Cτ,6 = gsτ = gbτ . Then, B calculates Cτ,7 and C8

as follows:

Cτ,7 = gbτ (ũΘτ+h̃) · g−ϑς ·
∏

i∈[1−k]

g
ϑςbτ
bi ·

∏

i∈[1−k]

g

̺bτ(ΘS,k−ΘS,i)
b2
i , C8 = g−ς .

B performs a concatenation of {Cτ,6, Cτ,7}τ∈[1−k] and C8, then calculates C9 = g−ς · H2(C6−8). Finally, it sends
the signature tuple {{Cτ,6, Cτ,7}τ∈[1−k], C8, C9} to F .

(3) Forgery. Once F completes Query Phase, it generates a forged signature {C∗
τ,6, C

∗
τ,7, C

∗
8 , C

∗
9} under the target

attribute set Θ∗
S = (Θ∗

S,1, . . . ,Θ
∗
S,k). Note that F must not have queried the signature on Θ∗

S . F submits the forged
signature to B, claiming that it is valid. Based on the signature definition, if the simulation is successful, B randomly
selects ṽ2, . . . , ṽn and sets v = ϑ̺ν+(0, ṽ2, . . . , ṽn)

⊤. Next, let I = {i : σ(i) ∈ ΘR ∧ σ : [1− l]→ Zp}, and for {ci ∈

Zp}i∈I , ensure that
∑

i∈I ciNi = (1, 0, . . . , 0). B computes
∏

=
∏

i∈I

(

e((uσ(i)h)−1, C∗
τ,6) · e(g, C

∗
τ,7) · e(g

πi+ϑ, C∗
8 )
)ci

·e(gς , H2(C
∗
6−8)). Since B holds g̺ and gς , it can compute

∏

/(e(g, gς ·C∗
9 ) · e(g

̺, w−̟) = e(g, g)ϑ̺ς as the solution
to (q − 2)-type problem. If there exists a PPT forger F that can forge the valid signature with a non-negligible
advantage, F ’s ability can be leveraged to solve (q − 2) problem. Since e(g, g)ϑ̺ς is proven to be uncomputable, it
can be deduced that FSBiAC achieves EUF-CMA security.

4.3 Forward security and exposure attack defense

In the traditional definition, forward security [44] refers to the ability which maintains the previously encrypted infor-
mation confidentiality, even if the long-term secret key is maliciously compromised or stolen by an adversary. It effec-
tively prevents the adversary from using historical keys to breach system security. In our FSBiAC, the semi-trusted
cloud continuously stores past encrypted information. The encrypted file EF is generated by Encrypt, which em-
beds a set of predefined labels L = {l1, . . . , ld} established by DO. Moreover, by inputting a specific label IKx,2 = lx,
the update key IKx−1 runs (Z, ik, IKx) ← OutUpdt(pp,msk, IKx−1, lx) and IK ′

0 ← LocUpdt(pp, IK ′
0) algo-

rithms to ensure that the update key IKx can only decrypt EF that not containing lx (see AttrVrfy and FullDec
algorithms in Subsection 3.4). The key is updated after each puncture, which disables the decryption capability for
the specific labels. After each update, the current key can only decrypt future data, whereas previously disabled
ciphertexts can no longer be decrypted. This characteristic is achieved through Lagrange interpolation. If ikx,2
belongs to {lℓ}ℓ∈[1−d], then q(H1(ikx,2)) ∪ {q(H1(lℓ)}ℓ∈[1−d] degenerates into d points, thus no set of coefficients
{χ∗, χ1, . . . , χd} can satisfy the conditions for reconstructing β. Even if the update key IKx is subjected to malicious
attacks, EF can still guarantee confidentiality. Therefore, FSBiAC achieves forward security, thereby effectively
resisting key exposure attacks.

5 Experimental evaluation

This section analyzes schemes [14, 21, 23], and FSBiAC from both theoretical and experimental perspectives. We
demonstrate the applicability using Stanford Network SNAP datasets [25].
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Table 2 Comparison of theoretical computational cost. E0 and ET represent exponentiations in G0 and GT , respectively. M0 and MT denote

multiplications in G0 and GT , respectively. P denotes pairing operations, and H denotes hash function operations.

Algorithm Xu et al. [14] Ghopur et al. [23] Nie et al. [21] FSBiAC

UKeyGen 3|N|E0 + |N|M0 + |N|H 2(|ΘR| + |D|)E0 + 2M0
3|N| + 5E0+

(|N| + 1)(M0 + H)

3(|ΘR| + 7)E0+

(|ΘR| + 2)M0 + H

TokenGen |ΘS|(2E0 + H) + M0 – |ΘS|(2E0 + M0 + H) |N|(3E0 + 2M0)

LocUpdt – – |I|(6E0 + 5M0) |I|(3E0 + 4M0)

Encrypt

(2|ΘR| + 2|ΘS | + 3)E0

+(|ΘS| + |ΘR|)M0 + ET

+MT + (|ΘR| + |ΘS| + 1)H

(6|I| + 2|M| + 2)E0

+(5|I| + |M|)M0 + 2MT

(2|ΘR| + |D| + 2|ΘS | + 3)E0

+(|ΘS | + |ΘR|)M0 + ET + MT

+(|ΘR| + |D| + |ΘS | + 1)H

(3|M| + |D| + 2|ΘS | + 3)E0

+|D|H + ET + MT

2(|M| + |ΘS|)M0

FullDec |N|ET + 2|N|(MT + P) 2E0 + 2M0 + P

|I|M0 + (|N| + |I|)ET

+(2|N| + |I|)MT

+(2|N| + 3|I|)P

|I|(E0 + M0)

+2ET + 5MT + 3P

Table 3 Comparison of theoretical storage cost. |G0|, |GT |, and |Zp| represent the element sizes in G0, GT , and Zp, respectively.

Components Xu et al. [14] Ghopur et al. [23] Nie et al. [21] FSBiAC

Initial update key – 3|G0| + |Zp| 3|G0| + |Zp| 3|G0| + |Zp|

Outsourced key 2|ΘR||G0| (|ΘR| + |D|+ 2)|G0| 2|ΘR| + |G0| (|ΘR| + 2)|G0|

Policy token (|ΘS | + 1)|G0| – 2|ΘS| + |G0| 3|N|+ |G0|

Update key – (|I|+ 1)(3|G0| + |Zp|) (|I|+ 1)(3|G0| + |Zp|)
Out: |I|(3|G0| + |Zp|)

Local: 3|G0|+ |Zp|

Encrypted file
3(|ΘS| + 1)

|G0| + |GT |

(3|I|+ |M| + 6)|G0|

+(|I|+ 1)|Zp|+ |GT |

(2|ΘS| + 2|ΘR| + |D|

+2)|G0|+ |GT |

(2|ΘS| + |M| + |D|

+2)|G0| + |GT |

Transformed file
(|ΘS |+ 1)

|G0| + |GT |
|G0|+ 2|GT |

(|ΘS| + |I|

+1)|G0|+ |GT |
(|I|+ 1)|G0| + 3|GT | + |Zp|

5.1 Theoretical analysis

This section analyzes the computational and storage costs from a theoretical perspective, as shown in Tables 2 and
3. It is worth noting that |R| represents the number of attributes in DU’s attribute set, |S| represents the number
of attributes in DO’s attribute set, |N| represents the number of shares in authentication policy R, |M| represents
the number of shares in access policy S, |I| represents the number of puncture operations on update key, and |D|
represents the number of elements in label set.

Table 2 provides a detailed computational comparison for five algorithms, including UKeyGen, TokenGen,
LocUpdt, Encrypt, andFullDec. Different from [14,21], in terms of user key and policy token generation, FSBiAC
embeds DU’s attributes into keys and embeds DU’s policies into tokens with a large attribute universe, which shows
comparable computational overhead with [14,21,23]. During the puncture process, our FSBiAC outsources update
operation to the cloud, and requires only |I|(3E0 + 4M0) local computation. While SC is responsible for executing
|I|(3E0+M0) secure outsourced computation. In terms of Encrypt, our scheme has essentially the same complexity
as [14, 21]. Due to the embedding of puncture components in encrypted files, Ghopur et al. [23] requires a higher
order of resources during the encryption process. In FullDec part, compared to [21], FSBiAC effectively reduces
local burden through outsourced verification, and requires only |D|(E0 +M0) computation to achieve lightweight
puncture verification. Table 3 provides a detailed storage comparison for six components, including initial update
key IK0, outsourced decryption key UK, policy token Tok, update keys IKx and IK ′

0, encrypted files EF , and
transformed file TF . It is worth noting that during update key phase, since FSBiAC outsources puncture process,
SC is responsible for its secure maintenance. As the number of punctures |I| increases, SC grows its storage cost
by 3|I||G0|+ |D| each time. And DU only needs to consume initial update key IK0 required 3|I||G0| overhead and
accumulated value Z =

∑x
ξ=1 zξ required |Zp| overhead, which avoids keeping history puncture information locally.

In contrast, this process is performed by DU in both [21, 23]. As the update frequency increases, they would face
the issues in terminal overheads that are inconvenient to deploy.

5.2 Experimental results

This section conducts a simulation based on the JPBC Library [24] to compare the computational costs of key
algorithms in FSBiAC with those in [21]. The simulation experiment was run on a Lenovo desktop equipped with
an Intel(R) Core(TM) i7-9700 processor and 16.0 GB onboard memory. For lightweight computation and high
security, the simulation utilizes “e.properties”, “a1.properties”, and “a.properties” (referred to as Type-E, Type-
A1, and Type-A) from the JPBC library2). Therein, Type-E based on the Diophantine equation DV 2 = 4q − t3 is

2) The main algorithm code can be found in an open-source repository at https://github.com/Reichenbachxd1202/FSBiAC.



Hong K Y, et al. Sci China Inf Sci February 2026, Vol. 69, Iss. 2, 122305:14

Figure 3 (Color online) Computation cost for main algorithms. (a) ParamGen; (b) UKeyGen; (c) TokenGen; (d) LocUpdt; (e) Encrypt;

(f) FullDec.

Table 4 Computational overhead (ms) of various algorithms under Type-E and Type-A1 curves.

Algorithm

(attribute/share/label)

Type-E [21] Type-A1 [21] Type-E FSBiAC Type-A1 FSBiAC

50 100 50 100 50 100 50 100

ParamGen 2757.34 2754.62 15893.26 15952.24 2314.14 2327.99 15127.74 14672.84

UKeyGen 3697.37 7239.41 22561.91 43874.35 3943.89 7775.78 24707.18 48303.33

TokenGen 2522.87 5006.29 15389.92 30403.49 3308.69 6668.81 20675.94 41199.71

LocUpdt 3621.14 6949.98 22366.81 44043.79 483.19 977.31 2937.46 5850.84

Encrypt 12364.13 19642.41 77161.12 124296.15 11794.87 17322.65 72053.52 102951.4

FullDec 7623.68 9885.08 43953.95 55857.49 1206.83 2369.32 7546.18 14765.54

evaluated within the finite field Fq, and no field expansion is required. Both Type-A1 and Type-A are built on the
super-singular curve y2 = x3 + x.

Figure 3 shows the time overhead comparison of several algorithms between our scheme and [21] under the Type-
A elliptic curve. In ParamGen, we calculated the time cost when the number |D| in the label set is 30, 50, and 100,
respectively. Due to collision-resistant hash functions and the public parameter computation in groups G0 and GT ,
Nie et al. [21] incurs slightly higher overhead. Since UKeyGen and TokenGen require access policies specification
and shares generation, their computational and storage costs are slightly higher than those of [21], but still fall
within an acceptable computational range. In LocUpdt, the outsourcing of key updates is securely computed by
the semi-trusted cloud, thus greatly reducing local computational costs. When the number of punctures |I| reaches
50 and 100, the cost of FSBiAC is 179.28 and 363.30 ms, respectively, significantly better than scheme [21]’s 1283.55
and 2566.89 ms. In Encrypt, Nie et al. [21] requires re-encryption operations, thus incurring slightly higher costs
than FSBiAC. It is noteworthy that in FullDec, due to the outsourcing maintenance of updated keys and the
verification of outsourced punctures, the actual performance of FSBiAC is better than [21]. Specifically, when
decrypting with 100 shares and the number of punctures |I| reaches 50 and 100, the cost of FullDec is 478.54 and
860.45 ms, respectively, which is better than [21]’s 2408.09 and 3050.49 ms.

For brevity, the data under the Type-E and Type-A1 elliptic curves can be intuitively obtained from Table 4.
Similar to the results of Type-A curve in Figure 3, FSBiAC has a slightly higher cost in UKeyGen and TokenGen
due to policy embedding and the application of Boneh-Boyen hash function. LocUpdt, Encrypt, and FullDec
algorithms executed by terminals (DOs and DUs) show a clear efficiency advantage.

Figure 4 illustrates the storage comparison between FSBiAC and [21] under Type-E, Type-A1, and Type-A
elliptic curves. Notably in LocUpdt algorithm, the outsourced key update significantly reduces the actual storage
overhead of FSBiAC compared to [21]. Specifically in [21], key update storage increases linearly with the number
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Figure 4 (Color online) Storage cost for main algorithms. (a) ParamGen; (b) UKeyGen; (c) TokenGen; (d) LocUpdt; (e) Encrypt;

(f) FullDec.

Table 5 Storage overhead (Bytes) of various algorithms under Type-E and Type-A1 curves. ①: outsourced decryption key UK = uk[1−4]; ②:

initial update key IK0 = ik[0,1−4].

Algorithm

(attribute/share/label)

Type-E [21] Type-A1 [21] Type-E FSBiAC Type-A1 FSBiAC

50 100 50 100 50 100 50 100

ParamGen 2088 2088 2596 2596 1960 1960 2336 2336

UKeyGen
① 25600

② 788

① 51200

② 788

① 26000

② 908

① 52000

② 908

① 26112

② 788

① 51712

② 788

① 26520

② 908

① 52520

② 908

TokenGen 25600 51200 26000 52000 38400 76800 39000 78000

LocUpdt 40188 79588 46308 91708 788 788 908 908

Encrypt 77696 103296 79040 105040 103040 141400 104780 143780

FullDec 128 128 260 260 128 128 260 260

Table 6 Algorithm execution results (s, KB) on Gnutella, wiki-Talk, and CA-AstroPh datasets.

Algorithm

(dataset)

Scheme [21] FSBiAC

Gnutella wiki-Talk CA-AstroPh Gnutella wiki-Talk CA-AstroPh

Encrypt
Comp: 39.62

Stor: 5031.38

Comp: 3038.99

Stor: 627708.37

Comp: 394.37

Stor: 49552.13

Comp: 25.04

Stor: 4999.75

Comp: 2041.81

Stor: 627676.75

Comp: 220.15

Stor: 49520.50

FullDec
Comp: 144.63

Stor: 421.04

Comp: 14398.33

Stor: 64910.30

Comp: 1657.44

Stor: 5163.55

Comp: 3.58

Stor: 421.04

Comp: 312.57

Stor: 64910.31

Comp: 43.93

Stor: 5163.55

of punctures I. When |I| reaches 50 and 100, the costs are 40188 and 79588 Bytes under Type-E curve, 46308 and
91708 Bytes under Type-A1 curve, 20604 and 40804 Bytes under Type-A curve, respectively. In contrast, FSBiAC
maintains a stable overhead for updated key storage across all three types of curves, with costs of 788, 908, and
404 Bytes, which do not increase with the number of punctures |I|. For clarity, some storage overhead under
Type-E and Type-A1 curves can be obtained from Table 5. Additionally, based on p2p-Gnutella, wiki-Talk, and
CA-AstroPh datasets collected from Stanford Network SNAP [25]3), we test the computational and storage costs
of Encrypt and FullDec for both schemes, with the number of shares, attributes, and elements in the label set all
set to 50. We manage the thread pool through ExecutorService and break down the computing task into several
blocks. As shown in Table 6, the computational efficiency of Encrypt and FullDec on three datasets is improved
by about 1.5 times and 40 times, respectively, compared to [21]. Hence, our FSBiAC demonstrates better scalability
and is suitable for resource-limited IoT terminals.

3) Link to the datasets is available at http://snap.stanford.edu/data/other.html.
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6 Conclusion

To address the issue of illegal access and forgery of sensitive data in end-cloud collaborative IoT, this paper proposes a
forward secure bilateral access control scheme, called FSBiAC, to ensure the full lifecycle security of encrypted data.
It integrates ABME and PE to achieve both fine-grained access control and fine-grained authentication. FSBiAC
adopts the ME paradigm to enable bilateral verification between policies and attributes. Furthermore, FSBiAC
revokes directional keys’ access to specific labels, and prevents adversaries from using the current keys to expose
historical data, thereby ensuring forward security. Different from traditional ABME, our scheme offloads a significant
portion of puncture tasks to the cloud, thus effectively reducing the high local computation and storage costs in
traditional forward secure methods. Security analysis and simulation results prove that it offers superior security
and practicality in end-cloud collaborative IoT compared to previous studies. In the complexly deployed cloud-
network-end collaborative architecture [2], the revocation and addition of terminals and edge devices frequently
change. With the separation of data ownership, data management, and usage permissions, it is a worthwhile
consideration that compromised keys cannot access historical and future data. With the collaborative nature of
terminals, edge networks, and the cloud, future research will focus on constructing a lightweight bilateral access
control scheme that supports both forward and backward security.
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